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Idiosyncratic epistasis leads to global
fitness–correlated trends
Christopher W. Bakerlee1,2,3†, Alex N. Nguyen Ba1,2,4,5†, Yekaterina Shulgina3,
Jose I. Rojas Echenique1,6, Michael M. Desai1,2,7,8*

Epistasis can markedly affect evolutionary trajectories. In recent decades, protein-level fitness
landscapes have revealed extensive idiosyncratic epistasis among specific mutations. By contrast, other
work has found ubiquitous and apparently nonspecific patterns of global diminishing-returns and
increasing-costs epistasis among mutations across the genome. Here, we used a hierarchical CRISPR
gene drive system to construct all combinations of 10 missense mutations from across the genome in
budding yeast and measured their fitness in six environments. We show that the resulting fitness
landscapes exhibit global fitness–correlated trends but that these trends emerge from specific
idiosyncratic interactions. We thus provide experimental validation of recent theoretical work arguing
that fitness-correlated trends can emerge as the generic consequence of idiosyncratic epistasis.

E
pistatic interactions have important con-
sequences for the design and evolution
of genetic systems (1–3). Much work in
recent decades has studied these inter-
actions by measuring empirical fitness

landscapes, most often at “shallow” depth for
genome-scale studies (e.g., by quantifying pair-
wise but not higher-order epistasis between
all gene deletions ormutations) or at “narrow”
breadth (e.g., complete landscapes at the scale
of small select regions in single genes such as
by quantifying all orders of epistatic interac-
tions among few amino acid residues) (4–18).
These studies have often foundmany epistatic
interactions among specific mutations at both
lower orders (i.e., among few mutations) and
higher orders (i.e., among many mutations).
These reflect particular biological and physical
interactions among the mutations involved;
following recentwork (19, 20), we refer to them
as “idiosyncratic” epistasis because they involve
the specific details of these mutations. Overall,
this body of work has highlighted the potential
for epistasis to create historical contingency that
tightly constrains the distribution of adaptive
trajectories accessible to natural selection.
By contrast, other work examining adaptive

trajectories that implicate loci across the ge-
nome has found patterns of apparently “global”
epistasis, in which the fitness effect of a
mutation varies systematically with the fit-
ness of the genetic background on which it

occurs (21–28). Typically, this manifests as
either diminishing returns for beneficial
mutations or increasing costs for deleterious
mutations, with mutations having a less posi-
tive or more negative effect on fitter back-
grounds. These consistent patterns of global
epistasis may give rise to the dominant evo-
lutionary trend of declining adaptability, and
in contrast to the complexity of idiosyncratic
interactions, they suggest that historical con-
tingency could be less critical in constraining
adaptive trajectories (29).
Despite their importance, these dual de-

scriptions of epistasis have not been satisfac-
torily unified. In one view, global epistasis
results from nonspecific fitness-mediated
interactions among mutations (24). Such
interactions may, for example, emerge from
the topology of metabolic networks, which
generates overall patterns of diminishing re-
turns and increasing costs that eclipse the
specific details of idiosyncratic interactions
(30). By contrast, other recent theoretical work
has proposed an alternative view, hypothesiz-
ing that apparent fitness-mediated epistasis
can instead emerge as the generic consequence
of idiosyncratic interactions if they are suffi-
ciently numerous and widespread (19, 20).
These two models have substantially different
implications for the structure of fitness land-
scapes, which in turn influence our expecta-
tions of the repeatability and predictability of
evolution and of the effect of chance and con-
tingency on adaptation at both the genotypic
and phenotypic levels. Thus, this dichotomy
plays a central role in our understanding of
how epistasis affects evolutionary dynamics.
Thus far, however, empirical work has been

unable to distinguish between these perspec-
tives. The key difficulty is that testing these
ideas requires both depth and breadth: We
must analyze landscapes involving enough
loci that we sample idiosyncratic interac-
tions that can potentially give rise to overall

fitness-mediated trends, and wemust survey
possible combinations of these mutations at
sufficient depth to quantify the role of higher-
order interactions (including potential “global”
nonspecific fitness-mediated interactions).
Larger landscapes are also necessary to reduce
the influence of measurement error on the
inference of epistasis and analysis of fitness-
correlated trends (FCTs) (see the supplemen-
tary materials, section 6.3). Achieving this
depth and breadth is technically challenging
because it requires us to synchronize many
mutations across the genome.
Here, we overcame this challenge by de-

veloping a method that exploits Cre-Lox
recombination to create a combinatorially
expanding CRISPR guide-RNA (gRNA) array in
Saccharomyces cerevisiae, which allowed us to
iteratively generate mutations at distant loci
through a gene-drivemechanism (Fig. 1A). Briefly,
strains of opposite mating type containing
inducible Cre recombinase and SpCas9 genes
were mutated at one of two loci (A or B), and
DNA encoding gRNAs specific to thewild-type
(WT) alleles at these loci were integrated into
their genomes (fig. S1). After mating to produce
a diploid heterozygous at A and B, we induced
a gene drive tomake the loci homozygous. This
began with expressing Cas9 and generating
gRNA-directed double-strand breaks at the
WT A and B alleles. These breaks were then
repaired by the mutated regions of homolo-
gous chromosomes, making the diploid homo-
zygous at these loci with at least 95% efficiency.
Simultaneously, we expressed Cre to induce
recombination that brought gRNAs into phys-
ical proximity on the same chromosome by
way of flanking Lox sites using a strategy
similar to that described previously (31) (Fig.
1B). We then sporulated diploids and selected
haploids bearing the linked gRNAs from both
parents. In parallel, we performed this process
with “pseudo-WT” versions of these loci, which
contain synonymous changes that abolish
gRNA recognitionbut lack the nonsynonymous
change of interest. This created a set of four
strains, with all possible genotypes at loci A
and B. Concurrently, we created separate sets
of four strains with all possible genotypes at
other pairs of loci (e.g., C and D).
By iterating this process, we could rapidly

assemble an exponentially expanding, combi-
natorially complete genotype library.Wemated
separate sets of four genotypes bearing all
combinations of mutations at two loci each in
an all-against-all cross, drove their mutations,
recombined their gRNAs, and sporulated to
produce a 16-strain library bearing all four-
locusmutation combinations. Repeating these
steps in a third cycle with two four-locus
libraries of opposite mating type yielded a
256-strain, eight-locus library, and a complete
landscape of up to 16 mutations (216 strains)
could be constructed in just four cycles.
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Fig. 1. Recombining CRISPR-gene drive system. (A) Experimental design.
Strains of opposite mating type carrying known mutations and corresponding
gRNAs mate to form heterozygous diploids. Cas9 expression “drives” these
mutations, and site-specific recombination links gRNAs. Homozygous diploids are
sporulated, haploids with linked gRNAs are selected, and the process repeats,
incorporating exponentially increasing numbers of mutations. (B) Recombining
gene drive system. gRNAs targeting heterozygotic loci are flanked by selection
markers and two of three orthogonal Lox sites (colored triangles), which are
inactivated through recombination (red triangles). Cas9 “drives” targeted
mutations, whereas Cre-Lox recombination brings like markers to the same

chromosome and activates a URA3 gene interrupted by an artificial intron. After
sporulation, the chromosome with gRNAs is selected using the markers of
interest and the other is counterselected using 5-fluoroorotic acid (5-FOA).
(C) Cross-design. A complete fitness landscape is produced in parallel by distinct
cross designs that yield final homozygous diploids and haploids in biological
replicates with unique DNA barcodes. (D) Bulk-fitness assays. Pooled strains are
assayed in replicate for competitive fitness in several environments by
sequencing barcodes to obtain strain frequencies over time. (E) Repeatability of
technical replicate competitive fitness measurements. (F) Repeatability of
biological replicate competitive fitness measurements.
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We sought to use this method to construct
a complete fitness landscape that would shed
light on the structure of epistasis: Are FCTs
primarily the product of a global coupling of
mutations through fitness or do they emerge

as the consequence of idiosyncratic epista-
sis? We surveyed studies of natural variation
[e.g., (32–36)] and experimental evolution [e.g.,
(37–39)] to identify mutations potentially rel-
evant to adaptation in the laboratory strain.

We selected a set of mutations that sample a
wide range of cellular functions, such as mem-
brane stress response, mitochondrial stability,
and nutrient sensing. Our goal in making this
choice was to maximize fitness variance while
minimizing pathway-specific idiosyncratic inter-
actions. Alternative choices of mutations, partic-
ularly if they were focused on a specific protein
or pathway (or limited to those that accumu-
lated along the line of descent in a single
lineage),might exhibit very different patterns of
epistasis, which would be characteristic of the
particular details of that specific protein or path-
way (or that specific adaptive trajectory). How-
ever, our goal here was to analyze potentially
global patterns of epistasis among mutations
across the genome that are relevant to fitness in a
variety of conditions and thus represent an over-
all fitness landscape for the laboratory strain.
We thus implemented our gene-drive sys-

tem to construct a near-complete landscape
spanning 10 missense mutations in 10 genes
(including essential genes) on eight chromo-
somes: AKL1 (S176P), BUL2 (L883F), FAS1
(G588A), MKT1 (D30G), NCS2 (H71L), PMA1
(S234C), RHO5 (G10S), RPI1 (E102D), SCH9
(P220S), andWHI2 (L262S) (Fig. 1C and table
S1). We found that a landscape of about this
size is required to distinguish the two models
(see the supplementary materials, section 6.3).
Immediately before the final mating cycle, all
strains were transformed with a unique DNA
barcode next to the LYS2 locus to enable high-
throughput, sequencing-based competitive fit-
ness assays (figs. S2 and S3). All strains in each
replicate haploid library were genotyped at all
10 loci to confirm the presence of the desired
alleles (this step also ensures presence in the
diploid libraries). We excluded strains in which
gene drive failure led to improper genotypes,
such that ultimately 875 out of 1024 (85.4%)
genotypes remained (468 were present in just
one library, and 407 were present in both
libraries). We also performed whole-genome
sequencing of 96 randomly selected strains
to rule out pervasive aneuploidies or influ-
ential but spurious background mutations.
One aneuploidy was identified, and three spu-
rious background mutations were observed at
>5% frequency. Subsequent analysis showed
that these were unlikely to systematically
influence our findings (table S2 and supple-
mentary materials, section 5.1).
To obtain fitness landscapes, we conducted

replicate bulk barcode–based fitness assays on
both pooled haploid and homozygous diploid
versions of the genotype library in six distinctly
stressful media environments: yeast extract
peptone dextrose (YPD) + 0.4% acetic acid,
YPD+6mMguanidium chloride, YPD+ 35 mM
suloctidil, YPD at 37°C, YPD + 0.8 M NaCl,
and synthetic dextrose (SD) + 10 ng/ml 4-
nitroquinoline 1-oxide (4-NQO) (Fig. 1D).
For each of 7 days, pools were allowed seven

Bakerlee et al., Science 376, 630–635 (2022) 6 May 2022 3 of 6

Fig. 2. Fitness landscapes. (A) Correlation in observed fitness (upper right) and predicted fitness (from
inferred model, lower left; see the supplementary materials, section 5.1) across ploidies and environments.
(B) Background-averaged additive effect of each locus across ploidies and environments. Error bars
represent 95% confidence intervals. (C) Background-averaged pairwise epistatic effects between loci across
ploidies and environments. Weights of edges connecting loci represent the proportion of pairwise variance
explained by each interaction. Heights of bars on the perimeter correspond to the proportion of additive
variance explained by each locus in each environment. (D) Variance partitioning of broad-sense heritability
from additive and epistatic orders across ploidies and environments. (E) Cumulative distribution of the
epistatic variance explained by rank-ordered epistatic terms of all orders.
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generations of growth, and aliquots were sam-
pled and sequenced at the barcode locus at
generations 7, 14, 28, 42, and 49. We estimated
the relative fitness of each genotype from
changes in barcode frequencies through time,
achieving consistentmeasurements across tech-
nical and biological replicates (Fig. 1, E and F,
and fig. S4). From these data, we inferred the
background-averaged additive and epistatic
effects of each mutation and combination of
mutations, respectively (using LASSO regula-
rization; see the supplementary materials).
We found that our six environments yielded

substantially different landscapes, as dem-

onstrated by the relatively low between-
environment correlations of genotype fitnesses
(Fig. 2A), the additive effects of each mutation
(Fig. 2B), and the pairwise interactions be-
tween them (Fig. 2C). Haploid and homozygous
diploid landscapes were largely correlated, but
there were several notable exceptions, partic-
ularly in the suloctidil environment (Fig. 2, A
and B). Although some pairwise interactions
remain roughly constant in strength even as
the corresponding additive effects varied con-
siderably (e.g., RHO5 andWHI2), most waxed
and waned across environments (Fig. 2C).
Nevertheless, the overall contribution from dif-

ferent epistatic orders showed some similarities
across ploidies and environments (the magni-
tudes did differ; Fig. 2D), with additive and
pairwise terms explainingmost of the variance
in the data, third-order terms contributing
minorly, and the remaining orders making little
difference, consistent with earlier studies (40).
Across all epistatic orders, inferred effects were
highly skewed, with a small number of terms
explaining disproportionate variance (Fig. 2E).
We next sought to investigate potential pat-

terns of global fitness–mediated epistasis. To
do so, for each locus in each ploidy and envi-
ronment, we plotted the fitness of a genotype
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Fig. 3. FCTs. (A) Schematic contrasting how
global or idiosyncratic epistasis could pro-
duce FCTs. Inset shows FCT analyzed as the
effect of a mutation (Dϕ) on backgrounds of
different fitnesses. (B) Histogram and
scatterplot of regression slopes (b) between
ϕMut and ϕWT, and corresponding absolute
additive effects of mutations. Polarity was
adopted such that b ≤ 1. Total error bar
length is twice the standard error of the
slope. (C) Fitness effect of RHO5 mutation
(G10S) (ϕMut versus ϕWT) in all haploid
backgrounds at 37°C (left) and partitioned
by genotypes at WHI2 (L262S) (middle) and
WHI2 and AKL1 (S176P) (right). Initial
SSEb=1/SSEb=global is 1.21. (D) Fitness effect
of AKL1 mutation in all homozygote back-
grounds in the suloctidil environment,
partitioned by genotypes at MKT1 (D30G),
RHO5, and WHI2. Initial SSEb=1/SSEb=global =
1.31. (E) Median relative fit ratio between
regressions with fixed slope of b = 1 and
b = global as function of number of epistatic
terms removed from observed phenotypes.
Vertical lines represent interquartile range.
Polarity was adopted such that b ≤ 1.
(F) Inferred fitness effect of PMA1 S234C
mutation in 4-NQO environment across all
haploid backgrounds. Epistatic terms
interacting with PMA1 are completely
removed from genotype fitnesses, then
added back sequentially (from largest to
smallest). Bottom-right: full-model (inferred)
and observed genotype fitnesses, respec-
tively. Gray line is regression slope.
(G) Scatterplot and histograms of FCT
regression slopes for all data and the number
of epistatic terms sufficient to recapitulate
them. Horizontal lines in the histogram
indicate means. Arrows and letters indicate
populations presented in previous panels.
Polarity was adopted such that b ≤ 1.
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with the mutated allele (ϕMut) against the fit-
ness of the same genotype with the WT allele
(ϕWT). A regression slope (b) different from 1 in
these plots signifies an FCT (Fig. 3A, left; see
the supplementary materials). Some previous
work instead plotted the fitness effect of a
mutation (Dϕ) as a function of background
fitness (ϕWT). The advantage of our formula-
tion here is that it does not privilege a specific
allele as the “WT.” Instead, regression in our
plots translates intuitively when reversing
direction to treat the reversion as themutation:
brev = 1/borig by weighted-total least squares
(see the expanded discussion in the supple-
mentary materials; figs. S5 to S8).
We found that FCTs were common in our

landscapes: Across all ploidies, environments,
and loci, ~44% of regression slopes deviated
substantially from 1 (i.e., b ≤ 0.9 or b ≥ 0.9−1;
these deviations were all significant; Fig. 3B,
histogram, and figs. S13 and S14). However,
FCTs were not universal for fitness-affecting
mutations: Of the 49 examples across ploidies
and environments of mutations with additive
effects of magnitude ≥ 0.5%, 18 were associ-
ated with 0.9 < b < 0.9−1 (Fig. 3B).
By partitioning background genotypes by

the presence or absence of specific mutations,
we could determine whether FCTs were truly
“global” (i.e., whether they transcended these
partitions and any corresponding idiosyn-
cratic interactions; Fig. 3A, middle) or were
instead fundamentally idiosyncratic (i.e., they
emerged from regression across partitions
shifted in ϕMut versus ϕWT space by sparse
interactions with specific background loci;
Fig. 3A, right). When we partitioned FCTs
by the presence or absence of interacting
mutations in the background, we found several
instances in which the idiosyncratic model
clearly explained the FCT. For example, the
effect of the G10S mutation in RHO5 at 37°C
exhibited a clear FCT (b = 0.76) (Fig. 3C).
However, we could partition points by the
presence of interactingWHI2 andAKL1 alleles
in the background. Doing so showed that pair-
wise interactions with these alleles caused sys-
tematic shifts inϕ10S versusϕ10G space, with
each partition assuming a slope near 1. Thus,
over a range of background fitnesses, an FCT
in the effect of the G10S emerged from these
specific idiosyncratic interactions (Fig. 3C
and fig. S11). In the case of the homozygous
AKL1 S176P mutation in suloctidil, we ob-
served a similar decomposition of an FCT (b =
1.29) when partitioning genotypes according
to the presence of three interacting loci in the
background (MKT1, RHO5, and WHI2) (Fig.
3D and fig. S11). However, in other cases, it
was less clear whether the FCT could be
partitioned in this way, and because deeper
partitions tend to reduce background fitness
variance and limit our confidence in regres-
sion slopes, a different approach was required

to characterize the extent to which idiosyn-
cratic terms caused FCTs across our data.
To investigate this, we analyzed the effect of

removing specific idiosyncratic epistatic terms
on the overall FCTs. To do so, for each focal
locus (in each ploidy and environment), we
first calculated the weighted sum of squared
errors (SSE) (41) of observed fitnesses from
the global regression line (SSEb=global) and
from a fitted line of slope 1 (SSEb=1, which
corresponds to no FCT). We then set the
largest epistatic term to zero and recalcu-
lated the expected fitness of each resulting
genotype (assuming that all other terms and
residuals were nonzero), again obtaining both
SSEb=global and SSEb=1. If the FCT arose from
a global effect, then we would expect that
SSEb=global would be less than SSEb=1 even as
terms were removed. Instead, we found that
after removing the effect of just a few terms,
a regression with a fixed slope of b = 1 typically
fit the data better than the b = global FCT
slope (with the FCT threshold set to b ≤ 0.9
or 0.8; Fig. 3E and fig. S11), approaching the
fit of an unconstrained regression that min-
imizes SSE (i.e., the final slope approaches 1;
fig. S10). This indicates that the apparent
FCT arises from these few idiosyncratic inter-
actions, even for global slopes very different
from 1. Although we also documented cases
in which b = global fit the data better than
b = 1 even after removing many terms, we ex-
pect thatmost, if not all, of these instancesmay
have been due to measurement error because
they tended to arise in ploidies and environ-
ments in which the data were noisier (fig. S17).
To further evaluate whether idiosyncratic

interactions between these mutations were
sufficient to generate FCTs, we performed the
converse analysis, this time with genotype fit-
nesses as predicted by our model of additive
and idiosyncratic epistatic terms. Instead of
removing the effects of epistatic terms one at
a time, we first stripped from the model all
interactions involving the focal locus, yielding
perfectly linear points of slope 1 when plotting
ϕMut versus ϕWT. We then added interactions
one-by-one to our fitness prediction, from
largest to smallest, and examined the resulting
slopes. As shown in Fig. 3F for the haploid
PMA1 S234C mutation in 4-NQO, adding just
a few terms associated with three background
loci recapitulated a strong FCT. Repeating this
analysis with all our mutations showed that,
on average, just four idiosyncratic interactions
(primarily pairwise) were sufficient to recapit-
ulate the full-model FCTs (a slope within 0.01
of the global slope; Fig. 3G, orange; see the
supplementary materials), which is far lower
than the total number of inferred terms (me-
dian of 53) but represents on average 89% of
the potential variance explained that could
have been added (fig. S12). Thus, although FCTs
are real and likely have important biological

consequences, our data demonstrate that ap-
parent fitness-mediated epistasis can readily
emerge from very few low-order idiosyncratic
interactions.
Because the landscapes that we studied here

have no natural polarization (i.e., neither allele
is the assumed WT), we cannot comment di-
rectly on why earlier studies of global epistasis
have more commonly found negative than
positive FCTs (when plotting Dϕ versus ϕWT).
However, this distribution of FCT directions is
important because it may underly the ubiqui-
tous trend of declining adaptability observed
across laboratory evolution experiments (29).
The observed bias toward negative trendsmay
arise from asymmetries in the average sign of
epistatic interactions betweenmutations away
from extant high-fitness genotypes relative
to their reversions, which theory has predicted
should arise from idiosyncratic interactions
(19, 20). In addition, choosing polarizations
at random will lead to more negative than
positive FCTs across the full parameter space
(see the extended discussion in the supple-
mentary materials).
Regardless of the cause of any asymmetry

in the direction of FCTs, our results support
recent theoretical arguments that fitness-
mediated epistasis can emerge as the generic
consequence of widespread idiosyncratic
interactions, rather than reflecting a global
fitness–mediated coupling of mutations. Indeed,
at least in our system, FCTs could arise even
from a relatively small number of low-order
interactions. We note that landscapes involv-
ing other types of variation [e.g., within a
single protein or pathway or along the line of
descent in a single lineage (21)] may exhibit
different patterns, although we may expect
these scenarios to involve an even stronger
role for idiosyncratic interactions. More gen-
erally, we emphasize that idiosyncratic epista-
sis and global fitness–mediated effects are not
mutually exclusive, and although FCTs can
be explained by the former in our system, in
other cases, both effects may contribute. How-
ever, our results suggest that nonspecific global
epistasis may not be the primary driver of
patterns of declining adaptability in laboratory
evolution experiments, and this has general
implications for the ways in which epistasis
constrains evolutionary trajectories.
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Idiosyncratic epistasis leads to global fitness–correlated trends
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Gene interactions and global fitness
The effect of a particular mutation in a given environment often varies systematically with the fitness of the genetic
background in which it arises, but there are different theories as to how such systematic trends manifest. Using a
CRISPR gene drive system, Bakerlee et al. generated a combinatorial yeast library that allowed them to test the effects
of different combinations of missense mutations in 10 genes, including essential ones. Using this system, the authors
found that fitness-correlated trends were better explained by an idiosyncratic model, in which they emerged from just
a few interactions between specific loci, than they were by a global epistasis model, in which the effects of mutations
were generally mediated by background fitness. —MAF
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