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ABSTRACT Purifying selection reduces genetic diversity, both at sites under direct selection and at linked neutral sites. This process,
known as background selection, is thought to play an important role in shaping genomic diversity in natural populations. Yet despite its
importance, the effects of background selection are not fully understood. Previous theoretical analyses of this process have taken a
backward-time approach based on the structured coalescent. While they provide some insight, these methods are either limited to very
small samples or are computationally prohibitive. Here, we present a new forward-time analysis of the trajectories of both neutral and
deleterious mutations at a nonrecombining locus. We find that strong purifying selection leads to remarkably rich dynamics: neutral
mutations can exhibit sweep-like behavior, and deleterious mutations can reach substantial frequencies even when they are
guaranteed to eventually go extinct. Our analysis of these dynamics allows us to calculate analytical expressions for the full site
frequency spectrum. We find that whenever background selection is strong enough to lead to a reduction in genetic diversity, it
also results in substantial distortions to the site frequency spectrum, which can mimic the effects of population expansions or
positive selection. Because these distortions are most pronounced in the low and high frequency ends of the spectrum,
they become particularly important in larger samples, but may have small effects in smaller samples. We also apply our forward-
time framework to calculate other quantities, such as the ultimate fates of polymorphisms or the fitnesses of their ancestral

backgrounds.
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URIFYING selection against newly arising deleterious

mutations is essential to preserving biological function.
It is ubiquitous across all natural populations and is respon-
sible for genomic sequence conservation across long evolu-
tionary timescales. In addition to preserving function at
directly selected sites, negative selection also leaves signa-
tures in patterns of diversity at linked neutral sites, which have
been observed in a wide range of organisms (Begun and
Aquadro 1992; Charlesworth 1996; Cutter and Payseur
2003; McVicker et al. 2009; Flowers et al. 2012; Comeron
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2014; Elyashiv et al. 2016). This process is known as back-
ground selection and understanding its effects is essential for
characterizing the evolutionary pressures that have shaped a
population, as well as for distinguishing its effects from less
ubiquitous events such as population expansions or the pos-
itive selection of new adaptive traits.

At a qualitative level, the effects of background selection
are well known: it reduces linked neutral diversity by reducing
the number of individuals that are able to contribute descen-
dants in the long run. Since individuals that carry strongly
deleterious mutations cannot leave descendants on long
timescales, all diversity that persists in the population must
have arisen in individuals that were free of deleterious
mutations. Since all of these individuals are equivalent in
fitness, this suggests that diversity should resemble that
expected in a neutral population of a smaller size—specifically,
with a size equal to the number of mutation-free individuals
(Charlesworth et al. 1993).
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However, an extensive body of work has shown that this
intuition is not correct and that background selection against
strongly deleterious mutations can lead to nonneutral distor-
tions in diversity statistics (Charlesworth et al. 1993, 1995;
Hudson and Kaplan 1994; Tachida 2000; Gordo et al. 2002;
Williamson and Orive 2002; O’Fallon et al. 2010; Nicolaisen
and Desai 2012; Walczak et al. 2012; Good et al. 2014). The
reason for this is simple: even strong selection cannot purge
deleterious alleles instantly. Instead, deleterious haplotypes
persist in the population on short timescales, allowing neu-
tral variants that arise on their backgrounds to reach mod-
est frequencies. This is most readily apparent in statistics
based on the site frequency spectrum [the number, p(f), of
polymorphisms which are at frequency f in the population],
such as the number of singletons or Tajima’s D (Tajima
1989). As we show below, even when deleterious muta-
tions have a strong effect on fitness, the site frequency
spectrum shows an enormous excess of rare variants com-
pared to the expectation for a neutral population of re-
duced effective size.

These signatures in genetic diversity are qualitatively sim-
ilar to those we expect from population expansions and
positive selection (Slatkin and Hudson 1991; Sawyer and
Hartl 1992; Rannala 1997; Keinan and Clark 2012). A de-
tailed quantitative understanding of background selection is
therefore essential if we are to disentangle its signatures from
those of other evolutionary processes.

The traditional approach to analyzing the effects of puri-
fying selection has been to use backward-time approaches
based on the structured coalescent (Hudson and Kaplan 1988,
1994). This offers an approximate framework to model how
background selection affects the statistics of genealogical his-
tories of a sample, and hence the expected patterns of genetic
diversity. The approximations underlying this method are
valid when selection is sufficiently strong that deleterious
mutations rarely fix (Neher and Shraiman 2012), the same
regime we will consider in this work. However, while these
backward-time structured coalescent methods make it possi-
ble to rapidly simulate genealogies, they are essentially nu-
merical methods and do not lead to analytical predictions.
Furthermore, they give limited intuition as to the conditions
under which their approximations are valid. A more technical
but crucial limitation is that they rapidly become very com-
putationally demanding in larger samples. This is becoming
an increasingly important problem as advances in sequencing
technology now make it possible to study sample sizes of
thousands (or even hundreds of thousands) of individuals.
The poor scaling of coalescent methods with sample size is of
particular importance in studying background selection:
since purifying selection is expected to result in an excess
of rare variants, its effects increase in magnitude as sample
size increases. This can reveal deviations from neutrality in
large samples that are not seen in smaller samples.

Here, we use an alternative, forward-time approach to
analyze how purifying selection affects patterns of genetic
variation at a nonrecombining genomic segment. Our method
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is based on the observation that to predict single-locus statis-
tics, such as the site frequency spectrum, it is not necessary to
model the entire genealogy. Instead, we model the frequency
of the lineage descended from a single mutation as it changes
over time due to the combined forces of selection and genetic
drift, and as it accumulates additional deleterious mutations.
We then use these allele frequency trajectories to predict the
site frequency spectrum, from which any other single-site
statistic of interest can then be calculated (note, however,
that multi-site statistics such as linkage disequilibrium or
correlations between allele frequencies at different sites can-
not be calculated from the site frequency spectrum).

We show that background selection creates large distor-
tions in the frequency spectrum at linked neutral sites when-
ever there is significant fitness variation in the population.
These distortions are concentrated in the high- and low-
frequency ends of the frequency spectrum, and hence are
particularly important in large samples. We provide analytical
expressions for the frequencies at which these distortions
occur and we can therefore predict at what sample sizes they
can be seen in data.

Aside from single time-point statistics such as the site
frequency spectrum, we also obtain analytical forms for the
statistics of allele frequency trajectories. These trajectories
have a very nonneutral character which reflects the underly-
ing linked selection. Our approach offers an intuitive explana-
tion for how these nonneutral behaviors arise in the presence
of substantial linked fitness variation, which explains the
origins of the distortions in the site frequency spectrum.

The statistics of allele frequency trajectories can also be
used to calculate any time-dependent, single-site statistic. For
example, we analyze how the future trajectory of a mutation
can be predicted from the frequency at which we initially
observe it, and we discuss the extent to which the observed
frequency of a polymorphism can inform us about the fitness of
the background on which it arose.

We emphasize that we focus throughout on modeling a
perfectly linked genomic region. In the presence of recombi-
nation, our results offer insights about the effects of linked
selection on diversity within regions that are effectively fully
linked on the relevant timescales. In the Discussion, we discuss
how our results can be used to provide a lower bound on the
length of these segments, and therefore on the amount of
linked selection relevant in sexually reproducing popula-
tions, and we comment on possible future extensions of our
analysis to include recombination explicitly.

We begin in the next section by providing an intuitive
explanation for the origins of the distortions in the site
frequency spectrum in the presence of strong background
selection, and explain why these distortions always accom-
pany a reduction in diversity. This section summarizes the
importance of correctly accounting for background selection,
particularly when analyzing large samples, and should be
accessible to all readers. We next define a specific model of
background selection and summarize our main quantitative
results.
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Figure 1 (A) The (unfolded) average site frequency spectrum of neutral alleles along a nonrecombining genomic segment experiencing strong
background selection deviates strongly from the prediction of neutral theory. The purple line shows the simulated neutral site frequency spectrum
in Wright-Fisher simulations of an asexual population of N = 10° individuals, where deleterious mutations occur at rate NUy = 5000 and all have the
same effect on fitness Ns = 1000. The black lines show the neutral expectation for the site frequency spectrum of a population of N and N, = Ne~Ys/s
individuals (solid and dashed line, respectively). The inset shows the same data, but with the x-axis linearly scaled to emphasize intermediate frequencies.
Simulated site frequency spectra were obtained by measuring whole-population neutral site frequency spectra in 105 Wright-Fisher simulations, in
which neutral mutations were set to occur at rate NU, = 103, and by averaging and then smoothing the obtained curve using a box kernel smoother of
width much smaller than the scale on which the site frequency spectrum varies (the kernel width was set to < 10% of the minor allele frequency). (B
and C) Statistics of the simulated site frequency spectrum (purple) can deviate from predictions of neutral theory (black) by many orders of magnitude in
large samples, even though the effect of background selection will be small in small samples. (B) The average ratio of the number polymorphisms
present as derived singletons (solid lines) or ancestral singletons (dotted lines) in the sample to the number present at 50% frequency, and (C) the
average minor allele frequency of the sampled alleles.

We then present the analysis of our model. We begin by  frequency spectrum contains all relevant information about
reviewing how dynamical aspects of allele frequency trajec-  single-site statistics: any such statistic of interest can be cal-
tories can be related to site frequency spectra, using the culated by subsampling appropriately from p(f).
trajectories of isolated loci as an example. Readers already In Figure 1A, we show an example of the site frequency
familiar with this intuition may choose to skip ahead, butthose ~ spectrum of neutral mutations at a locus experiencing strong
less interested in the technical details may find that this background selection, generated by Wright-Fisher forward-
section provides useful intuition for the calculations in a  time simulations. This example shows several key generic
simpler context. We then explain how this approach must features of background selection. First, at intermediate fre-
be modified to account for linkage between multiple selected  quencies the site frequency spectrum has a neutral shape,
sites and present an intuitive description of the key featuresof ~ p(f)«f~!, with the total number of such intermediate-
allele frequency trajectories. These sections may be of interest ~ frequency polymorphisms consistent with the simple reduced
to readers who wish to understand the intuitive origins of  “effective population size” prediction (Charlesworth et al.
nonneutral behaviors of alleles in the presence of strong  1993). However, at both low and high frequencies, p(f) is
background selection. Finally, in the Analysis, we turn to a  significantly distorted. At low frequencies, we see an enor-
formal stochastic treatment of the trajectories of neutral and  mous excess of rare alleles, qualitatively similar to what we
deleterious mutations. In the last section, we use these tra-  expect in expanding populations (Slatkin and Hudson 1991;
jectories to calculate the site frequency spectrum and other =~ Rannala 1997). We also see a large excess of very high fre-
statistics describing genetic diversity within the population. quency variants, leading to a nonmonotonic site frequency
spectrum. This is reminiscent of the nonmonotonicity seen in
the presence of positive selection (Sawyer and Hartl 1992).
Notably, these distortions at both high and low frequencies
arise in populations of constant size in which all variation is
We begin by presenting a more detailed description of the either neutral or deleterious.
effects of background selection on linked neutral alleles. We The excess of rare derived alleles arises because selection
focus on analyzing the allele frequency spectrum, defined as  takes a finite amount of time to purge deleterious genotypes.
the expected number, p(f), of mutations that are present at ~ Thus we expect that there can be substantial neutral variation
frequency f within the population in steady state. This allele  linked to deleterious alleles that, although doomed to be

Strong Background Selection Distorts the Site
Frequency Spectrum
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eventually purged from the population, can still reach modest
frequencies. At the very lowest frequencies, we expect that
neutral mutations arising in all individuals in the population
(independent of the number of deleterious mutations they
carry) can contribute. Thus, at the lowest frequencies, the site
frequency spectrum should be unaffected by selection and
should agree with the neutral site frequency spectrum of a
population of size N. On the other hand, as argued above, the
total number of common alleles must reflect the (much
smaller) number of deleterious-mutation-free individuals,
because only neutral mutations arising in such individuals
can reach such high frequencies. Since the overall number
of very rare alleles is proportional to the census population
size N, and the number of common alleles reflects a much
smaller deleterious-mutation-free subpopulation, there must
be a transition between these two: between these extremes
the site frequency spectrum must fall off more rapidly than
the neutral prediction p(f) ~ f~!. This transition reflects the
fact that as frequency increases, the effect of selection will be
more strongly felt, and neutral mutations arising in geno-
types of increasingly lower fitnesses will become increasingly
unlikely.

As the frequency increases even further, we see from our
simulations that the total number of polymorphisms increases
again until, at very high frequencies, it matches the prediction
for aneutral population of size equal to the census size N. Note
that, at these frequencies, the total number of backgrounds
contributing to the diversity is constant (i.e., all mutations
reaching these frequencies must arise in the small subpopu-
lation of mutation-free individuals). This suggests that fun-
damentally nonneutral behaviors must be dominating the
dynamics of these high frequency neutral polymorphisms.
To understand this, as well as the details of the rapid falloff
at very low frequencies, we will need to develop a more de-
tailed description of the trajectories of neutral alleles in the
population; we analyze this in quantitative detail in a later
section.

However, a simple argument can explain the agreement
with the neutral prediction at the highest frequencies. Poly-
morphisms observed at these very high frequencies corre-
spond to neutral variants that have almost reached fixation.
The ancestral allele is still present in the population, but at a
very low frequency. In principle, the dynamics of the derived
and ancestral alleles should depend on the fitnesses of their
backgrounds. However, once the frequency of the ancestral
allele is sufficiently low, the effects of drift will once again
dominate over the effects of selection. Thus, at extremely high
frequencies of the derived allele, its dynamics must become
neutral. In addition to having neutral dynamics, the overall
rate at which neutral mutations enter this high-frequency
regime also agrees with the rate in a neutral population at
the census population size. This is because, at steady state, the
total rate at which neutral mutations fix is equal to the product
of the rate at which they enter the population at any point in
time (NU,) and their fixation probability, 1/N (Birky and
Walsh 1988). Thus, since the total rate at which alleles enter
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this high-frequency regime is unaffected by selection, and
since their dynamics within this regime are neutral, we ex-
pect that the site frequency spectrum should also agree with
the neutral prediction for a population of size N.

Although these simple arguments do not provide a full
quantitative explanation of the site frequency spectrum, they
already offer some intuition about the presence and magni-
tude of the distortions due to background selection. First,
these distortions arise in part as a result of the difference in the
number of backgrounds on which mutations that remain at the
lowest frequencies and mutations that reach substantial fre-
quencies can arise. Thus, they will always occur when back-
ground selection is strong enough to cause a substantial
reduction in the effective population size: if the pairwise
diversity m is at all reduced compared to the neutral expec-
tation 7o [7/mp <1, or, in terms of McVicker’s B statistic,
B <1 (McVicker et al. 2009)], these distortions exist (see
Figure 1A). Second, because the distortions from the neutral
shape are limited to high and low ends of the frequency
spectrum, they will have limited effect on site frequency spec-
tra of small samples, but will have dramatic consequences as
the sample size increases (see Figure 1, B and C). On a prac-
tical level, this means that extrapolating conclusions from
small samples about the effects of background selection can
be grossly misleading.

Data availability

Code used to generate the simulated data are available at:
https://github.com/icvijovic/background-selection. Sup-
plemental material available at Figshare: https://doi.org/
10.25386/genetics.6167591.

Model and Results

In the next few sections, we will analyze the dynamics of
neutral mutations under background selection in detail. We
focus on the simplest possible model of purifying selection at a
perfectly linked genetic locus in a population of N individuals.
We assume neutral mutations occur at a per-locus, per-
generation rate U, and deleterious mutations occur at rate Uy
(Ug < 1). Throughout the bulk of the analysis, we will as-
sume that all deleterious mutations reduce the (log) fitness of
the individual by the same amount s, although we analyze the
effects of relaxing this assumption in a later section. We as-
sume that s < 1 since this is the interesting case for biolog-
ically relevant mutation rates, although we also consider the
effects of more strongly deleterious (or lethal) mutations in
the Discussion. We neglect epistasis throughout, so that the
fitness of an individual with k deleterious mutations at this
locus is —ks. For simplicity we consider haploid individuals,
but our analysis also applies to diploids in the case of semi-
dominance (h =1/2). We assume that selection is suffi-
ciently strong that alleles carrying deleterious mutations
cannot fix in the population (Nse U4/* > 1). The opposite
case, in which deleterious mutations are weak enough to
routinely fix (Nse~Ui/s < 1), has been the subject of earlier
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cal predictions (Equation 2) are given by
colored lines. A single theory curve was
constructed from Equation 2 by joining
the piecewise forms using sigmoid func-

tions (for details see Constructing a Single Curve from Piecewise Asymptotic Functions in Appendix I). Note that this involves fitting O(1) constants to the
curve, for reasons explained in Contribution from the Peaks of Trajectories and Constructing a Single Curve from Piecewise Asymptotic Functions in
Appendix I. The values of the constants used are tabulated in Table I1. In simulations in which A =1, N = 10°> whereas N = 10 for smaller \. In all
simulations, the per-individual, per-generation neutral mutation rate is U, = 0.1 and site frequency spectra were obtained from these simulations as

described in the caption of Figure 1.

work (Good and Desai 2013; Neher and Hallatschek 2013;
Good et al. 2014). In the Discussion, we comment on the
connection between these earlier weak-selection results
and the strong-selection case we study here.

Our model is equivalent to the nonepistatic case of the
model formulated by Kimura and Maruyama (1966) and
Haigh (1978) as well as to the h = 1/2 case of the model
considered by Charlesworth et al. (1993) and Hudson and
Kaplan (1994), and later studied by many other authors
(Gordo et al. 2002; Seger et al. 2010; Nicolaisen and Desai
2012; Walczak et al. 2012). However, instead of modeling the
genealogies of a sample of individuals from the population
backwards in time, we offer a forward-time analysis of this
model in which we analyze the full frequency trajectory of
alleles.

In the presence of strongly selected deleterious mutations
(Nse~U4/5 > 1), we find that the magnitude of the effects of
background selection critically depends on the ratio, \, of the
deleterious mutation rate, Uy, to the selective cost of each
deleterious mutation, s: A = Uz/s (Figure 2). This ratio con-
trols the overall variance in the number of deleterious muta-
tions carried by individuals in the population, which is equal
to A =Uy/s (Kimura and Maruyama 1966). Whenever
A < 1, both the overall genetic diversity and the full neutral
site frequency spectrum p(f) are unaffected by background
selection and the site frequency spectrum p(f) is to leading
order equal to

2NU,
p(f) ~ 7

This prediction agrees with the results of forward-time sim-
ulations (see Figure 2). The intuition behind this result is
simple: in the limit that A <« 1, a majority of individuals in

when A <« 1.

€Y)

the population are free of deleterious mutations; neutral al-
leles are therefore rarely linked to deleterious mutations.
This results in a neutral site frequency spectrum.

However, we will show that the site frequency spectrum of
neutral mutations follows a very different form whenA > 1 :

2NU, 1
for —_—
f ) f < NOJ
NU, 1 et
for — —
No Lf<x N

Nsf2, [Alog, (]\e]—;\f>7

2NUpe™ et et
p(f) =  £¥%n€ © for & 1-%
o or N < f < Ne'
A
NUn , fori<<1—f<<ef,
Ns(1—f)l et No Ns
—Plogy | =———F
’ & Ns(1-f)
2NU, 1
for 1— —
f b Or f <<N0"
2

where o = /Uys represents the standard deviation in fitness
in the population, and line 2 in Equation 2 is valid up to a
constant factor (see Contribution from the Peaks of Trajecto-
ries in Appendix I for details). Comparisons between Equa-
tion 2 and simulations of the model are shown in Figure 2.
We note that p(f) matches the site frequency spectrum of a
neutral population with a smaller effective population size
N, =Ne™ for 1/(Nse ™) <f<1—1/(Nse™*), but deviates
strongly outside this frequency range. This implies that sum-
mary statistics based on the site frequency spectrum (e.g., the
average minor allele frequency) will start to deviate from the
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declines with the frequency f. As we
show later, for f < 1/(NUgze™), the site
frequency spectrum is dominated by

neutral mutations originating on deleterious backgrounds. In contrast to the rapid decline at lower frequencies, the site frequency spectrum has a
neutral shape between f = 1/(Nse™) and f =1 —1/(Nse™). In this regime, both the neutral and wild-type allele are in approximate mutation—
selection balance (see blue dot and blue inset, showing the fitness distribution of such alleles) and large fluctuations of the allele frequency mirror the
neutral fluctuations of the most fit individuals. At frequencies larger than 1 —1/(Nse™), the relative number of polymorphisms increases with the
frequency. This pattern results from the effective positive selection of neutral alleles that fix among the fittest individuals (see red dot and red inset) and

are, as a result, linked to fewer deleterious mutations than the wild type.

neutral expectation in samples larger than Nse * = “N,s” in-
dividuals, but not in smaller samples (Figure 1, B and C).

Our results also offer an intuitive interpretation of the
origins of these distortions, which are summarized in Figure
3. When Uy > s, a large majority of individuals in the pop-
ulation will carry some deleterious mutations at the locus,
which results in substantial fitness variation within the pop-
ulation. However, the majority of neutral alleles are pre-
sent on backgrounds that are within O(o) of the mean of
the distribution. Thus, at frequencies f < 1/(No) and
1—-f <« 1/(No), the effects of genetic drift dominate over
any effects of linked selection for the majority of neutral
alleles. At these frequencies, the site frequency spectrum
agrees with that of a neutral population of size N (see
Figure 3).

In contrast, the effects of linked selection have a crucial
impact on allele frequency trajectories at frequencies f for
which 1/(No) < f < 1 —1/(No). As we show in a later sec-
tion, this region of the site frequency spectrum is dominated
by alleles that arise on unusually fit backgrounds [with fit-
ness with respect to the mean larger than O(o)]. For these
alleles, a crucial distinction arises between their short-term
and long-term behavior: although genotypes that carry any
polymorphic strongly deleterious variants are guaranteed to
be eventually purged from the population, those that contain
fewer than average deleterious mutations are still positively
selected on shorter timescales. This results in strong nonneu-
tral features in the frequency trajectories of these alleles.
Their trajectories are characterized by rapid initial expan-
sions, followed by a peak, and eventual exponential decline
(Figure 4). These deterministic aspects of allele frequency
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trajectories are similar to those seen by Neher and Shraiman
(2011) in models of linked selection in large facultatively
sexual populations. We describe them in detail in the section
titled Key features of lineage trajectories. A part of the rapid
falloff in the site frequency spectrum between f = 1/(No)
and f = 1/(Nse™*) results from these deterministic effects:
alleles arising on backgrounds with more deleterious variants
can reach more limited frequencies than alleles arising on
backgrounds with fewer deleterious variants. Thus, the num-
ber of backgrounds on which neutral alleles could have arisen
declines with the frequency, leading to a falloff of the site
frequency spectrum.

However, these deterministic aspects of the allele fre-
quency trajectory are not sufficient to produce the site fre-
quency spectrum in Equation 2, even if stochastic effects in the
early phase of the trajectory are taken into account (i.e., dur-
ing “establishment”; see Desai and Fisher 2007 and Neher
and Shraiman 2011). This is because fluctuations in the num-
bers of most-fit individuals that occur after establishment
continue to drive fluctuations in the overall allele frequency.
This is closely related to the fluctuations in the population
fitness distribution studied by Neher and Shraiman (2012) in
an analysis of Muller’s ratchet.

In the Analysis, we quantify how these fluctuations prop-
agate to shape the statistics of allele frequency trajectories,
finding that fluctuations in the number of most-fit individuals
that happen on a timescale shorter than 1/s are smoothed out
due to the finite timescale on which selection can respond. In
contrast, fluctuations that happen on timescales longer than
1/s are faithfully reproduced in the allele frequency tra-
jectory, which leads to quasi-neutral statistics of allele



frequency trajectories at frequencies between 1/(Nse™)
and 1 —1/(Nse™*) (see Figure 3). The smoothing of fluctu-
ations on a finite timescale introduces an additional funda-
mentally nonneutral feature in the total allele frequency
trajectory. This distorts the site frequency spectrum at fre-
quencies below 1/(Nse *) above and beyond what would be
predicted if we asserted a simple frequency-dependent ef-
fective population size equal to the number of backgrounds
that can contribute to a given frequency.

Finally, we will demonstrate that the nonmonotonicity
in the site frequency spectrum at frequencies between
1—1/(Nse™)and 1 — 1/(No) arises as a result of sweep-like
behaviors of neutral alleles that have fixed among the most-fit
individuals in the population (see Figure 3). Because these
derived alleles carry, on average, fewer deleterious mutations
than the wild type, they are positively selected despite having
no inherent benefit. We will show that this difference in the
average number of linked deleterious mutations gives rise to
an effective frequency-dependent selection coefficient s (f).
This selection coefficient changes with the frequency f of the
mutation as high-fitness, wild-type individuals ratchet to
extinction:

sen() = 1084 o=

1
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In the next sections, we derive the form of the site frequency
spectrum in Equation 2 and explain these effects in more
detail. We begin by presenting background necessary for
understanding these results. We first revisit the intuition
behind the shape of the site frequency spectra of isolated loci
(Ewens 1963; Sawyer and Hartl 1992). We show that, in the
absence of linkage between multiple selected sites, back-
ground selection does not lead to a site frequency spectrum
of the form in Equation 2. Next, we explain how linkage be-
tween multiple selected sites modifies allele frequency tra-
jectories. We revisit the key deterministic aspects of allele
frequency trajectories in the presence of background selec-
tion, previously studied by Etheridge et al. (2009) and others,
and extend these results to identify the key timescales impor-
tant for understanding this problem. Finally, we turn to a full
stochastic treatment of allele frequency trajectories in the
Analysis, where we also derive the expressions for the site
frequency spectra of neutral and deleterious mutations. In
the Discussion, we comment on the practical implications of
our results, as well as on connections to previous work and
other models.

Background
Isolated loci

To gain insight into the more complicated case of linked
selection, we first begin by reviewing the simplest case of a

single locus isolated from any other selected loci. The prob-
ability that an allele at that locus is present at frequency f at
time t, p(f,t), is described by the diffusion equation:

9 9 {f(l ~f) p}.

o=~ [Fa-fp]+

a2 | aN (C))
Ewens (1963) showed that the expected site frequency spec-
trum can be obtained from this forward-time description of
the allele frequency trajectory: because mutations are arising
uniformly in time and the time at which a mutation is ob-
served is random, the site frequency spectrum is proportional
to the average time an allele is expected to spend in a given
frequency window.

In this section, we show that the low- and high-frequency
ends of the site frequency spectrum of isolated loci can be
obtained from a simple heuristic argument that emphasizes
this connection between allele frequency trajectories and the
site frequency spectrum. These calculations are not intended
to be exact [resulting frequency spectra are only valid up to
O(1) factors], but they provide intuition for the origins of key
features of the site frequency spectrum that we will return to
more formally below.

Consider the simplest case of isolated, purely neutral loci.
Neutral mutations will arise in the population at rate NU,. In
the absence of selection, the trajectories of these mutations
are governed by genetic drift. At steady state, the number of
mutations we expect to see at frequency f is simply propor-
tional to the number of mutations that reach that frequency
and the typical time each of these mutations spends at that
frequency before fixing or going extinct. In the absence of
selection, a new mutation that arises at initial frequency
fo=1/N will reach frequency f before going extinct with
probability fo /f = 1/(Nf). Standard branching process calcu-
lations (Fisher 2007) show that, given that it reaches fre-
quency f, the mutation will spend about Nf generations
around that frequency [defined as log(f) not changing by
more than O(1)], provided that f is small (f < 1).

By combining these results, we can calculate the expected site
frequency spectrum for small f. The rate at which new muta-
tions reach frequency f is NU,, - 1/(Nf). Those that do will re-
main around f (in the sense defined above) for about Nf
generations. Thus the total number of neutral mutations within
df of frequency f is p(f)df ~ NU, - 1/(Nf) - Nf - d(log ). In
other words, we have

NU,
f

This argument is valid when f is rare, but will start to break
down at intermediate frequencies. However, because the wild
type is rare when the mutant approaches fixation, an analo-
gous argument can be used to describe the site frequency
spectrum at high frequencies. The mutant trajectory still rea-
ches frequency f with probability 1/(Nf). It will then spend
roughly N(1 —f) generations around this frequency [i.e.,

p(f) ~ : 5)
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Figure 4 (A) The average fitness of a
lineage comprising individuals carrying k
deleterious mutations at time t = 0 (blue
dot and blue inset). As the descendants
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lineage declines until the individuals ac-
cumulate an average of N deleterious
mutations (red dot) and reach their own
mutation-selection balance, which is a
steady-state Poisson profile with mean
\ that has been shifted by the initial del-
eterious load, —ks, (red inset). (B) In the
absence of genetic drift, the size of the

Founding class % >0

Time

£ ) lineage will increase at a rate propor-
8 tional to its relative fitness. Lineages aris-
ing in the class with k = 0 deleterious

mutations reach mutation-selection balance about ty = log(A)/s after arising, after which the size of the lineage asymptotes to no(t = 0)e*. The
fitness of these lineages changes on a shorter timescale, 1/s. (C) In contrast, lineages arising in classes with k > 0 deleterious mutations peak in size after
a time tff), when their average relative fitness is zero, after which they decline exponentially at rate ks.

within O(1) of log(1 — f)]. This gives p(f) ~ NU, /f ~ NU, in
the high-frequency end of the spectrum. This simple forward-
time heuristic argument reproduces a well-known result of
coalescent theory (Wakeley 2009) and agrees with the more
formal calculation of sojourn times in the Wright-Fisher pro-
cess (Ewens 1963).

We can use a similar argument to calculate the frequency
spectrum of strongly selected deleterious mutations with
fitness effect —s (with Ns > 1) that occur at a locus that is
isolated from any other selected locus. Provided that the del-
eterious mutation is rare (below the “drift barrier” frequency,
f<1/(Ns)), its trajectory is dominated by drift. Thus for
f <1/(Ns), the mutation trajectory will be the same as for a
neutral mutation and the frequency spectrum will therefore
be neutral. In contrast, at frequencies larger than 1/(Ns),
selection is stronger than drift, which prevents the mutation
from exceeding this frequency. Combining these two expres-
sions, we find that the frequency spectrum of an isolated
deleterious mutation is, to a rough approximation, given by

NU; . 1
— iff<=

p(fims f Ns 6)
0 otherwise.

For completeness, we also show how a similar argument can
be used to obtain the frequency spectrum of beneficial muta-
tions. Although it is not immediately obvious that this is
relevant to background selection, we will later see how similar
trajectories emerge in the case of strong purifying selection.
Just like deleterious alleles, strongly beneficial alleles with
fitness effect s (with Ns > 1) will not feel the effects of se-
lection as long as they do not exceed the drift barrier
(f <1/(Ns)). Their trajectory and frequency spectrum will
therefore be neutral below the drift barrier. As a result, only
a small fraction s of beneficial mutations will reach fre-
quency 1/(Ns). However, those that do will be destined to
fix since, at frequencies larger than 1/(Ns), selection domi-
nates over drift. Above this threshold, selection will cause the
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frequency of the mutation to grow logistically at rate s
[df/dt = sf(1 —f)], spending 1/[sf(1 —f)] generations near
frequency f. This is valid as long as f <1 — 1/(Ns), at which
point the effects of drift become dominant due to the wild type
being rare, and the trajectory of the mutant is once again the
same as the trajectory of a neutral mutation. Combining these
expressions, we obtain a rough approximation for the fre-
quency spectrum of an isolated beneficial mutation:

NU, ) 1
- < —
7o it f <%
NU, o1 1
~ - _ — ’7
p(f) fa-p 1st<f<1 Ns @)
. 1
. > _—
NUy - Ns, if f>1-—

Linked loci under background selection

We now turn to the analysis of background selection. Since we
assume that all mutations have the same effect on fitness, the
population can be partitioned into discrete fitness classes
according to the number of deleterious mutations each indi-
vidual carries at the locus. When the fitness effect of each
mutation is sufficiently strong, the population assumes a
steady-state fitness distribution in which the expected frac-
tion of individuals with k deleterious mutations, hy, follows
a Poisson distribution with mean k =A (Kimura and
Maruyama 1966; Haigh 1978):

Ak

K ®

hk =e

A new allele in such a population will arise on a background
with k existing mutations with probability hy.

From the form of h; we see that, depending on the value of

\, the population can be in one of two regimes. In the first

regime, the rate at which mutations are generated is smaller

than the rate at which selection can purge them (A <« 1). In



this case, the majority of individuals in the population carry
no deleterious mutations (hg ~ 1), with only a small propor-
tion, 1 — hg = A, of backgrounds in the population carrying
some deleterious variants. To leading order in A, all new
neutral mutations will arise in a mutation-free background
and will remain at the same fitness as the founding genotype.
Their trajectories are thus the same as the trajectories of
mutants at isolated genetic loci of the same fitness as the
founding genotype (see Appendix D for details). This means
that the full site frequency spectrum can be calculated by
summing the contributions of site frequency spectra of iso-
lated loci that we calculated above. The neutral and delete-
rious site frequency spectra are, to leading order in \, given
by Equations 5 and 6, respectively (see Appendix H for de-
tails). Thus, background selection has a negligible impact on
mutational trajectories and diversity when A < 1.

In the opposite regime where A >> 1, mutations are gen-
erated faster than selection can purge them and there will
be substantial fitness variation at the locus. Consider a new
allele (i.e., a new mutation at some site within the locus)
that arises in this population. A short time after arising,
individuals that carry this allele will accumulate newer del-
eterious mutations, which will lead the allele to spread
through the fitness distribution. The fundamental difficulty
in calculating the frequency trajectory of this allele, f(t),
stems from the fact that a short time after arising, individ-
uals that carry the allele will have accumulated different
numbers of newer deleterious mutations. The total strength
of selection against the allele depends on the average num-
ber of deleterious mutations that the individuals that carry
the allele have. This will change over time in a complicated
stochastic way as the lineage purges old deleterious muta-
tions, accumulates new ones, and changes in frequency due
to drift and selection. To calculate the distribution of allele
frequency trajectories in this regime, we will need to model
these changes in the fitness distribution of individuals car-
rying the allele. Although we will formally be treating \ as a
large parameter, in practice our results will also adequately
describe allele frequency trajectories in the cases of moder-
ate \ (i.e., A =2, see Figure 2).

To make progress, we classify individuals carrying this
allele (the “labeled lineage”) according to the number of
deleterious mutants they have at the locus. We denote the
total frequency of the labeled individuals that have i delete-
rious mutations as fi(t), so that the total frequency of the
lineage, f(t), is given by

0 =3 fie). ©)

The time evolution of the allele frequency in a Wright-Fisher
process is commonly described by a diffusion equation for
the probability density of the allele frequency (Ewens
2004). Instead, for our purposes, it will be more convenient
to consider the equivalent Langevin equation (Van Kampen
2007):

o [ KOS - Uafi+ Uafia + GO, (0)
Here, C;i(t) is a noise term with a complicated correlation
structure that is necessary to keep the total size of the pop-
ulation fixed (see Good and Desai 2013 for details), and k(t)
is the mean number of mutations per individual in the entire
population at time t. In the strong selection limit that we are
interested in here (Nse™ > 1), fluctuations in the mean of
the fitness distribution of the population are small and

k(t) ~ A (Neher and Shraiman 2012).
Key features of lineage trajectories

Before turning to a detailed analysis of Equation 10, it is
helpful to consider some of the key features of lineage trajec-
tories that we will model more formally below. To begin,
imagine a lineage founded by a neutral mutation in an indi-
vidual with k deleterious mutations. Let the lineage comprise
nx(0) individuals at some time t = O shortly after arising, all
of which carry k deleterious mutations (see blue inset in
Figure 4A). At this time, the relative fitness of this lineage
is simply —ks — (—ks) = Uy — ks. Thus, lineages founded in
classes with k > A will tend to decline in size. In contrast, the
more interesting case arises if k <A, since these lineages will
tend to increase in size.

However, although the overall number of individuals that
carry the allele will tend to increase when k < A, the part of the
lineage in the founding class k (the “founding genotype”) will
tend to decline in size because it loses individuals through
new deleterious mutations (at per-individual rate —Uy). As a
result, the founding genotype feels an effective selection
pressure of Uy — ks — Uy = — ks, which is negative for all
k>0 and O for k = 0. This means that the lineage will in-
crease in frequency, not through an increase in size of the
founding genotype, but rather through the appearance of a
large number of deleterious descendants in classes of lower
fitness. The lineage must therefore decline in fitness as it
increases in size.

In the absence of genetic drift, we can calculate how the
size and fitness of the lineage change in time by dropping the
stochastic terms in Equation 10 [subject to the initial condition
i (t = 0) = n(0) and ngi(t = 0) =0 for all i # 0]. These
deterministic dynamics of the lineage have been analyzed
previously by Etheridge et al. (2009), who showed that
the number of additional mutations that an individual in
the lineage carries at some later time t is Poisson distributed
with mean A(1 —e™*). Thus the average number of addi-
tional deleterious mutations eventually approaches \ after
t=t; = log(A)/s generations. At this point, the lineage has
reached its own mutation—selection balance: the fitness dis-
tribution of the lineage has the same shape as the distribu-
tion of the population [i.e., n; «(t) = h; - nk(t)] but is shifted
by —ks compared to the distribution of the population (see
red inset in Figure 4A).

The average relative fitness x(t) of individuals in the line-
age (Figure 4A) is therefore equal to
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x(t) = Uge ™ — ks, (1D

and the total number of individuals in the lineage is sim-

plyn(t) = ni(t = O)efo (O = ni(t = 0)gk(t), where we have
defined
_ e*kst+)‘(17e’“).

k(1) (12)

Thus, we can see from Equations 11 and 12 that lineages
founded in the O-class will, on average, steadily increase in size
at a declining rate until they asymptote at a total size equal to
ni(t = 0)e* roughly tg = log(A)/s generations later (see Fig-
ure 4B). In contrast, lineages founded in the k-class will in-
crease in size for only

(0 log(A/k)

g =

S

(13)

generations, when they peak at a size of ng(t = 0) - g indi-
viduals (see Figure 4C), where we have defined

k k
~ _ A ®
g =e (e/\> : (14
The lineages remain near this peak size for about
1
At = — (15)
Vks

generations (Figure 4C). At longer times, they exponentially
decline at rate —ks (Figure 4C).

These simple deterministic calculations capture the aver-
age behavior of an allele and show that all alleles founded in
classes with k > 0 are likely to be extinct on timescales much
longer than ték), whereas sufficiently large lineages founded in
the 0-class should simply reflect the frequency in the founding
class about t; generations earlier: (f(t)) ~ e*fo(t — t4). This
is the forward-time analog of the intuition presented by
Charlesworth et al. (1993).

Of course, this deterministic solution neglects the effects of
genetic drift, which will be crucial, particularly because drift in
each class propagates to affect the frequency of the lineage in
all lower fitness classes (for a more detailed heuristic de-
scribing why drift can never be ignored, see The Importance of
Genetic Drift in the Founding Class in Appendix B). Although
these effects are complex, there is a hierarchy in the fluctua-
tion terms which we can exploit to gain some intuition. From
the deterministic solution above, we can see that a fluctua-
tion of size &f; in class i will, on average, eventually cause a
change in the total size of the lineage proportional to &f;g;
after a time delay té”. Thus, the fluctuations that have the
largest effect on the total size of the lineage are those that
occur in the class of highest fitness (i.e., the founding class k).
These fluctuations will turn out to be the most important in
describing the frequency trajectory of the entire allele, al-
though fluctuations in classes of lower fitness will still matter
in lineages of a small enough size.
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One could imagine that this result means that fluctuations
in the total size of the lineage simply mirror the fluctuations in
the founding class, amplified by a factor g; and after a time
delay tgq. If fluctuations in the founding class are sufficiently
slow, this is indeed the case. However, this is not true for
fluctuations that occur on shorter timescales. Consider, for
example, the case where a neutral mutation is founded in
the mutation-free (k = 0) class. Imagine that the frequency
of the allele in the founding class changes by a small amount
from fy to fo + 8fo as a result of genetic drift (shown in the
first panel of Figure 5). Based on the deterministic solution,
this fluctuation will lead to a proportional change in the fre-
quency of the portion of the lineage in the 1-class, and this
change will take place over ~ 1/s generations (see Appendix
A for details). During this time, the change in the 1-class
begins to lead to a shift in the frequency in the 2-class, which
will mirror the change in the 0-class a further 1/(2s) gener-
ations later (see Figure 5). This change will then propa-
gate, in turn, to lower classes and ultimately results in a
proportional change in the total allele frequency a total of
Z?:ll /(is) = log(A) /s generations later (see Figure 5).

Now consider what happens if there is another change in
the frequency in the founding class. If this change occurs
within the initial 1/s generations, it will influence the
1-class simultaneously with the first fluctuation, and thus
the effect of these two fluctuations on the overall lineage
frequency will be “smoothed” out. In contrast, if the changes
are separated by more than 1/s generations, they will prop-
agate sequentially through the fitness distribution and are
ultimately mirrored in the total allele frequency. Similar ar-
guments apply to lineages founded in other fitness classes,
though the relevant timescales and scale of amplification are
different.

Together, these arguments suggest that fluctuations in the
founding class will have the largest impact on overall fluctu-
ations in the lineage frequency, and these overall fluctuations
will represent an amplified but smoothed-out mirror of the
fluctuations in the founding class. This smoothing will be
crucial: the size of the lineage in the founding class will
typically fluctuate neutrally, but the smoothed-out and am-
plified versions will have nonneutral statistics. As we will see
below, this smoothing ultimately leads to distortions in the site
frequency spectrum at low frequencies (f < 1/(Nse™)).

Analysis

Formally, we analyze all of the effects described above by
computing the distribution of the frequency trajectories f(t) of
the allele, p(f,t), from Equation 10 for an allele arising in
class k. This process is complicated by the correlation struc-
ture in the C;(t) terms required to keep the population size
constant. These correlations are important once the lineage
reaches a high frequency and, in the presence of strong se-
lection, they result in a complicated hierarchy of the mo-
ments of f, which do not close (Higgs and Woodcock 1995;
Good and Desai 2013). However, we can simplify the problem
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by considering low-, high-, and intermediate-frequency
lineages separately. First, at sufficiently low frequencies
(f < 1), the C(t) in Equation 10 reduce to simple uncorre-
lated white noise. At these low frequencies, Equation 10 thus
simplifies to

%_( is +As) fi — Udﬁ‘i‘Udfi—l""\/Eni(t)v

N (16)

where the noise terms have (;(t)) =0 and covariances
(mi(6)m;(t')) = 8y6(t —t') and should be interpreted in the
It6 sense. At very high frequencies (1 — f < 1), a similar sim-
plification arises. In this case, the wild-type lineage is at low
frequency and we can model the wild-type frequency using an
analogous coupled branching process with uncorrelated white
noise terms. Finally, at intermediate frequencies, we cannot
simplify the noise terms in this way. Fortunately, for the case
of strong selection we consider here, we will show that for
1/(Nse ) < f < 1—1/(Nse™*), lineage trajectories have neu-
tral statistics on relevant timescales. As we will see below, these
low-, intermediate-, and high-frequency solutions can then be
asymptotically matched, giving us allele frequency trajectories
and site frequency spectra at all frequencies.

In the next several subsections, we focus on the analysis of
the distribution of trajectories at low and high frequencies
(f « 1or1-f<« 1), where Equation 16 is valid. We then
return in a later subsection to the analysis of trajectories at
intermediate frequencies.

The dynamics of the lineage within each fitness class

To obtain the distribution of trajectories of the allele p(f,t)
at low frequencies (f <« 1) from Equation 16, we will first

compute the generating function of f(t). This generating
function is defined as

Hp(z,t) = <efzf<t)>,

where angle brackets denote the expectation over the prob-
ability distribution of the frequency trajectory f(t). Hy(z,t) is
simply the Laplace transform of the probability distribution of

a7

f(t) and it therefore contains all of the relevant information

about the probability distribution of f(t).

As we have already anticipated from our discussion above,
the time evolution of f(t) depends on the distribution of the
lineage among different fitness classes. To understand how
this distribution changes under the influence of drift, muta-
tion, and selection in these classes, we can consider the joint
generating function for the f;(t),

H({z1},6) = (e" 20,

The generating function for the total allele frequency Hy(z, t)
can then be obtained from this joint generating function by
setting z; = z. We will use this relationship between the two
generating functions to evaluate the importance of drift, mu-
tation, and selection within each of the fitness classes on the
total allele frequency.

By taking a time derivative of Equation 18 and substitut-
ing the time derivatives df;/dt from Equation 16 (where the
stochastic terms should be interpreted in the It6 sense, see
Appendix C), we can obtain a partial differential equation
(PDE) describing the evolution of the joint generating
function:

(18)
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We see from Equation 19 that the joint generating function is
constant along the characteristics z;(t — t') defined by
dz; 22
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de’ 2N (20)

Thus, the joint generating function can be obtained by in-
tegrating along the characteristic backward in time from
t' =0 to t' =t, subject to the boundary condition z;(t) = z.
Note that the linear terms in the characteristic equations arise
from selection and mutation out of the i-class and that the
nonlinear term arises from drift in class i.

In Large Lineages Arising on Unusually Fit Backgrounds in
Appendix E, we show that when considering the distribu-
tion of trajectories p(f,t) at frequencies f > e'[i/(er)]'/
(2Nsi) = g;/(2Nsi) the nonlinear terms in Equation 20 are
of negligible magnitude uniformly in time in all classes con-
taining i or more deleterious mutations per individual, as
long as i < A, Nse ™ > 1, and A >> 1. Here, g; represents
the peak of the expected number of individuals in a lineage
founded by a single individual in class i (see Equation 14 and
Figure 4C). Thus, when f > g;/(2Nsi), the effect of genetic
drift is negligible in classes with i or more deleterious mutations.
Conversely, when f <« g;/(2Nsi), genetic drift in the class with i
deleterious mutations does affect the overall allele frequency.

Since drift is negligible in classes with i or more mutations,
total allele frequencies of f(t) > g;/(2Nsi) require that

ﬁ(t - tg)) > 1/(2Nsi). This threshold is reminiscent of the

drift barrier, but its origin for classes below the founding class
(i> k) is more subtle. We offer an intuitive explanation for
this threshold in The Importance of Genetic Drift in Classes
Below the Founding Class in Appendix B. Thus, drift in class
i has an important impact on the overall frequency trajectory
as long as f; < 1/(2Nsi). However, once f; exceeds 1/(2Nsi),
the effect of genetic drift in that class, as well as in all classes
below i, becomes negligible because the frequencies of the parts
of the lineage in all classes below i are then also guaranteed to
exceed the corresponding thresholds. Note that the frequency of
the founding genotype f; is exponentially unlikely to substan-
tially exceed 1/(2Nsk). This is because, as we explained earlier,
the frequency trajectory of the founding genotype fi(t) has the
same statistics as the trajectory of a mutation of fitness —ks at an
isolated locus (see Equation 16 and Appendix F). Thus, because
fx is unlikely to exceed 1/(2Nsk), the overall allele frequency f
of an allele founded in class k is exponentially unlikely to
substantially exceed g - 1/(2Nsk).

In summary, by analyzing the generating function for the
components of the lineage in different fitness classes, we have
found that there is a clear separation between high-fitness
classes in which mutation and drift are the primary forces,
and classes of lower relative fitness in which mutation and
selection dominate. The boundary between the stochastic and
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deterministic classes can be determined from the total allele
frequency, allowing us to reduce a complicated problem in-
volving a large number of coupled stochastic terms to what we
will see is a small number of stochastic terms feeding an
otherwise deterministic population.

Statistics of trajectories with g,/(2Ns)<f<1

At this point, we are in a position to calculate a piecewise form
for the generating function Hy(z, t), valid near any frequency
f. For example, consider the allele frequency trajectory in the
vicinity of some frequency g;/(2Ns) < f < 1. As we have
explained above, at these frequencies contributions from mu-
tations arising in class k = 1 are exponentially small, since they
would require the frequency of the lineage in that class to sub-
stantially exceed 1/(2Ns), which happens only exponentially
rarely. Thus, in this frequency range we will only see mutations
arising in the mutation-free class (k = 0). In addition to this, we
have shown that at these frequencies genetic drift can be
neglected in all classes but the O-class. To obtain the generating
function at these frequencies, we can therefore integrate the
characteristic equations by dropping the nonlinear terms in
Equation 20 for all i > O [see Large Lineages Arising on Unusually
Fit Backgrounds in Appendix E for details]. This yields the gen-
erating function for the frequency of the labeled lineage:

Hf(z,t) = <eZ[J‘O+Ud J'. defongie=n)] > 1)

where the average is taken over all possible realizations of the
trajectory in the founding class fy(t).

As before, g1(t — 1) represents the expected number of
individuals descended from an individual present in the
1-class t — 7 generations earlier (see Equation 12). Thus,
the two terms in the exponent in Equation 21 represent the
frequency of the lineage in the founding class fy and the total
frequency of the deleterious descendants of that lineage. The
latter are seeded into the 1-class at rate NU4fo(7) and each of
these deleterious descendants founds a lineage that t — 7
generations later contains g;(t — 7) individuals, so that the
total frequency of the allele is simply

t
fO=R0)+Us [ dtfolpe=n). @)
Thus, we have obtained a simple expression for the frequency
of the entire allele in which all of the stochastic effects have
been reduced to a single stochastic component, fy (t). Further-
more, the stochastic dynamics of fy(t) are those of a simple,
isolated, neutral mutation (see schematic of such a trajectory
in Figure 6B). Note, however, that the statistics of the fluctua-
tions in f(t) are not necessarily the same as the statistics of the
trajectory in the founding class (see Figure 6A). This is because
f(t) depends on an integral of fo(t) (see Equation 22) and there-
fore has different stochastic properties than fy(t) itself.

From Equation 22, we can see that the frequency trajectory
of the allele still has the same qualitative features as those we



have seen in the deterministic behavior of mutations. Shortly
after being founded, the lineage will become dominated by the
deleterious descendants of the founding class, which are
captured by the second term in Equation 22 (see left inset
in Figure 6A). At early times [t < t; = log(A)/s], the total
allele frequency must rapidly grow as the lineage spreads
through the fitness distribution and approaches mutation—
selection balance (see Figure 6A). About t; generations after
founding, the peak phase of the trajectory begins (see Figure
6A). During this phase, the average fitness of the lineage is
approximately zero and the allele traces out a smoothed-out
and amplified version of the trajectory in the founding class
(Figure 6B). Finally, t; generations after the descendants of
the last individuals present in the founding class have peaked,
the average fitness of the lineage will fall significantly below
zero and the extinction phase of the trajectory begins.

As we show in Appendix I, the peak phase of the trajectory
is the most important for understanding the site frequency
spectrum. This is also the phase during which the trajectory
of the mutation spends the longest time near a given fre-
quency. In contrast, the spreading phase (see Figure 6A) has a
negligible effect on the site frequency spectrum: by this we
mean that the site frequency spectrum at a given frequency
will always be dominated by the peak phase of trajectories
that peak around that frequency, and will not be influenced
by the spreading phase of trajectories that peak at much
higher frequencies. We will therefore not consider the spread-
ing phase in the main text, but discuss it in Contribution from the
Spreading Stage of Trajectories in Appendix 1. The extinction
phase of the trajectory can also be neglected for a similar rea-
son, except when considering the very highest frequencies:
f>1-1/(Nse ) (see Contribution from the Extinction Stage
of Trajectories in Appendix I). At these frequencies, the wild-type
frequency is small and the mutant is in the process of fixation.
To analyze the allele frequency trajectory at these frequencies,
we model the wild type using the coupled branching process in
Equation 16 and hence describe these trajectories by the extinc-
tion phase of the wild type.

To calculate the distribution of f(t) in the peak phase, we
need to calculate the distribution of the time integral of fo(t)
in Equation 22. We can simplify this integral by observing
that g;(t) is highly peaked in time between t‘(il) — At /2
and t) + At /2, where t{) and At are given by Equations
13 and 15 and are annotated in Figure 4C. In other words,
starting at times around t((;) generations after the lineage
reaches a substantial frequency in the founding class, the
labeled lineage is dominated by the deleterious descen-
dants of individuals extant in the founding class between
¢ — At /2 and t'V + AtV /2 generations earlier, with indi-
viduals extant in the founding class at other times having
exponentially smaller contributions [see Large Lineages Aris-
ing on Unusually Fit Backgrounds in Appendix E for details].
Thus, the total size of the lineage will be proportional not to

the frequency fo (t - té” ) in the founding class tél) generations

earlier, but to the total time-integrated frequency within some
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Figure 6 Schematic of (A) the trajectory of the total allele frequency, and
(B) the trajectory of the frequency of the portion of the allele that remains in
the founding class. Soon after arising in the founding class, the allele
frequency rapidly increases in the spreading phase of the trajectory. Early
in this phase, the total allele frequency (purple) becomes much larger than
the frequency of the founding genotype [black line in left inset of (A)]. In
the peak phase of the trajectory, the total allele frequency trajectory rep-
resents a smoothed-out and amplified version of the trajectory in the
founding class [the relationship between the total allele frequency (purple
curve) and the founding genotype frequency (black curve) is based on
Equation 22]. In the extinction phase of the trajectory, the allele frequency
declines at an increasing rate [right inset of (A)]. We describe the extinction
phase in more detail in Appendix E and in the section of the main text titled
The trajectories of high frequency alleles, 1 —f < 1, where we also ex-
plain how the rate of extinction changes with the frequency.

window of width ~ At() centered around that time. We call
this quantity the “weight” and denote it by Wy, where

Wa () :/ AdD) fo (t/)dt/‘
2

(23)

The total allele frequency in the peak phase is therefore
equal to

F(t) = UgWaeo (¢ = tq)81(tq)- 24

Thus, to calculate the distribution of the allele trajectory, we
only need to calculate the distribution of the weight in the
founding class over a window of specified width, At™V). It is
informative to consider the time-integrated form of the dis-
tribution of this weight, p(Wym) = [, dt p(Wya, t), since
this form is also directly relevant to the site frequency spec-
trum [for a discussion of the time-dependent distribution
Wy (t), see Appendix F]. In Appendix F we show that
p(Wym) is given by
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1 A W At
p(Wy) =~ At , (25)
1 At
W Wary) > .
tl

This distribution has a form that can be simply understood in
terms of the trajectory in the founding class. Since genetic
drift takes order Nfy generations to change fo substantially,
drift will not change f, significantly within At genera-
tions when the frequency in the founding class exceeds
At /N = 1/(Ns). As a result, the weight, W,,q), will be ap-
proximately equal to Wy, = fo - At = fy/s. Therefore, at
these large frequencies, the weight simply traces the found-
ing class frequency and the two quantities have the same
distributions. At lower frequencies, fy < 1/s, the founding
genotype will typically have arisen and gone extinct in a time
of order Nfy max generations (where fo max is the maximal fre-
quency the lineage reaches over the course of its lifetime). By
assumption, this time is much shorter than 1/s. Thus, the
weight in a window of width 1/s that contains this trajectory
is simply Wau1) = fo.max - Nfomax- This large a trajectory is
obtained with probability 1/(Nfpmax), from which it follows
(by a change of variable) that the distribution of weights in
the founding class scales as W;jl/)z.

As we anticipated in our discussion of the propagation of
fluctuations of the founding genotype through the fitness
distribution (Figure 5), we have found that the trajectory of
the allele in the peak phase looks like a smoothed-out, time-
delayed, and amplified version of the trajectory in the
founding class (Figure 6). At sufficiently high frequencies,
f(t) > Ug; - 1/(Ns?) ~ 1/(Nse™), the timescale of the smooth-
ing is shorter than the typical timescale of the fluctuations in
the founding class. At these frequencies, the statistics of the
fluctuations of the allele simply mirror the statistics of the
fluctuations in the founding class, with a time delay equal to
t'!) = log(A) /s.

At lower frequencies, g,/(2Ns) < f < 1/(Nse™*), the
timescale of smoothing is much longer than the typical life-
time of the founding genotype. As a result, the deleterious
descendants of the entire original genotype rise and fall si-
multaneously and fluctuations in the founding class are not
reproduced in detail. Instead, the peak phase of the allele
frequency trajectory consists of a single peak with size
proportional to the total lifetime weight of the founding
genotype, W = [*_ f(7)dr. As we calculated above, the dis-
tribution of these peak sizes falls off more rapidly than neu-
trally. This gives us a complete description of the statistics of
the peaks of allele frequency trajectories in the frequency
range f > g,/(2Ns).

Statistics of trajectories with f<g,/(2Ns)

So far, we have only considered trajectories of lineages that
reach a maximal allele frequency larger than g, /(2Ns), all of
which must have arisen in the mutation-free class. At lower
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frequencies, g,/(4Ns) < f < g;/(2Ns), the effects of genetic
drift in class i = 1 must also considered, but the behavior in
classes with i = 2 is deterministic. In this case, by repeating
our earlier procedure, we obtain a slightly different form for
the generating function Hy(z,t),

Hf(z, t) = <e*Z[fo+f1+Ud f,m del(T)gz(t*T)] >7 (26)
so that the total allele frequency is
t
FO R0 A0+ Vs [ difigale-7). @)

The total allele frequency is once again dominated by the last
term, which represents the bulk of the deleterious descen-
dants. Thus, by an analogous argument, the peak size of the
lineage is proportional to the weight in the 1-class in awindow
of width At?) = 1/(v/25s) :

£(t) ~ UgW0 (t - tff>) g,. (28)
There are two types of trajectories that can reach these
frequencies: trajectories that arise in the 1-class and reach
a sufficiently large frequency in their founding class
(fi > A2 /(\/2NUy), see Appendix G); and trajectories that
arise in the O-class and reach a smaller frequency in their
founding class (fo < AY2/(v/2NUy)), but still leave behind
enough deleterious descendants in the 1-class that the overall
frequency in that class exceeds f; > A'/2/(v/2NUy). By the
argument that we outlined before, this ensures that genetic
drift will negligible in classes of lower fitness (i.e., for
i=2) and is guaranteed to happen if f > AY/4/(NU,) (see
Appendix G).

The trajectories of the former type are simple to understand
since, in this case, the trajectory fi(t) is that of a simple,
isolated, deleterious locus with fitness —s [and fo(t) = 0 at
all times]. By repeating the same procedure as above, we find
that the time-integrated distribution of the weights in the
1-class is

At2) CNEW o)
76
3/2
V2aNW32

P(Wae)) =~ (29)

Note that since the trajectory of a mutation in the founding
1-class is longer than ~ 1/s generations only exponentially
rarely, a window of length At(?) nearly always contains the
entire founding class trajectory (see Appendix F). This is
reflected in the form of the weight distribution in Equation
29, which falls as WA_jZ/)Z with an exponential cutoff at
2/(Ns?). Thus, the frequency trajectory of an allele that arises
in the 1-class will not mirror the fluctuations in the founding
genotype. Instead, the peak phase of the allele frequency
trajectory will nearly always consist of a single peak, just as
we have seen in the case of alleles peaking at frequencies
81/(2Ns) < f < 1/(Nse™).



We now return to the other type of trajectory that can peak
in this range: alleles arising in the 0-class, but reaching a small
enough frequency that the effects of genetic drift in the 1-class
cannot be ignored (fo < v/A/(NUj,)). Because the trajectory
of these alleles in the 1-class represents the combined trajec-
tory of multiple clonal “sublineages,” each founded by a mu-
tational event in the 0-class, the distribution of weights in the
1-class will be different [p(Way2)) ~ W;[?2/>47 see Appendix G],
which leads to a different distribution of overall allele fre-
quencies f. However, as we show in Contribution from the
Peaks of Trajectories in Appendix I, these trajectories have a
negligible impact on the site frequency spectrum: because the
overall number of mutations arising in class 1 is substantially
larger than the overall number of mutations arising in class O,
trajectories that arise in class O and peak in the same fre-
quency range as mutations originating in class 1 are less
frequent by a large factor (A%, see Appendix G).

Similarly, at even lower frequencies in the range
Ziv1/[2Ns(i+ 1)] < f < g;/(2Nsi) we will see the peaks of
trajectories arising on backgrounds with i or fewer deleterious
mutations. These trajectories all have a single peak of width
equal to At™1) = 1/(s\/i+ 1). The maximal peak sizes are,
once again, proportional to the total weight in the i-class, which
will be distributed according to a different power law depending
on the difference in the number of deleterious mutations
A =k — i between the founding class k and the i-class (see
Appendix G for details). As we show in Contribution from the
Peaks of Trajectories in Appendix I, the most numerous of these
mutations are those that arise in the i-class (k = 7). The index of
this most-numerous class is a quantity that we return to at
multiple points and we denote it with k.(f). We can obtain an
explicit form for how k.(f) depends on the frequency f
by solving the implicit condition g, . 1/[2Ns(k. + 1)] < f <
8x./ (2Nsk,) for k.. We show in Contribution from the Peaks of
Trajectories in Appendix I that, to leading order,

ke(f) + 1 =~ logy (ﬁ) ,when k.(f) > 1. (30)

Finally, at the very lowest frequencies, f < vA/(NU) =
1/(No), the site frequency spectrum is dominated by the
trajectories of lineages that arise in a class that is within an
standard deviation o of the mean of the fitness distribution
(ie., lineages with |\ — k| < o/s = v/A). Unlike the trajectories
of lineages that arise in classes of higher fitness that we dis-
cussed above, allele frequency trajectories of lineages arising
within an standard deviation of the mean are typically domi-
nated by drift throughout their lifetime [see Lineages Arising on
Typical Backgrounds in Appendix E]. This is because the time-
scale on which these lineages remain above the mean of the
fitness distribution [which is limited by t4(k)] is shorter than the
timescale that it takes them to drift to a frequency large enough
for the effect of selection to be felt [~ 1/[N(Uy — sk)] = ta(k)].
Lineages arising in these classes do not reach frequencies sub-
stantially larger than 1/(No), and have largely neutral trajec-
tories at frequencies that remain below this threshold.

The mirrored fluctuations of the allele at intermediate
frequencies, 1/(Nse ™)< f<1—1/(Nse™™)

We have seen that the effects of genetic drift in multiple fitness
classes may be important when f < 1/(Nse™) but that, at
frequencies larger than 1/(Nse™*), genetic drift in all classes
apart from the 0O-class can be neglected. At these frequencies,
the trajectory of the allele mirrors the fluctuations in the
0-class that occur on timescales longer than 1/s generations.
We have also seen that overall allele frequencies larger than
1/(Nse™) correspond to O-class frequencies of f; > 1/(Ns).

At more substantial allele frequencies (for which the con-
dition that f < 1 is not satisfied), the coupled branching pro-
cess in Equation 16 cannot be used to adequately model the
allele frequency trajectory. This is because, at these frequen-
cies, the correlations between fluctuations in the frequencies
of the mutant and of the wild type, which are imposed by the
finite-size constraint of the population, become important.
However, we can account for these correlations simply by
making use of the fact that the effect of genetic drift in all
classes but the 0-class will remain negligible as long as both
the mutant and the wild type remain at sufficiently large
frequencies. Thus, to model the overall allele frequency tra-
jectory at these intermediate frequencies, we can use a sim-
ple, neutral model to describe the frequency of the mutant in
the O-class, fo(t), and the frequency of the wild type in the

0-class, fuio(t) = ho — fo(t) = e™* —fo(t), as

X _
% — M%(t) 31D
and treat the remainder of the population deterministically
(which yields an expression for the relationship between
fo(t) and f(t) that is identical to Equation 22).

Furthermore, since we have assumed that 1/(Nse ™) <
f<1—-1/(Nse*), an additional simplification arises. In
this frequency range, the frequency of both the mutant
and of the wild-type 0-class exceed 1/(Ns). Thus, large fluc-
tuations in the frequency of the mutant and of the wild type
occur on timescales that are longer than 1/s generations.
Because this timescale is longer than the timescale on which se-
lection in lower classes responds (1/s), large fluctuations in the
0-class are mirrored by the overall frequency trajectory after a time
delay. In other words, on timescales longer than 1/s generations,
we can expand the exponent in the integrand in Equation 22
around its peak and approximate the total allele frequency of the
mutant and the wild-type alleles as f (t) = €*fo(t — logA /s) and
fw(t) = e* - {ho — fo(t — log(A)/s)}, which yields a model for
the total allele frequency of the mutant:

i _ Fa-p
dt Ne™

n(t), (32)

where 7(t) is an effective noise term with mean (n(t)) =0,
variance (n(t)®) =1, and auto-correlation (n(t)n(t')) that
vanishes on timescales longer than 1/s. Thus, on timescales
longer than 1/s, the allele frequency trajectory is just like that
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of a neutral mutation in a population of smaller size Ne ™. On
shorter timescales, the allele frequency trajectory will be
more correlated in time than the frequency trajectory of a
neutral population in a population of that size and will ap-
pear smoother. However, since large frequency changes of
alleles at these frequencies will only occur on a timescale of
order Ne *f, which is much longer than 1/s, this description
will be sufficient for describing site frequency spectra.

We emphasize that Equation 32 relies on the overall
fluctuations in the fitness distribution of the population being
negligible on relevant timescales, so that the average number
of deleterious mutations per individual, k(t), is approximately
equal to \ (and, crucially, independent of f). We expect that
this approximation is valid when Nse™ >> 1, because the
overall fluctuations in k(t) are small compared to \ in this
limit (Neher and Shraiman 2012). However, it is less clear
whether this approximation continues to be appropriate as
Nse™ approaches more moderate O(1) values. A more de-
tailed exploration of these effects would require a path-
integral approach similar to that of Neher and Shraiman
(2012) and is beyond the scope of this work.

The trajectories of high frequency alleles, 1 — f<1

The neutral model from the previous section breaks down
when the allele frequency of the mutant exceeds 1 — 1/ (Nse ™).
These total allele frequencies are attained when the frequency
of the founding genotype f, exceeds the frequency hy — 1/(Ns).
When this occurs, the frequency of the wild type in the founding
class will fall below 1/(Ns) and fluctuations that occur on time-
scales shorter than 1/s generations will once again become
important. Mutant lineages that reach such high frequencies
are almost certain to fix in the 0-class. Once this happens, all
individuals that carry the wild-type allele at the locus will also
be linked to a deleterious variant. Thus, although the mutant
carries no inherent fitness benefit, it will thereafter appear fitter
than the wild type because it has fixed among the most-fit
individuals in the population. The mutant will therefore pro-
ceed to perform a true selective sweep and will drive the wild-
type allele to extinction.

At these high allele frequencies, 1 —f < 1/(Nse™) < 1,
we can once again use the coupled branching process in Equa-
tion 16 to describe the allele frequency trajectory of the wild
type, fwt(t) = 1 — f(t). Seen from the point of view of the wild
type, the fixation phase of the mutant corresponds to the ex-
tinction phase of the wild type (see right inset in Figure 3). To
obtain a description of the allele frequency trajectory of the
wild type at these times, we can expand the generating func-
tion in Equation 21 at long times, which yields

Hp, (z,t) ~ <efzwse%Aeﬂ(HO> >,

for some choice of t; [see Large Lineages Arising on Unusually
Fit Backgrounds in Appendix E for details]. Note that, as be-
fore, Equation 33 is valid only as long as f,,: > &;/(2Ns) (i.e.,
as long as the size of the lineage in the 1-class exceeds

(33)
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1/(2Ns)). Once the frequency of the wild type in the 1-class
falls below 1/(2Ns), we can no longer treat this class deter-
ministically. Once this happens, the part of the wild type that
is in the 1-class will drift to extinction within about 1/s gen-
erations, whereas its bulk will continue to decay at a rate
proportional to its average fitness, —2s. This will go on for
as long as the frequency in the 2-class is larger than 1/(4Ns),
corresponding to the total frequency of the lineage being
larger than g,/(4Ns). Once the frequency of the wild type
in the 2-class also falls below 1/(4Ns), the bulk of the lineage
will continue to decay even more rapidly, at rate —3s, and so
on. In general, once the frequency of the lineage in class k.,
but not in class k. + 1, falls below 1/(2Nsk.), which corre-
sponds to the total frequency of the wild type being in the
range gy .1/[2Ns(k. + 1)] < fwr < &./(2Nsk.), the average
fitness of the bulk of the wild type will be equal to
Seff = — S - (ke + 1) (see Figure 3).

Thus, the wild type goes extinct in a staggered fashion,
dying out in classes of higher fitness first and declining in
relative fitness in this process. As a result, the effective neg-
ative fitness of the wild type increases as its frequency de-
clines, leading to an increasingly rapid exponential decay of
the allele frequency (see right inset in Figure 6A). By solving
the implicit condition for k.(f) above as we did previously
(see Equations E19-E21 in Appendix E), we find that average
fitness of the bulk of the wild-type distribution seg(fi:) is to
leading order equal to

et ue) = — slke(fur) + 1] ~ —slogA( (34)

1
Nse )’
when f,,; < 1/(Nse™). This means that the frequency trajec-
tory of the wild type in this phase obeys

ot ()
ORI ()= (35)

The Site Frequency Spectrum in the Presence of
Background Selection

Having obtained a distribution of allele frequency trajectories,
we are now in a position to evaluate the site frequency
spectrum. Since the trajectory of any lineage depends on
the fitness of the background on which it arose, we will find
it convenient to divide the total site frequency spectrum, p(f),
into the site frequency spectra of mutations with different
ancestral background fitnesses, p(f, k). By definition, the to-
tal site frequency spectrum p(f) is the sum over these single-
class frequency spectra:

p(f) =Y _p(f.k). (36)
k

We evaluate the site frequency spectrum in three over-
lapping regimes, f < 1, 1/(Nse ™) < f < 1 —1/(Nse™), and
1-f<1.



The site frequency spectrum of rare alleles, f<1

The rare end of the frequency spectrum (f < 1) consists of
neutral alleles that (because they are rare) occurred on dif-
ferent genetic backgrounds. These alleles thus have indepen-
dent allele frequency trajectories that can be described by
the coupled branching process, Equation 16. As long as
f(t) < 1/(No), most lineage trajectories are dominated by
genetic drift. Intuitively, this result is simple: provided that
the lineage is rare enough, selection pressures in any fitness
class (or more precisely, the bulk of the fitness classes where
the vast majority of such alleles arise) can be neglected com-
pared to drift. Thus, the resulting site frequency spectrum is

2NU,h 1
Un k, for f <« —

7 Ne: 37

p(f,k) =
At these frequencies, the total site frequency spectrum is
equal to

2NU,
f

GEWULEE SRS

This agrees with our earlier intuition that, at the lowest
frequencies, the entire population contributes to the site
frequency spectrum and also agrees with the results of
Wright-Fisher simulations (see Figure 3). Since the effects
of selection are negligible, each fitness class contributes pro-
portionally to its size, with the largest fitness classes contrib-
uting the most (see Figure 7). The deleterious mutation-free
(k = 0) class has a negligible effect on the site frequency
spectrum, contributing only a small proportion (proportional
to its total frequency, ho = e *) of all variants seen at these
frequencies.

At larger frequencies, f > 1/(No), selection plays an im-
portant role in shaping allele trajectories and the site fre-
quency spectrum. The overall contribution of mutations
originating in class k near some frequency f is determined
not only by the overall rate NU,h; at which such mutations
arise, but also by the probability that these mutations reach f,
which declines with the initial deleterious load k. As a result,
as f increases, the site frequency spectrum will become in-
creasingly enriched for alleles arising in unusually fit back-
grounds (see Figure 7).

The contributions to the site frequency spectra p(f, k) are
straightforwardly obtained by integrating in time the distri-
butions of allele frequency trajectories that we have de-
scribed in the Analysis:

0

p(f,K) = NUhy / p(f.k.t)dt. (39)
This integral is dominated by the peak phase of allele fre-
quency trajectories, during which we have seen that the allele
frequency is simply proportional to the weight in class
k.(f) =~ log[1/(Nse *f)], which corresponds to the class of
lowest fitness in which the dynamics are not deterministic:

p(f.k.t) ~ {P[f = UggeWaeeo (t = 6], k=ke(f),
) otherwise .
(40)

The overall site frequency spectrum is equal to the sum of these
terms (Equation 36). In Contribution from the Peaks of Tra-
jectories in Appendix I, we show that this sum is well approx-
imated by the last term, corresponding to k = k.(f), and
obtain that the site frequency spectrum in the rare end is,
to leading order,

NU, A
\/ n for1%<<f<<Nse*/\’
Nsf2,/Alog, (1/(Nsfe™) d
p(f) ~ A )
2NUpe ™ 1
Tfle form <<f < 17

(41

where the form of the frequency spectrum for f < 1/(Nse ™)
is valid up to a constant factor (see Contribution from the
Peaks of Trajectories in Appendix I for details). A compari-
son between these predictions and site frequency spectra
obtained in Wright-Fisher simulations of the model is shown
in Figure 2.

These results reproduce much of what we may have an-
ticipated from our analysis of allele frequency trajectories.
At frequencies f >> 1/(Nse ), these peaks represent the mir-
rored and amplified trajectories in the mutation-free (k = 0)
founding class. To reach these frequencies, mutations need
to arise in the mutation-free class (which happens at rate
NU,e ) and drift to substantial frequencies (fo > 1/(Ns)).
Since fluctuations in the founding class of lineages that
exceed this frequency are slow compared to the timescale
on which their deleterious descendants remain at their
peak (At = 1/s), the entire allele frequency trajectory re-
produces the fluctuations of the neutral founding class.
Thus, neutral site frequency spectra proportional to f1
emerge.

At smaller frequencies, f < 1/(Nse ™), allele frequency
trajectories reflect the smoothed-out fluctuations in the high-
fitness classes. At these frequencies, the site frequency spec-
trum comprises a rapidly increasing number of polymorphisms
as the frequency decreases for three reasons (see Figure 3
and Figure 7). First, lower frequencies correspond to smaller
feeding-class weights, which are more likely simply due to
the effects of drift. Note that because in this frequency range
the overall allele frequency is proportional to the total weight
in the founding class and not the frequency, this effect leads
to the site frequency spectrum falling off at a faster rate than
the baseline expectation of f~1, which would occur in the
absence of smoothing of fluctuations in the founding class
due to the finite timescale of selection. Second, the number
of individuals with k deleterious mutations in the locus in-
creases with k (for k <A), causing an increase in the overall
rate at which alleles peaking at lower frequencies arise. This
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variation in the overall number of such alleles gives rise tothe  for
steeper power law, f~2, that can be compared to the distri- 1
bution of peaks of individual lineages, which decays at —<1l-f< ~.
No Nse™

most as f~3/2. Finally, peaks that occur at frequencies
8k.(f)/ (2Nske(f)) < f < & (r)-1/[2Ns(ke(f) — 1)] have dura-
tion of order Atk()l ~ 1/(\/k.(f)s), which declines with
the frequency f, giving rise to the root-logarithm factor.

The site frequency spectrum at intermediate and
high frequencies

At frequencies much larger than 1/(Nse™*) but still smaller
than 1—1/(Nse ), the allele frequency trajectory is de-
scribed by an effective neutral model on coarse enough time-
scales (=1/s). At these frequencies, the site frequency
spectrum is

2NUpe A
p(f) ® —F—, (42)
f
for
1 1
Nse™ <«f<1  Nse X

Note that this agrees with the result of the branching pro-
cess calculation, which is valid in a part of this range,
at frequencies corresponding to 1/(Nse ™) < f < 1 and
1-1/(Nse ) <1-f< 1.

This breaks down at even higher frequencies 1 —f <«
1/(Nse™*). These frequencies correspond to the extinction
phase of the wild type, during which the allele frequency
no longer mirrors the frequency in the O-class, but instead
declines exponentially at an accelerating rate (see Equation
35). Equation 35 can be straightforwardly integrated in time
(see Contribution from the Extinction Stage of Trajectories in
Appendix I for details), which yields the form of the site
frequency spectrum at these high frequencies

Un
" s(1—f)log, (1/(Ns(1 = f)e=*))’

p(f) (43)
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Finally, once the wild-type frequency falls below 1/(No), it
will be in an analogous situation as the mutant at very low
frequencies: independent of how it is distributed among the
fitness classes, its trajectory will be dominated by drift, since
most individuals in the population have fitness that does not
differ from the mean fitness by more than o. Thus, at these
frequencies, the site frequency spectrum will once again
agree with the site frequency spectrum of neutral loci isolated
from any selected sites in the genome:

1
p(f) = 2Uy, for1 —f < —

No (44)

By comparing our predictions to the results of Wright-Fisher
simulations, we can see that this argument correctly predicts
the form of the site frequency spectrum in these regimes, as
well as the frequencies at which these transitions happen (see
Figure 3).

The deleterious site frequency spectrum

So far, we have focused primarily on describing the trajectories
and site frequency spectra of neutral mutations. However,
because the trajectory of a neutral mutation that arises in an
individual with k deleterious mutations is equivalent to the
trajectory of a deleterious mutation that arises in an individ-
ual with k — 1 deleterious mutations, descriptions of trajec-
tories of deleterious mutations follow without modification
from our descriptions of trajectories of neutral mutations.
The deleterious site frequency spectrum can thus be con-
structed from the single-class site frequency spectra of
neutral mutations by a simple modification of the total
rates at which new deleterious mutations arise [specifi-
cally, with the contribution to the deleterious site fre-
quency spectrum of mutations arising in class k being
equal to pgel (f,k) = Pneurral (f, k + 1) - NUghy /(NU,hy+1)]. By



summing these contributions, we find that the deleterious site
frequency spectrum is to leading order

2NU 1
7o for f <« No
1 1
Pael(f) = if— < f<—0,
f2\[Nog, (1/(Nsfe )~ N NUae™
0 otherwise,

(45)

where the form proportional to f~2,/log[1/(Nsfe=*)]
once again valid up to a constant factor (for the same reason
as described in Contribution from the Peaks of Trajectories in
Appendix I).

Distributions of Effect Sizes

The model we have thus far considered assumes that all
deleterious mutations have the same effect on fitness, s. In
reality, different deleterious mutations will have different
fitness effects. In Appendix J, we show that as long as the
variation in the distribution of fitness effects (DFE) is small
enough that var(s)/s? < 1/log(Uy/s), the effects of back-
ground selection are well captured by a single-s model. In
practice, this means that when considering moderate values
of Uy /s < e°, fractional differences in selection coefficients up
to 1/log(Uy/s) = 20% will not substantively alter allele fre-
quency trajectories. In this case, the combined effects of these
mutations are well described by our single-s model.

However, when mutational effect sizes vary over multiple
orders of magnitude, properties of the DFE will have an impor-
tant impact on the quantitative details of the mutational trajec-
tories that are not captured by our single-s model. The qualitative
properties of allele frequency trajectories will remain the same
(see Appendix J): alleles arising on unusually fit backgrounds
will rapidly spread through the fitness distribution, peak for a
finite amount of time about t; generations later, and then pro-
ceed to go extinct at a rate proportional to their average fitness
cost. However, the quantitative aspects of these trajectories will
be different. For instance, small differences in the fitness effects
of mutations 8s ~ 1/t; that do not affect the early stages of
trajectories will be revealed on timescales of order t; and affect
the size and the width of the peak of the allele frequency tra-
jectory. We have seen that these two quantities play an impor-
tant role in determining the properties of allele frequency
trajectories and of the site frequency spectrum.

As a result of the fact that weaker effects and smaller
differences in effect sizes play a more important role in later
parts of the allele frequency trajectory, the DFE relevant
during the early phases of the trajectory may be different
than the DFE relevant in the later phases of the trajectory.
Furthermore, since longer-lived trajectories are also those that
reach higher frequencies (having originated in backgrounds of
higher fitness), this can result in a different DFE that isrelevant
at larger frequencies compared to the DFE relevant at lower

frequencies. As a result it is possible that, for certain DFEs, no
single “effective” effect size can be used to describe the tra-
jectories at all frequencies. The full analysis of a model of
background selection in which mutational effect sizes have
a broad distribution remains an interesting avenue for future
work.

Discussion

In this work, we have analyzed how linked purifying selection
changes patterns of neutral genetic diversity in a process
known as background selection. We have found that when-
ever background selection reduces neutral genetic diversity, it
also leads to significant distortions in the neutral site fre-
quency spectrum that cannot be explained by a simple re-
duction in effective population size (see Figure 1). These
distortions become increasingly important in larger samples
and have more limited effects in smaller samples (Figure 1, B
and C). In this sense, the sample size represents a crucial
parameter in populations experiencing background selection.

Byintroducing a forward-time analysis of the trajectories of
individual alleles in a fully linked genetic locus experiencing
neutral and strongly selected deleterious mutations, we de-
rived analytical formulas for the whole-population site fre-
quency spectrum (see Equations 1 and 2). These results can be
used to calculate any diversity statistic based on the site
frequency spectrum in samples of arbitrary size. Our results
also offer intuitive explanations of the dynamics that underlie
these distortions and give simple analytical conditions that
predict when such distortions occur (Figure 3). In addition to
single time-point statistics such as the site frequency spec-
trum, our analysis also yields time-dependent trajectories of
alleles. We suggest that these may be crucial for distinguish-
ing between evolutionary models that may remain indistin-
guishable based on site frequency spectra alone. We explain
how this intuition about the time-dependent behavior can, in
principle, be used to make simple predictions about the his-
tory and future of alleles, and we explain that it suggests new
statistics of time-resolved samples that can be used to distin-
guish between different evolutionary models. We discuss
these implications in turn below.

The frequency of a mutation tells us about its history
and future

In addition to describing the expected site frequency spectrum
at a single time point, our analysis of allele frequency trajec-
tories allows us to calculate time-dependent quantities such as
the posterior distribution of the past frequency trajectory of
polymorphisms seen at a particular frequency, their ages, and
their future behavior. For example, since the maximal fre-
quency a mutation can attain strongly depends on the fitness
of the background in which it arose (with lower-fitness back-
grounds constraining trajectories to lower frequencies), ob-
serving an allele at a given frequency places a lower bound on
the fitness of the background on which it arose. This in turn is
informative about its past frequency trajectory. For example,
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alleles observed at frequencies f > 1/(NUe ) almost cer-
tainly arose in an individual that was among the most-fit
individuals in the population and experienced a rapid initial
exponential expansion at rate Uy, while alleles observed at
frequencies f > [k/ (eA)]k /(2Nske™) very likely arose on
backgrounds with fewer than k deleterious mutations com-
pared to the most-fit individual at the time. We emphasize
that these thresholds are substantially smaller than the na-
ive thresholds obtained by assuming that a mutation arising
on a background with k mutations can only reach the drift
barrier 1/(N. - ks) corresponding to isolated deleterious
mutations of fitness ks in a population of effective size
N, = Ne™.

The fitness of the ancestral background on which a muta-
tion arose is not only interesting in terms of characterizing the
history of a mutation, but is also informative of its future
behavior. In the strong-selection limit of background selection
that we have considered here (Nse ™ >> 1), deleterious mu-
tations can fix in the population only exponentially rarely
(Neher and Shraiman 2012). Thus, mutations arising on
backgrounds already carrying deleterious mutations must
eventually go extinct. We have shown that the site frequency
spectrum at frequencies f < 1/(Nse ) is dominated by mu-
tations arising on deleterious backgrounds. Furthermore, we
have shown that most polymorphisms seen at these frequen-
cies are at the peak of their frequency trajectory. This means
that we expect the frequency of such polymorphisms to de-
cline on average. Thus, if we were to observe the population
at some later time point, we expect that the polymorphisms
present at such low frequencies should on average be ob-
served at a lower frequency. In Figure 8, we show how the
average change in frequency after Ne ™ generations depends
on the original frequency that a mutation was sampled at, f.
Note that the expectation for a neutral population of any size
is that the average allele frequency change is exactly equal to
zero. In the presence of background selection, this is no
longer true for neutral mutations previously observed at fre-
quenciesf <1/(Nse *) andf >1—1/(Nse *) (see Figure 8).

In contrast, since polymorphisms observed in the range
1/(Nse™) < f < 1—1/(Nse™) must have originated in a
mutation-free background, and since their dynamics reflect
neutral evolution in this 0-class, the overall dynamics of such
alleles are neutral. Therefore, although drift will lead to var-
iation in the outcomes of individual alleles in this range, the
average expected frequency change is equal to zero. This
expectation is confirmed by simulations (Figure 8).

Finally, we have seen that polymorphisms seen at frequen-
cies f > 1—1/(Nse *) will typically already have replaced
the wild-type allele within the 0-class. Thus, the wild-type
allele must eventually go extinct (except for exponentially
rare ratchet events). In other words, polymorphisms seen at
these frequencies are certain to fix, replacing the ancestral
allele at some later point in time (see Figure 8). Together,
these results show that the site frequency spectrum can be
divided into three regimes in which the dynamics of individ-
ual neutral alleles are effectively negatively selected, effec-
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Figure 8 The average change in frequency of an allele observed at fre-
quency fin an earlier sample. The pairs of frequencies were sampled in
two consecutive sampling steps in Wright-Fisher simulations in which
N =10°, NUy = 4Ns =2 -10%. In the first step, the frequencies of all
polymorphisms in the population and their unique identifiers were
recorded. In the second sample, which was taken 8t = Ne~Ys/s genera-
tions later, the frequencies of all polymorphisms seen in the first sample
were recorded [if a polymorphism had gone extinct, or fixed, a frequency
f(8t) =0, or 1, was recorded]. The average represents the average fre-
guency change over many distinct polymorphisms and the curve has been
smoothed using a Gaussian kernel with width <5% of the minor allele
frequency.

tively neutral, and effectively positively selected. These
effective selection pressures arise indirectly as a result of
the fitnesses of the variants to which a neutral mutation at
a given frequency is likely to be linked. This effect is impor-
tant to bear in mind when analyzing time-resolved samples
where these effective selection pressures could naively be
misinterpreted as evidence of direct negative selection on
low frequency-derived neutral alleles, and direct positive
selection on high frequency-derived neutral alleles.

The distinguishability of models based on site
frequency spectra

As has long been appreciated, background selection can lead
to signatures in the site frequency spectrum that are qualita-
tively similar to population expansions and selective sweeps
(Charlesworth et al. 1993, 1995; Hudson and Kaplan 1994;
Tachida 2000; Gordo et al. 2002; Williamson and Orive
2002; O’Fallon et al. 2010; Nicolaisen and Desai 2012;
Walczak et al. 2012; Good et al. 2014). Here we have shown
that these similarities are not only qualitative, but (up to
logarithmic corrections) also quantitatively agree with the
site frequency spectra produced under these very different
scenarios (Yule 1924; Lea and Coulson 1949; Mandelbrot
1974). This suggests that distinguishing between these
models based on site frequency spectra alone may not be
possible. We emphasize that these effects of background
selection that mimic population expansions are seen in neu-
tral site frequency spectra in a model in which the popula-
tion size is fixed, so using synonymous site frequency
spectra to “correct” for the effects of demography may not
always be justified.



The quantitative agreement between the effects of back-
ground selection and positive selection that we have seen in
the high-frequency end of the frequency spectrum is not
purely incidental. In the presence of substantial variation in
fitness, alleles that fix among the most-fit genotypes in the
population are, in a sense, truly positively selected because
they are linked to fewer deleterious mutations than aver-
age. As a result, sweep-like behaviors can occur in the
absence of positive selection, as long as there is substantial
fitness variation, independent of the source of this variation
(i.e., whether it arose as a result of beneficial or deleterious
mutations). In this case, these models may be indistin-
guishable even using time-resolved statistics because
the allele frequency trajectories themselves have similar
features.

In other cases, time-resolved statistics may be able to
differentiate between models that produce similar site fre-
quency spectra. For example, under background selection the
low-frequency end of the site frequency spectrum is domi-
nated by mutations that are linked to a larger-than-average
number of deleterious variants; alleles in this regime are
therefore expected to decline in frequency on sufficiently long
timescales [of order log(A)/s]. In contrast, in an exponen-
tially expanding population, mutations present at these fre-
quencies are very unlikely to change in frequency during the
expansion. Thus we may be able to distinguish between these
models using samples from the same population spaced far
enough apart in time.

The effect of very strong deleterious mutations

[s~O(1)]

In our analysis of background selection, we have focused on
mutations with small absolute effects on fitness (s < 1). We
make this choice because although deleterious mutations
with very strong effect (e.g., lethal mutations) do exist, they
are unlikely to lead to a substantial reduction in genetic di-
versity unless they also occur at a very high rate (Ug ~ s ~ 1).
In other words, these mutations can only have a substantial
effect on reducing diversity if a large fraction of individuals in
the population acquire them every generation. Thus, such
mutations appear less likely to lead to strong effects on di-
versity in natural populations than mutations with smaller
absolute effects on fitness.

Relationship to the structured coalescent

Throughout this work, we have assumed that selection against
deleterious mutations is strong (i.e., Nse™* > 1), such that
they are exponentially unlikely to fix (i.e., Muller’s ratchet
is rare). This is the same limit in which the structured co-
alescent of Hudson and Kaplan (1994) is valid. Since our
forward-time analysis of mutational trajectories uses sim-
ilar approximations as are implicit in that method, it there-
fore has the same expected range of validity and accuracy.
Although this limit has occasionally been referred to as
“weak selection” in some prior literature, we emphasize that
an assumption that is implicit in the structured coalescent

is that selection against deleterious mutations is sufficiently
strong that they do not routinely fix. In Supplemental Ma-
terial, Figure S1, we show that our theoretical predictions
indeed produce site frequency spectra that agree with the
results of forward-time simulations roughly as well as nu-
merical predictions generated using the structured coalescent.
The advantage of our method is that it provides analytical
predictions and scales to arbitrary sample sizes, in contrast
to the structured coalescent, which is a numerical algorithm
for conducting backward-time simulations.

Relationship to results on weakly selected
deleterious mutations

In the case where selection is weak enough that deleterious
mutations have a substantial probability of fixation (which
occurs when Nse™* < 1), the population ratchets to lower
fitness at the locus. In this limit, much like in the strong-
selection case that we have studied here, the magnitude of
the effects of background selection on diversity is con-
trolled by whether or not deleterious mutations lead to
substantial fitness variation at the locus. When deleterious
mutation rates are weak enough that the scaled standard
deviation in fitness satisfies No < 1, site frequency spectra
look largely neutral (see Figure S2 and Good et al. 2014).
However, if the deleterious mutation rate is large enough
that No > 1, previous work has shown that substan-
tial distortions can result (Neher and Shraiman 2011;
Kosheleva and Desai 2013; Neher and Hallatschek 2013;
Good et al. 2014). By analyzing evolutionary dynamics in
this limit, Neher and Hallatschek (2013) have shown that
the resulting site frequency spectrum scales as f~2 at low
frequencies and as {(1—f)log[1/(1—f)]} " at high frequen-
cies. These forms are similar to our limiting expressions in
the high- and low-frequency ends of the spectrum, but do
not contain the neutral region at intermediate frequencies.
This neutral region shrinks as Nse * declines and disap-
pears when Nse ™ = 2. Thus, the form of the site frequency
spectrum in Equation 2 approaches the limiting forms
for weak selection as Nse™* —1 (Figure S2), exactly as
expected for the transition to the weakly selected regime
(see also Good et al. 2014).

Earlier work has argued that genealogies in this weak-
selection limit (Nse * < 1) approach the Bolthausen—Sznitman
coalescent when fitness variance in the population is
sufficiently large, No > 1 (Neher and Shraiman 2011;
Kosheleva and Desai 2013; Neher and Hallatschek 2013;
Good et al. 2014). Recently, Hallatschek (2017) has studied
allele frequency trajectories that arise in the forward-time
dual of the Bolthausen—Sznitman coalescent. Our analysis
of trajectories in the presence of strong background selec-
tion reveals many of the interesting features seen in that
work. For instance, we have seen that, once an allele spreads
through the fitness distribution and reaches mutation-selection
balance, an effective frequency-dependent selection coefficient
emerges:
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(46)

This effective selection coefficient arises due to the deleterious
mutations to which neutral mutations are linked and due to
changes with the frequency f of the mutation as high-fitness
individuals within the neutral lineage drift to extinction or
fixation [see Figure 3 and Large Lineages Arising on Unusually
Fit Backgrounds in Appendix E], and is equal to 0 in the quasi-
neutral regime (Figure 3). This is analogous to the fictitious
selection coefficient, sg.(f) = log(f/(1 —f)), that emerges in
the model analyzed by Hallatschek (2017). The difference in
the frequency dependence of the effective selection coeffi-
cient between our results and the Hallatschek (2017) model
islarge when Nse ™ >> 1, but becomes negligible as Nse ™
it underlies the differences between the site frequency spec-
tra of rapidly adapting or ratcheting populations and the
strong background selection limit that we have considered
here.

Note, however, that there still exists a clear discrepancy
between the form of the site frequency spectrum at low
frequencies that arises in the Bolthausen-Sznitman coales-
cent, and the functional form that is obtained by analyzing
evolutionary models of weak selection (Figure S3). This sug-
gests that the correspondence between these evolutionary
models and the Bolthausen—Sznitman coalescent is only ap-
proximate, even in the limit that No— . In particular, al-
though the two seem to share dynamical properties which
arise once the lineage spreads out through the fitness distri-
bution (including the frequency-dependent selection coeffi-
cient), as well as similarities in some aspects of fluctuations
in the numbers of high-fitness individuals as they accumu-
late further mutations (i.e., due to genetic draft; see, e.g.,
Kosheleva and Desai 2013), it is not immediately obvious
that other aspects that we have described here, such as the
smoothing of fluctuations due to drift, are identical in both
models.

—1;

Extensions and limitations of our analysis

We have studied a simple model of a perfectly linked locus at
which all mutations are either neutral or deleterious with the
same effect on fitness, s. Our primary goal has been to de-
scribe the qualitative and quantitative effects of background
selection on frequency trajectories and the site frequency
spectrum within this simplest possible context. However, it
is important to note that the assumptions of our model are
likely to be violated in natural populations. In many cases,
these additional complications do not change the general
conclusions of our analysis. For example, the qualitative
properties of the trajectories and site frequency spectra
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described here apply when deleterious mutations have a
broader distribution of effect sizes, and we have shown here
that our results are quantitatively unchanged when the
distribution of effect sizes (DFE) is sufficiently narrow
[var(s)/s? < 1/log(Uy/s)]. On the other hand, when the
DEFE is very broad, additional work will be required to de-
termine the quantitative properties of site frequency spectra.
We anticipate different parts of the DFE may be important at
different frequencies in sufficiently broad DFEs. If this is true,
this would be an unusual feature of strong negative selection
that does not arise in the case of strong positive selection, in
which the effects of DFEs can usually be summarized by a
single, predominant fitness effect (Good et al. 2012).

Finally, our assumption of perfect linkage in the genomic
segment is likely to be violated in sexual populations, in which
sites that are separated by shorter genomic distances are more
tightly linked than distant sites. However, even in the presence
of recombination, alleles will remain effectively asexual on
short enough genomic distances, and are effectively freely
recombining on long enough genomic distances (Franklin and
Lewontin 1970; Slatkin 1972). In this case, a standard heu-
ristic is to treat the genome as if it consists of freely recom-
bining asexual blocks. In rapidly adapting or ratcheting
populations, this heuristic has been shown to yield a rough
approximation to diversity statistics when the “effective
block length” is set by the condition that each block typically
recombines once on the timescale of coalescence (Neher
et al. 2013; Good et al. 2014; Weissman and Hallatschek
2014).

However, our analysis highlights that many of the inter-
esting features of allele frequency trajectories in the presence
of background selection occur on timescales much shorter
than the timescale of coalescence. On these timescales, alleles
will be fully linked on much longer genomic distances than this
effective block length. This effect will be particularly impor-
tant for young alleles, which are linked to long haplotypes
because of the limited amount of time that recombination has
had to break them up. On longer timescales, the length of the
genomic segments to which these alleles are linked will
become progressively shorter, but will typically not fall below
the effective block length on any timescale. Given the strong
dependence of allele frequency trajectories on the total mu-
tation rate along this segment, it is less clear what effect such
linkage to increasingly shorter genomic segments has on the
statistics of allele frequency trajectories. A more detailed
analysis of the effects of background selection in linear ge-
nomes remains an interesting direction for future work.

It is interesting to note that the effects of background
selection on the site frequency spectrum in recombining
genomes have been studied previously using forward-
time (see, e.g., McVean and Charlesworth 2000; Kaiser and
Charlesworth 2008; Zeng and Charlesworth 2010) as well as
using backward-time simulations based on extensions of the
structured coalescent (see, e.g., Hudson and Kaplan 1994;
Zeng and Charlesworth 2011). However, much like in the
asexual case, analytical predictions for the magnitude of



the effects of background selection in recombining popula-
tions are usually limited to samples of two individuals
(Hudson and Kaplan 1995; Nordborg et al. 1996). More re-
cently, there has been some interest in exploring the combined
effects of background selection and population subdivision
(Zeng and Corcoran 2015) or partial asexuality and selfing
(Agrawal and Hartfield 2016; Roze 2016). Analytical results
in these cases are also often limited to very small samples
and to the limit Uy < s in which the effects of background
selection are modest. We hope that our forward-time ap-
proach can be extended in future work to explore the effect
of background selection in the presence of such factors more
fully.
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Appendix A: The Propagation of Fluctuations in the Size of the Founding Class

In this appendix, we consider in more detail how fluctuations in the size of the lineage in the founding class propagate to affect the
total allele frequency. For this purpose, it will be convenient to consider a neutral mutation that arose in the k = 0 class
sufficiently long ago that it is in mutation—selection balance. Let the total frequency of the lineage be f. As in the main text, we
denote the frequency of the part of the lineage that is in class i by f;. In mutation-selection balance, the f; will satisfy

fi= e*ViL'l . (A1)

Consider what happens if the frequency f; of the founding genotype changes suddenly to some value fy + 8fp. Based on the
deterministic solution, after a time t, this will lead to a change in the frequency of the part of the lineage in class i, 6f;(t), of

af(e) = oo =L 42)

In other words, the relative change in the frequency of the lineage in the i-class is
8fi(t) _ Sfor, _ —si
S 20 et
fi fo [ ]

This approaches 6fy /fp at long times as the allele reestablishes mutation—selection balance. However, we can see from Equation
A3 that this change is not felt at the same time in all classes. In the 1-class, the frequency changes gradually, at rate s (Equation
A3), and results in a proportional change roughly 71 = 1/s generations later. In general, in the i-class, this change is felt after a
total delay of roughly 7; = log(i)/s generations. Thus, the change propagates from class i to class i + 1 over the course of

(A3)

Titl —Ti = (l—|—1)5 (A4)

generations.

Ultimately, 7\ = log(A)/s = t; generations later, this change will have been felt in a substantial fraction of the fitness
distribution. Fitness classes near the mean of the distribution (which is N classes below the 0-class) are those that exhibit
the largest absolute change in frequency, since they contain the largest number of individuals when the lineage is in mutation—
selection balance. Thus, changes in these classes account for a large proportion of the change in the total allele frequency,
which explains the origin of the delay timescale, t4, that we have introduced in the main text.

Appendix B: The Large Deviations from Average Behavior Caused by Genetic Drift

In this appendix, we consider the importance of the effects of drift in each individual fitness class on the overall allele frequency.
In the first subsection, we revisit a standard argument to explain why fluctuations due to genetic drift in the frequency of
the founding genotype can never be neglected, framing it in terms that will be useful when considering the importance of drift
in classes below the founding class. In the next subsection, we build on this argument to explain why the effects of drift
become negligible in all classes i in which the frequency, f;, of the component of the lineage in that class satisfies f; > 1/(Nsi),
but cannot be neglected in all classes in which the frequency does not exceed that threshold.

The Importance of Genetic Drift in the Founding Class

The essential reason why drift can never be neglected in the early phase of a trajectory is that deviations from the low frequency
average behavior caused by drift are not small perturbations, but are extremely broadly distributed. Consider for instance a
mutation that arises in class k. As we explain in the main text, the founding genotype feels an effective selection coefficient
equal to —ks. The “deterministic trajectory” of the founding genotype is therefore

(fi(£)) = fie(0)e ™", (B1)

In other words, the deterministic trajectory of a neutral founding genotype (k = 0) is a flat line, whereas the deterministic
trajectory of a deleterious founding genotype (k > 0) decays exponentially at rate ks.

However, we know that drift leads to large deviations from the deterministic behavior in Equation B1. In fact, we have
mentioned that when fi < 1/(Nsk), drift can lead to an x-fold increase above this expectation with probability 1/x (Fisher
2007). Thus, the deviations from the deterministic expectation due to drift are distributed according to an extremely broad
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power law. As a result, large deviations from Equation B1 are very likely. For lineages arising in the 0-class, these deviations can
take the frequency of a lineage all the way to fixation. However, deleterious founding genotypes with k > 0 are exponentially
unlikely to exceed the drift barrier at 1/(Nsk). Thus, the distribution of deviations from the mean, deterministic behavior of
these founding genotypes also follows the same power law at low frequencies (f; < 1/(Nsk)), but is capped by selection at
frequencies exceeding 1/(Nsk). As a result, the effects of drift on trajectories of deleterious mutations become perturbative at
sufficiently large frequencies and can therefore be neglected when fi > 1/(Nsk).

Because fluctuations in f; always propagate to classes of lower fitness, drift in the founding class has an important impact on
the overall allele frequency whenever it has an important impact on f. This means that the overall frequency trajectory of
alleles founded in the 0-class will always be affected by drift in fi, which will cause large, power law-distributed deviations
from the deterministic expectation of the total allele frequency trajectory. Similarly, the overall frequency trajectory of alleles
founded in a class with k > 0 deleterious mutations will be affected by drift in the founding class when the overall allele
frequency satisfies f < g; - 1/(Nsk) (which correspond to founding class frequencies i < 1/(Nsk)), but prevented by selection
from exceeding frequencies larger than g, - 1/(Nsk) (see also Appendix E).

The Importance of Genetic Drift in Classes Below the Founding Class

Given these arguments, one may wonder whether the effects of drift are also important in classes below the founding class, in
which individuals carry i > k deleterious mutations. Deviations from deterministic behavior in these classes (i.e., in f;) are also
propagated to classes of lower fitness. Such deviations in f;(t), if large, will also have a large impact on the overall frequency
trajectory of the allele, f(t). However, since classes below the founding class receive substantial mutational input from higher
classes, it is not immediately clear whether the effects of drift on f;(t) will “average out” as a result of these mutations, or
whether drift can still lead to large deviations from the deterministic expectation for f;(t). In Appendix E, we show by formally
analyzing the distribution of allele frequency trajectories that drift in class i is negligible when f; > 1/(2Nsi), and in this
appendix we give a heuristic argument explaining why this threshold arises. This heuristic argument does not reproduce O(1)
factors that are obtained using formal methods (i.e., the factor of 1/2 in 1/(2Nsi)), but it offers additional intuition on the
existence of this threshold and its dependence on the parameters N, s, and i.

The threshold ~ 1/(Nsi) is reminiscent of the drift barrier relevant for single deleterious loci of fitness is. However its
relevance in classes below the founding class is not immediately obvious. Although the individuals in class i also feel an
effective selection pressure equal to —is, new mutational events from class i — 1 counter these effects of selection. Thus, it is not
obvious that the combination of the opposing effects of mutation into the class and selection within the class will be stronger
than the effects of drift whenever f; > 1/(Nsi) (as opposed to some other threshold that also depends on Uyfi—1).

To gain insight into this, we consider in more detail the effects of individual mutational events into class i. Each of these
mutational events can be thought of as founding a new sublineage in class i. The frequency trajectory of each sublineage is the
same as that of a single locus with fitness —is, and the overall trajectory f;(t) is equal to the sum of the trajectories of these
sublineages. When a sublineage is small, drift will lead to large deviations from its average (deterministic) frequency trajectory,
which is also given by Equation B1. However, as in the founding class, at frequencies larger than 1/(Nsi) these deviations are
capped by the effects of selection. Thus, the drift barrier 1/(Nsi) represents the frequency above which fluctuations cannot lead
to large deviations of individual sublineages from the average behavior.

To understand when drift has an important impact on the overall i-class trajectory f;(t), we can consider how these deviations
in the trajectories of the sublineages add. At sufficiently small frequencies, f; < 1/(Nsi), the overall trajectory f; will be equal to
the sum of random trajectories that have an extremely broad distribution. In this case, the sum will be dominated by the
trajectory of the largest sublineage, which will be very different than the average trajectory. Thus, even when the total number
of mutational events into class i is large, the effects of genetic drift in class i may not be negligible if each of these mutational
events results in a relatively small trajectory. In other words, fluctuations due to drift in the frequency trajectories do not
average out, but are rather dominated by the largest deviation from the mean. Conversely, when the total number of sub-
lineages is large enough that many of them reach the frequency 1/(Nsi) (which is guaranteed to happen if the total number of
mutational events into the i-class is much larger than 1/(si)), the overall frequency of the lineage will be much larger than
1/(Nsi). In this case, the largest event is no longer very different than the average event; the effects of genetic drift are therefore
negligible compared to the effects of selection. The transition between these two behaviors happens when f; ~ 1/(Nsi), which
roughly corresponds to exactly one sublineage exceeding 1/(Nsi). We discuss these effects using a more formal approach in
Appendix G. Note that, by extending this argument to classes i + 1 and lower, we can verify that once the frequency trajectory
in class i exceeds 1/(Nsi) and becomes predominantly shaped by mutation and selection, the frequency of the allele in all
lower-fitness classes is also guaranteed to exceed the corresponding frequency thresholds. This is why we can also neglect the
effects of drift in all classes below a class in which the frequency exceeds 1/(Nsi).
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Appendix C: The Generating Function for the Total Size of the Labeled Lineage

In this appendix, we consider the generating function for the total frequency of the lineage,

Hy(z,t) = <e*zf(f>>, (C1)

and derive a partial differential equation describing how it changes in time. As described in the main text, when the size of the
lineage is small [f(t) < 1], its dynamics are described by the coupled system of Langevin equations for the components f;(t) of
the total frequency f that denote the frequency of the part of the lineage that carry i deleterious mutations,

d{ii(tt) = —is; fi + Ugfiy1 + \/J]E\i,ni(f)~ 2

In Equation C2, the 7; are independent, uncorrelated Gaussian noise terms. The total allele frequency is equal to the sum of
these components, f(t) = >, fi(t).

Note that the total allele frequency f(t) is not a Markov random variable since its evolution depends on the details of the
distribution of the individuals within the lineage among the fitness classes. However, the frequencies of the components f;(t)
are jointly Markov, with their joint distribution described by the joint generating function

H({zi},t) = <eXP {_Zziﬁ(t)} > (C3)

The generating function for f(t) can be obtained from the joint generating function by setting z; = z for all i. We can obtain a
PDE for the joint generating function by Taylor expanding H({z},t +dt) and substituting in the differentials
dfi(t) = —isfidt + Ugfi—1dt + +/f;/NVdt ;(t) from Equation C2, which yields

OH . 22 OH
o = Z— (lSZi + ﬁ — Udzi+1) a—Zl (C4)

We can solve this PDE for the joint generating function by using the method of characteristics. The characteristic curves z;(t — t')
are defined by
2

o
=1is z; — Uyz; L C5
S 2 d%i+1 + N’ (C5)

1

dt’

and satisfy the boundary condition 2;(t) = 2. The linear terms in the characteristic equation arise from selection and mutation
out of the i-class, and the nonlinear term arises from drift. Along these curves, the generating function is constant and so
H({z},t) =H({#(0)},0) = e_ziﬁ(o)zf(()), where the initial condition f;(0) = 6 /N corresponds to a single individual present
in class k at t = 0. Thus, to obtain a solution for the joint generating function, we need to integrate along the characteristics in
Equation C5 backwards in time fromt’ = 0 tot’ = t. In the next few appendices, we obtain these solutions in the limits of weak
(U4 < s) and strong mutation (Ug > s).

Appendix D: Trajectories in the Presence of Weak Mutation (Uy<s)

When deleterious mutations arise more slowly than selection removes them (U/s =X < 1), deleterious descendants of a

lineage are much less numerous than the founding genotype. To see this, we can expand the characteristics z;(t — t') in powers

of the small parameter \. At leading order, the characteristics are uncoupled and can be straightforwardly integrated to obtain

0 (0) = ze

; = —.
1+ o= (1—e75t)

(DD
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By substituting this zeroth-order solution into Equation C5, we find that corrections due to deleterious descendants are O(A ) and
are therefore small uniformly in 2. Thus, the generating function for the total f of the labeled lineage t generations after arising
in class k is

1 —
N %€

1+ o (L —e7)

kst

Hp(z,t) = exp

+0), (D2)

which agrees with classic results by Kendall (1948) for the generating function of independently segregating loci of fitness —ks.
Equation D2 can be inverted to obtain the probability distribution, p(f,t), by an inverse Laplace transform:

foo
p(f,t) = Lw ;—;eszf(z, t). (D3)
This distribution is well known, and can be obtained by standard methods. Noting that Hy(t, z) has a single essential singularity
at z = — 2Nsk/(1 — e ), we can perform the integral above either exactly by contour integration (by closing the contour
using a large semicircle in the left half-plane and a straightforward application of the residue theorem, which gives a solution in
terms of Bessel functions) or approximately by the method of steepest descents (taking care to deform the contour to pass
through the saddle point on the right of the essential singularity). By carrying out this inverse Laplace transform, we obtain that
the extinction probability by time t is

2sk  _
p(f =0,t) = exp |:_1_e—skte Skt] ; (D4)

which becomes of order one when t = 1/(sk), in agreement with our intuition that a lineage of fitness ks can only survive for
order 1/(ks) generations. For nonextinct lineages, the probability distribution of the frequency is

p(f.f>0,t) =

2Nks e kst ks 2
1—e kot N f,3/4 2Nks (1_ e t > . (DS)

4 e e‘kﬁf Nf

The site frequency spectrum can be obtained from this distribution of frequencies by integrating Equation D5 in time, or by an
alternative method that we present in Appendix F.

Appendix E: Trajectories in the Presence of Strong Mutation (Uy>>>s)

When deleterious mutations arise faster than selection can remove them, mutation will play an important role in shaping the
trajectory. The relative strength of mutation and selection compared to drift will depend on the frequency of the lineage. Drift will
remain the dominant force at frequencies f <« 1/(NU,). However, at larger frequencies, the mutation and selection terms will
become important and we will see that the effects of drift in classes of low enough fitness become negligible.

Small Lineages (f<1/(NUy))

The dominant term in the characteristic equation in this regime (which corresponds to z >> NU; in the generating function) is
the drift term

dz; zlz
~ El
dt’ 2N’ (ED)
which has the solution
Z
2(0) ® —; (E2)
142
+ 2N

We can verify that mutation and selection are negligible compared to drift on timescales of order t ~ 1/U; as long asi < 2A.
Note that this condition (i < 2A) is satisfied for essentially all of the individuals in the population since
2ohi = 1= /27 /he(2A+DIog+1/M) A ~ 1 By summing the 2;(0) terms, we find that on these timescales the generating

function for the frequency of the mutation is
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Z
Hf(z, t) ~exp|— N , (E3)

which is just the generating function for the frequency of a neutral lineage (¢f. Equation D2). On longer timescales
(t > 1/(NUy)), this approximation breaks down and mutation and selection cannot be neglected for lineages arising in fitness
classes far above the mean of the fitness distribution (with k < A —/A). This is because the probability that a portion of the
lineage in a class with fewer than A — v/A mutations has drifted to a high enough frequency to feel the effects of mutation and
selection becomes substantial on longer timescales, which can also be seen from the probability distribution of nonextinct
lineages (Equation D5). We consider the generating function of these unusually fit mutations at these higher frequencies in the
next subsection. In contrast, mutations that arise on more typical backgrounds with k > A — /A mutations can drift to higher
frequencies, of order v/A/(NUy), before feeling the effects of selection, but cannot substantially exceed a total frequency
VA/(NUy). We analyze their trajectories in the following subsection.

Large Lineages (f>>1/(NU,)) Arising on Unusually Fit Backgrounds (k<<\ — /)

In lineages that reach higher frequencies, a large number of deleterious descendants arise every generation. This leads to strong
couplings between the sizes of the components of the lineage in different fitness classes, and diminishes the importance of genetic
drift in classes of lower fitness, which receive large numbers of deleterious descendants from classes of higher fitness. We find
that, in classes of low enough fitness, the effects of genetic drift are negligible and the dominant balance is between the linear
mutation and selection terms.

The solution to the linear (deterministic) problem has been obtained by Etheridge et al. (2009), but we reproduce the
derivation briefly for completeness. In the absence of drift, the characteristics evolve according to

dZi

ap — bz Usgin = > Lijz, (E4)
i

which defines the linear operator £;;. £ has right eigenvectors ¢V with eigenvalues —js given by

(—Ay~ .
j —, O=i=
S ] ’ (ES)
0, otherwise,
and corresponding left eigenvectors
AT
i —_—, 1]
pl) = @) (E6)
0, otherwise.

We can verify that the left and right eigenvectors are orthonormal [@ - ¢p¥) = sz’fz( i>¢>l(j ) = d;]. By eigenvalue decomposing

2;(t) and integrating backward in time fromt’ = 0 to t' = t, we obtain z;(t — t') = Eje_j“'bj@@, where the amplitudes b; are
set by the boundary condition at t’ = 0, b; = YU 2ty =yl 2= z]-)\i_j /(i—j)!. Finally, a summation yields
i=]

—e\ ]
2 (t — t') —e it iMZiﬂ'. (E7)

=0 J

Setting the boundary condition at t = 0 to f;(0) = 8y;/N and evaluating 2;(0), we reproduce the result by Etheridge et al.
(2009): in the absence of genetic drift, the descendants of the labeled lineage follow a Poisson distribution that starts in class k
and has mean A (1 — e~*) and amplitude e *te=*(17¢") /N,

To evaluate the effect of genetic drift on the total size of the lineage at some later time point we set z; = z. A sufficient (but not
necessary) condition for genetic drift in class i being negligible in determining the total size of the lineage at some later time
point ¢ is that the nonlinear term z;(t—t')?/(2Ns) < iz;(t — t') uniformly in t’. In the vicinity of some frequency f(t) ~ f,
corresponding to z(t) = z ~ 1/f, we find that the nonlinear term is negligible uniformly in ¢’ as long as
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e A 17) oNsif forallt, 0<t <t. (E8)

Note that the condition in Equation E8 is obtained by plugging in the relationship between z;(t — t') and z(t) = z ~ 1/f (from
Equation E7) into the condition that zi(t—t')?/(2Ns) < iz;(t —t'). Since the left-hand side in Equation E8 is bounded by
e B'e1=¢™) < eA(i/(Ae))' = g, the inequality is guaranteed to be satisfied uniformly in t as long as

> (E9)

ansi S
Defining k(f) to be the smallest integer for which f > g ,,/[2Ns(k; + 1)] we can verify that genetic drift is negligible in all
classes with i > k.(f) but not in class k.(f).

Note that self-consistency of the deterministic solution for k. <A implies that when f > g ,/[2Ns(k. + 1)] the frequency of
the part of the allele in class i satisfies f; > 1/(2Nsi) for all i > k., but not for i < k.. Also note that this inequality can only be
satisfied for some k. < A if the founding class is sufficiently far above the fitness distribution (A — k >> /A, where g > 1). We
return to lineages founded in classes with k >\ — /A mutations in the next subsection.

Thus, since genetic drift has a negligible effect in classes containing more than k. deleterious mutations, the characteristics
2;(t") are given by the deterministic solution above, which we have already integrated. The frequency of the part of the lineage
in classes with i > k. is therefore a deterministic function of the frequency trajectory in class k., fi, (t). We can solve for this
deterministic function straightforwardly by explicitly including fi (t) as a variable mutational source term for classes of lower
fitness. This yields an expression for the generating function of the entire lineage

Hi(s, 1) = <e*szikﬁ<r>fod I dffkc<r>gkc+1<rfr>>7 (E10)

when
2Ns(ke + 1
< Bk 1)

Z =
8k.+1

) (E11)

where we have used the notation from the main text: g;(t) = e “tA(1=¢™),

The relationship between the feeding class trajectory f (t) and the allele frequency trajectory f(t)
Equivalently, this result can be rewritten in terms of the relationship between the allele frequency trajectory f(t) and the
trajectory of the portions of the alleles in classes with k <k, :

k. t
£ =3 fi(0) + Ug / dr fi (g i1 (t— 7). (E12)
i=k -®

which is valid as long as f >> g 11/[2Ns(k. + 1)]. Because the expression on the right-hand side of Equation E12 is dominated
by the last term, the full allele frequency trajectory reduces to a single stochastic term f . Therefore, we can calculate the
distribution of p(f, t) near any given frequency f by: (1) determining the feeding class k.(f), which corresponds to the class of
lowest fitness in which genetic drift is not negligible; and (2) calculating the distribution of this time integral of the trajectory in
that class, fi(t), subject to the boundary condition that f;(0) = 1/N.

In principle, this is still challenging if k. > k because the trajectory in class k. still depends on the trajectories in higher-fitness
classes, all of which are stochastic. In addition, calculating the distribution of the convolution of fi (t) and gx..1(t) is still
difficult, even when k. = k. Fortunately, a simplification arises from the highly peaked nature of gi_,1(t — 7). Because the
exponent in gi 1 (t — 7) is peaked in time, the integral in Equation E12 is, up to exponentially small terms, dominated by the
region in which g1 (t — 7)fi(7) is largest. Since the variation in the magnitude of gx_.1(t — 7) is much larger than the variation
in the magnitude of fi (1), the integral will be dominated by the window during which gi_.1(t — 7) is at its peak, as long as
fx.(7) # 0 in that window. In that case, we can make a Laplace-like approximation in Equation E12, in which we expand
8k.+1(t — 7) around its peak, and neglect contributions that are far away from this peak, since these are exponentially small.
Near7=t— tg“l) =t—log[A/(k. +1)]/s

e i1(t—7) & g yqe KAl (E13)

which yields
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As a result of this simplification, the allele frequency does not depend on the full frequency trajector;(/ in the feeding class fi, (t),
but only on its time integral (weight) in a window of width At*k<*1) = 1/(y/k. + 1s) around t — tfi “*1)which we denote by
Wptkern) (t — tg““)) . Note that Equation E14 implies a simple condition in terms of the allele frequency trajectory in this feeding
class k. that specifies when drift is negligible in downstream classes. We have shown above that as long as the total allele
frequency f > g .1/[2Ns(k. + 1)] drift is negligible in classes with more than k. deleterious mutations per individual. From
Equation E14, we can see that this condition can be restated in terms of the weight in the feeding class as

1

2NUgs (ke + 1)

Wy, (t B té({kﬁl)) >

(E15)
Thus, k. can also be thought of as corresponding to the class of highest fitness in which the weight exceeds 1/(2NUys(k; + 1)).

The approximation we have used in Equation E14 breaks down at very early times [t < ték)] and very late times, during which
fr.(t) = 0 in the relevant window. These correspond to the spreading and extinction phases of the trajectory. We show in
Appendix I that the former has a negligible impact on the site frequency spectrum. The latter phase however has an important
effect at very high frequencies of the mutant, i.e., when the wild type is rare and in its own extinction phase. During this
extinction phase,

8k 1(t = 7) m AT (E16)
uniformly in ¢ and the frequency trajectory is well approximated as

t
£(6) ~ Ude/\—(kc+1)st/ dr fi (r)elk 57, (E17)

Applying the Laplace approximation once again, we conclude that the integral in Equation E17 is dominated by the window of
width 1/[(kc + 1)s] prior to extinction in the k.-class and therefore only weakly depends on time. Thus, during this extinction
phase, the allele frequency decays exponentially at rate (k. + 1)s and can be written as

£(8) = fpeare™ KA m), (E18)

for some choice of t,eax, where fyeqx reflects the maximal frequency the trajectory reached before the onset of the extinction
phase.

Thus, we can see that in the extinction phase of the trajectory, the effective fitness of the lineage changes with the frequency
according to

Seff(f) = — [ke(f) + 1]s. (E19)

To obtain an explicit expression for how the feeding class k. (f) and therefore s.¢( f) depend on the frequency f, we can solve the
condition that g ,1/[2Ns(k. + 1)] < f < & /(2Nsk,) for k. by setting f = C(f) - &, +1/[2Ns(kc + 1)] for some C(f) that sat-
isfles 1 < C(f) < A. We find that, to leading order,

1
By plugging this back into the expression for s.¢( f), we find that, in the extinction phase of the trajectory, the effective selection
coefficient changes with the frequency of the lineage according to

1 . 1
seff(f) = —logy (IW)& if f < Nse—\" (E21)

In summary, we have shown in this appendix that the allele frequency trajectory in the peak phase of the allele only depends on
the time integral of the frequency in class k. over a window of specified width At*1) and that, outside this peak phase, the
trajectory has an even simpler time-dependent form that we described above.

Aswe will see in Appendix F, the generating function for this relevant weight in class k. is straightforward to calculate when k.
is the founding class (i.e., for k. = k). This case is relevant for trajectories that arise in class k and exceed frequencies
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fi > 1/(N+/Ugs(k + 1)), which means that the feeding-class weight will exceed 1/(2NUys(k + 1)) for a certain period of
time.

However, not all trajectories that arise in class k will reach such large frequencies. We have seen in an earlier section that
trajectories that do not ever exceed frequencies much larger than 1/(NU,;) will have a trajectory that is dominated by drift
throughout its lifetime. However, even those that do exceed f;, > 1/(NUy) and therefore leave behind a large number of
deleterious descendants will often not reach the much larger frequency fi > 1/(N+/Ugs(k + 1) ). In this case, we will have to
treat multiple fitness classes stochastically and the weight relevant for the peak of the trajectory will be that in class k. > k. For
k. >k(=0), a further simplification results from the fact that the width of the window At(*:+1)(t) is longer than the lifetime of
the mutation in class k. (see Appendix F and Appendix G for details). We use this simplification to calculate the resulting weight
distribution in Appendix G. Finally, in Appendix I we use these results to obtain expressions for the average site frequency
spectrum both in the case of strong and weak mutation.

Lineages Arising on Typical Backgrounds (k — A >—v/A)

Lineages founded in classes with k>A —+/A mutations will not enter the semideterministic regime described above.
This is because selection in each individual class i in which they can be present prevents f; from exceeding
1/(Nsi) <1/(Nsk) ~ 1/(NUy), where the latter (1/(NUy)) is the necessary threshold for a large enough number of deleterious
descendants to be generated that their dynamics become dominated by selection in some class below the i-class. This threshold
equal to 1/NU, emerges from our analysis of the coupled branching process in the previous subsection and is further clarified
and discussed in Appendix G.

In contrast to lineages arising far above the mean of the fitness distribution, the frequency trajectories of lineages that arise
near the mean of the fitness distribution are dominated by drift and are eventually capped by negative selection at large enough
frequencies. Selection becomes an important force about 1/1/Ugs = 1/0 generations after the lineage was founded. At this
time, the accumulated deleterious load since arising becomes large enough to affect the trajectory of the mutation. This
deleterious load will affect the trajectory substantially when the frequency of the lineage f(t) becomes comparable to the
drift barrier set by its current relative fitness x(t), 1/(Nx(t)). The expected fitness of a lineage founded near the mean of the
distribution [with |x(0)] < o] is (x(t)) = x(0) — Ug(1 — e™**). Provided that the lineage has not drifted to extinction by t, its
expected frequency at t is f(t) ~ t/N. Thus, whenf(t) ~ 1/(Nx(t)), the effect of selection will dominate over drift. This occurs
when t ~ 1/y/Ugs = 1/0. Thus, lineages that arise near the mean of the fitness distribution have a trajectory that has neutral
statistics for the majority of its lifetime, but does not exceed 1/N¢-. Finally, lineages arising in classes far below the mean of the
fitness distribution (k —A > v/A), will also be dominated by drift, but limited to even lower frequencies. However, these
lineages are also comparatively rare and only have a small relative impact on the lowest-frequency part of the site frequency
spectrum (f < 1/(No)).

Appendix F: The Distribution of Allele Frequencies and of the Weight in the Founding Class

In this appendix, we calculate the distribution of frequencies fi(t) and weights Wa.(t) = tthAf//zz fi(t")dt' for the stochastic

process defined by
dfi \/E
a ksf + Nﬂ(t% (F1)

with f(0) = 1/N and f(t) = 0 for t < 0. This process describes the trajectory of the component of the lineage that remains in
the founding class (the founding genotype). To calculate these distributions, we begin by defining the joint generating function
for the frequency fi(t) and the total time-integrated weight up to time t:

t
W(t) = / fe (t')dt’. (F2)
0
The joint generating function for these two quantities is defined as
G(z,4,6) = (e HO-EW0), (F3)
and satisfies the PDE
Gz ¢t [ 2%\ 9G(z,¢t)

Once again, we solve this PDE using the method of characteristics. The characteristics z(t — t') are defined by
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dz 22 d¢

and are subject to the boundary condition z(t) = 2, {(t) = {. The generating function is constant along the characteristics
(dG/dt" = 0), and therefore satisfies

G(z,{,t) = G(2(0),£(0),0). (F6)

After integrating the ordinary differential equations in Equation F5, we find that the characteristics follow
(2 — s )exp [W}

z—a- — (z—a;)exp [W} ’

z(t—t’) =a; +(ay —a-) (F7)

with a- = Nsk {—1; /1+2¢/ (N(sk)z)}

We can verify that the correct marginal generating function for the frequency of the lineage emerges from this result by setting
{ = 0 and imposing the boundary condition G(z,0,t) = G(2(0), 0,0) = e *®/N_which corresponds to the initial frequency at
t =0 being 1/N.

To obtain the marginal generating function for the weight in the window betweent — At/2andt + At/2,wesetz = 0,t = At,
and choose a boundary condition that reflects the distribution of frequencies fi(t — At/2) generations after the lineage was
founded (see Equation D2):

1.0V ks(t—%)
Guw(z=0,,t = At) = exp{— ';’(;( Je T (F8)
1 + INsk [1 —e 2 ]
where
2

z(0) (F9)

B sk{ Lt i Coth[%1 /1 +N(2k§)z} + 1}'

The generating function in Equation F8 captures the full time-dependent behavior of the weight in the founding class in awindow
of width At and can be inverted by standard methods. However, it is in practice unnecessary to invert Equation F8 to calculate
the site frequency spectrum. For our purposes here, we will be mostly concerned with two special cases: the total weight in the
founding class from founding to extinction, W = fow f(t")dt', and the time integral of the distributions of frequencies p[f(t)]
and weights p[Wx,(t)] in a window of specified width At. The former case has been calculated previously by Weissman et al.
(2009). We quote and discuss this result for completeness in the section below. We then analyze the latter case in the following
section.

The Distribution of the Total Lifetime Weight in the Founding Class, W = [;° f(t')dt’

The first special case that will be relevant to our analysis of trajectories and allele frequency spectra is the total integrated weight
in the founding class from founding (t = 0) to extinction. By setting At = t/2 in Equations F8 and F9, we find that the
generating function for the total weight from founding to some later time t is

2

Nsk{, /1+  Zcoth [t 14+ 2o ] 41}

Gw({,t) =exp|— (F10)

Note that Equation F10 becomes independent of time when t=2/(ks) (uniformly in ), which agrees with our heuristic
intuition that the lifetime of a mutation in class k is not longer than ~ 2/(ks) generations. Since we have shown in Large
Lineages Arising on Unusually Fit Backgrounds in Appendix E that the allele frequency trajectory f(t) depends on the weight in a
window of width At = Atk+1) = 1/(v/k 4 1s) (where the = sign follows because k. = k) that is longer than ~ 1/(ks) fork > 1
(with k = 1 being the marginal case), the distribution of W« (t) will be either equal to the total lifetime weight of the allele
[for t < Atk+D] or negligible for t = Atk+1),

By taking the limit t — o in Equation F10, we obtain that the generating function for the distribution of the lifetime weight in
the founding class is
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27

Gw({) = exp | —————|.
(Nsk)* + 2¢N

(F11)

The inverse Laplace transform of Equation F11 can be evaluated by standard methods, which yields the distribution of the

lifetime weight in the founding class:
/1 1 -NvePw_ 1

The Time Integrals of p(f,t) and p(Wa,t)

To calculate the average site frequency spectrum, we need to calculate the time integral of the distributions of frequencies and

weights over time. In principle, this can be done by inverting Equation F8 and then integrating the distribution of W,(t) over time.

However, since this is a somewhat laborious calculation, we will use a convenient mathematical shortcut in which we first solve

for the distribution of weights in a different stochastic process and then relate this back to the original process in Equation F1.
Specifically, we consider the stationary limit of the stochastic process defined by the Langevin equation:

S oior o Lato. (F13)

This describes the time evolution of the frequency of a lineage with fitness —ks in which individuals are continuously generated
by mutation at some rate N6 (and have frequency 1/N at the time when they are generated). This process is relevant because
the distribution of frequencies and weights in the stationary process are related to the time integrals of the distributions of f(t)
and Wy (t). More precisely, in the limit that # —0 (keeping N constant), the distributions of f (and its time integrals) in the
stationary process are the same as the time-integrated distributions of the nonstationary process, provided that we also divide
by the total rate at which new individuals are generated, N6, to ensure proper normalization. That is,

[ plstonde = fim o p(s.f > 0.0). (k14

We denote the joint generating function for the frequency, f, and weight in this process, W(t,0) = fé W(t',0)dt', by

Go(z,4,¢) = (e FLOEWED)), (F15)
Gy(2,{,t) satisfies the PDE
aGG(Za g t) N z* aGQ(Za g, t) _
o = {+ ksz + 5N o 02Gy(z,{,t). (F16)

Note that the generating functions for the two processes are related and that, by setting 6 = 0 in Equation F16, we obtain the
generating function for the nonstationary process (see Equation F4). In particular, the characteristics for Equation F16 are the
same as the characteristics for Equation F4 and they follow the form we calculated previously and quoted in Equation F7. Along
these characteristics, the generating function satisfies

dGy ,
F_az(t t)G(;, (F17)
or equivalently, after integrating,
t
Go(2,¢,t) = Gy (z(o), £(0), 0) exp {—9 / z(t - t’)dt’} . (F18)
0

However, the boundary conditions for the two processes are different. The nonstationary process is subject to the boundary
condition that there is a single individual present in the lineage at t = 0, G(2(0),£(0),0) = e *O/N_whereas the stationary
process is subject to the boundary condition that the process is stationary at the initial time point, t" = t. The stationary
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property of the frequency distribution is guaranteed by the boundary condition G,(z(0), £(0), 0) = [1 4 2(0)/(2Nsk)] "’ This
can be obtained either by inspection or by substituting an arbitrary boundary condition and finding the limiting form for the
generating function for the frequency as t — «, and noting that z(0) becomes independent of z as t — %, so the initial condition
has no impact on the frequency distribution.

Plugging in the expression for z(t — t") from Equation F7 into Equation F18 and performing the integral over t’, we arrive at
the solution to the joint generating function for f(0) and W(6),

1— _(ag—a )t] ) —2N6
exp| — 5y
Go(2.4.t) = Go(=(0),£(0),0) exp[~6ar 4 1 + (z-as) ——— (F19)
L—a-
To obtain the marginal generating function for f(0), we set { = 0, giving a, = 0,a_ = — 2Nsk, and
G 142 ) F20
05 = (1+ 7) (F20)
Conversely, to get the generating function for W(t, #) we set 2 = 0, which after some rearranging yields
2
2(0) = d (F21)

sk{ 1+ 2 coth [l 1+ 2] +1]

kst | 20 e
+ cosh [7 1+ N(ks)2 } } . (F22)

and

2L 2 2
e N(ks)

1+
Gow(l) = eNsk*’f{ﬂ sinh [E 14 %

We invert Equations F20 and F22 below.

Inversion of the generating functions in Equations F20 and F22

Since only the nonextinct portion of the process contributes to the site frequency spectrum, when inverting the generating
functions for the weight and frequency, we will use the following relationship between the probability distribution p(g) and the
moment-generating function Gg(z) of a random variable g:

i dz . |e™8Gy(ix) — e PGy (—ix) i dg e[ 0G
= %8 = 8 g — - |-Z=£
p(e) /_iw 27Tie Gg(z) XIEI}O 27rig + /_iw 27 g 0z | (F23)

From the definition of the moment-generating function and the sine limit definition of the Dirac & function
[limy— « sin(xg)/(7g) = 8(g)1, it follows that the boundary terms amount to the probability mass at g =0 and that the
distribution of the nonzero portion of the process is

p(g.g>0) = /

i dz e [ 0G,
—joo 271 g ’

5% (F24)

After plugging this expression and the generating function for the frequency Equation F20 into Equation F14 and taking the § — 0
limit, we find that the time-integrated distribution of frequencies in the founding class is

o0

/ plfi(t))de = 2 =2 (F25)
© fx

The time-integrated distribution of weights in the feeding class can be obtained in an entirely analogous fashion. In this case, it
will be convenient to treat the cases k = 0 and k > 0 separately. When k = 0, a lengthy but straightforward substitution of
Equation F22 into Equation F24 gives
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. p(W,w=>0,0) i q 1 t
e}li%(T w / o | ' (F26)

w2l | \/ZNZtanh(\/%t)

The simplest way to carry out this integral is by contour integration. To do this, we close the contour using a large semicircle in the

left half-plane. The contribution from this circle vanishes as the radius of the semicircle approaches infinity, and so the integral

considered above is equal to the sum of the residues within the left half-plane. The integrand has simple poles at
{/(2N) = nri/t for n = 0 with residues 27" 2VW/* 'which yields

. p(Ww,w>0,0) 1 2. 22w 1 2m2NW
1 —— 242 2 =-Z1 - F2
e No w2t n;e W + 3|0, exp ") , (F27)

where 3 is the elliptic theta function. Asymptotic expansions for small and large arguments give

1 t t2
, WK )
. p(W,W=>0,0) V2N W3/2 2N72
lim———"— 7 = (F28)
6—0 N6 2 W £2
w’ 2N’

The case k > 0 is slightly more straightforward to evaluate since the length of the intervals we are interested in is longer than
the typical timescale of selection, t = At**1) = 1/(\/k + 1s) = 1/(ks). As a result, the arguments in the hyperbolic functions in
Equation F22 satisfy kst - /1 + 2¢/(N(ks)*) = 1 (for k > 1, with k = 1 being the marginal case), which yields a simple form for
the distribution of nonzero weights:

. PW,W>0,0) 1 [ dg ) [ 1 0G0
i S— “w o A% TNe ar
1t dg AL ot 1 (F29)
"W Jjw2mi  Nsk 2%
N(sk)?

Note that the expression in Equation F29 reduces to a standard Gaussian integral. By carrying out this integral, we obtain for the
time integral of the distribution of weights in the founding class:

- N 150 PW.W>0,0) nigorw)2 t
/,wp W(e)]de = Jim P e V2NTW3/2 (F30)

Appendix G: The Distribution of Weights in Classes Below the Founding Class

We have seen in Appendix E that, when the allele frequency trajectory in the founding class fi (t) is small enough, the effects of
genetic drift cannot be ignored in multiple fitness classes. In this section, we consider how the trajectories (and their weights)
in these stochastic classes are coupled and derive the distribution of lifetime weights in class k + A, in which individuals carry A
more mutations compared to individuals in the founding class.

The Relationship Between the Trajectory in the Founding Class k, and the Weight in Class k + 1

We begin by considering the total lifetime weight in the class right below the founding class (i = k + 1), which we will denote
Wii1. Wiy clearly depends on the weight in the founding class, Wy, since the total number of mutational events from the
k-class into the (k + 1)-class is equal to NU;Wy. As we describe in The Importance of Genetic Drift in Classes Below the Founding
Class in Appendix B, each one of these mutational events founds a sublineage, and the stochastic trajectory of each sublineage
is described by Equation F1. The total weight of the lineage in class k + 1 is simply the sum of the weights of each of these

1270 I. Cvijovi¢, B. H. Good, and M. M. Desai



sublineages. The generating function of the lifetime weight in the k + 1 class, Wy, is related to the lifetime weight in the
founding class Wy according to

NUWi 0
GWk+1(§) = <eXp |:_£ Z Wk+1:| >7 (G]-)
j=0
where W,Ejll denotes the weight of the sublineage founded by the j mutational event. Since the W,E’L are independent and

identically distributed, the generating function of their sum is equal to the product of their generating functions and

G ) = (" (0) ). (G2

where the final average is taken over the distribution of the weight, Wy, in the k-class. The generating functions of W and W1£1+)1
are both given by Equation F11.

Using the same methods that we used to invert Equation F11, we obtain that the distribution of the total weightsin class k + 1,
conditioned on the weight in class k being equal to Wy, is

2

NUW, 1 _NERDPW g (NUgW)
P(Win|[Wi) = —== — e 2 e G3)
2N Wk+1

We can see from this equation that the neutral decay of the distribution of weights in class k + 1, which results from drift and is
proportional to 1/W?3/2, is exponentially cut off for Wy, < (NUgWy)?/(2N) and for Wi, > 2/{N]s(k + 1)]*}. The latter, high-
weight cutoff is familiar from before and results from selection within the k + 1 class. The low-weight cutoff results from the
pressure of incoming mutational events.

A simple heuristic can explain the dependence of the low-weight cutoff on the weight in the founding class, Wy. The weight
Wy is at least as large as the weight of the largest sublineage. Because each of the NU;W; mutational events generates a
sublineage that survives for T generations with probability 1/T and leaves a weight of order T2/N, at least one of these
sublineages will survive for T generations with probability equal to 1 — (1—1/T)N*Wk ~ 1 — ¢~NUsWi/T This probability is of
order 1 for T ~ NU;Wy, which means that with probability order 1 at least one of the sublineages will have weight
T2/N ~ (NUgW;)?/N. Note that this also means that when W > 1/ (NU2) (consistent with the lineage exceeding frequency
1/(NUy) in the founding class), the weight in the next class is guaranteed to be larger than the weight in the founding class. This
means that lineages that exceed the frequency 1/(NUjy) in the founding class are almost guaranteed to generate an even larger
number of individuals in the next class, which generates an even larger number of individuals in the following class, and so on.

We have implicitly assumed that the trajectory of each of the sublineages is dominated by drift. This will be true as long as
T<1/[(k+1)s] [i.e., as long as Wy <1/[N+/Uqas(k + 1)]1. In contrast, when W > 1/[N/Ugs(k + 1)], a large number the
lineages will exceed the frequency 1/[Ns(k + 1)] in the next class, and the trajectory in that class will become dominated by
selection. We have shown in Appendix E that once this happens, drift in class k + 1 and all classes below it will become
negligible. Note that this heuristic argument also explains the self-consistency condition that emerged in Appendix E (see
Equation E15) and explains why genetic drift becomes negligible in the (k. + 1)-class whenever the weight in the k.-class is
larger than 1/[N/Ugs(k. +1)].

In the section below, we will use the insights above to evaluate the weight distribution in class k + A, conditioned on the
lineage arising in class k and selection being negligible in all classes beneath it, W; < 1/[N(si)?] for i =k + A. Because the
lifetime of the longest-lived sublineage in each of these classes is at most 1/(is) in this limit and because the sublineages are
seeded into the i-class over a time that is, by assumption, shorter than 1/+/Uyis, the total lifetime of the lineage in all of these
classes is strictly shorter than At(), which is why we do not need to be concerned with the full, time-dependent properties of the
distribution of weights in this class. Instead, the calculation of the distribution of lifetime weights will suffice for calculating the
site frequency spectrum.

The Distribution of the Weight in Class k + A

Having obtained the distribution of the weight in class k + 1, conditioned on the weight in class k being equal to Wy (see
Equation G3), we can calculate the marginal distribution of weights Wy, by averaging over W. In the limit that
1/(NU3) < Wy < 1/[N\/Ugs(k +1)] and Wy;1 < 1/[N (sk)?] that we are interested in here, this distribution is
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- 241 () ~1/4gL/2y-5/4
PWesr) = [ AW p(Wp (W Wi) = —— 2N~ 140 7w, 3 (G4

Note that the distribution in the (k 4 1)-class decays less rapidly than in the k-class. In particular, the probability that the weight
in the (k + 1)-class exceeds 1/[NUgs(k + 2)] (and leads to the deterministic propagation of individuals in classes with k + 2 or
more deleterious mutations) is

21/4r 1 1/4
N — (4) o (G5)
T NUgs(k+2)] T 0w A ’

which is larger than the probability that the weight in the k-class exceeds the corresponding value by a large factor ~ A4,
consistent with our intuition that the weight in the class below the founding class is guaranteed to exceed the weight in the
founding class if NUZW; > 1.

In general, we can calculate the distribution of the weight in class k + A by iterating this procedure. Specifically, the
distribution of the weight in class Wy, conditioned on the weight in class k + 1 being equal to W, also follows Equation
G3 (but with k changed to k + 1). By repeating the above procedure A times, we find that the distribution of lifetime weights in
class k + A is

1 A FF(l —2‘1)} (NUC%) 276+

p(Wk+A):mW1+2 (A+1) H T

k+A j=1 2 G6)
[T8,T F (1-27) e
4, 2 ] <NU§W;<+A> 1
(2y/m)*! 2 Wicia

Appendix H: The Site Frequency Spectrum in the Presence of Weak Mutation (Uy<s)

In the following two appendices, we use the results obtained in previous sections to calculate the site frequency spectrum of
the labeled lineage in the limits that f <« 1 and 1 — f <« 1, by evaluating and inverting the generating function Hy(z, t) for the
total frequency of the labeled lineage.

We have seen in Appendix D that trajectories of mutations in the presence of weak background selection (U; < s) are, to
leading order in the small parameter A, the same as those of isolated loci with fitness —ks. In Appendix F, we have shown that
the time-integrated distribution of allele frequencies of a single, isolated locus of fitness —ks is

p(f.f>0) = ; e K, (H1)

which agrees with classical results by Ewens (1963) and Sawyer and Hartl (1992). Thus, the contribution to the site frequency
spectrum of neutral mutations arising in class k is

e 2K L o). (H2)

p(f,k) = NUup(f.f > 0) = %nhk -

Summing the contributions of all the classes, we find that the full neutral site frequency spectrum is

=307k = = 0. (H3)

Thessite frequency spectrum of deleterious mutations follows from the same argument, since the trajectory of a deleterious mutation
arising on the background of an individual with k deleterious mutations is the same as the frequency trajectory of a neutral
mutation arising in an individual with k 4+ 1 deleterious mutations. Thus, the site frequency spectrum of deleterious mutations is
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- 2NU _
pdel ZNUdhk 2Ns(k+1)f f d 2Nsf + O( ) (H4)

which once again agrees to leading order with the site frequency spectrum that we would have obtained assuming that all
selected sites at the locus were isolated.

Appendix I: The Site Frequency Spectrum in the Presence of Strong Mutation (Uy>>>s)

In this appendix, we calculate the site frequency spectrum of the labeled lineage in the limits that f << 1,1 —f < 1, and that
A > 1 by evaluating and inverting the generating function Hy(z,t) for the total frequency of the labeled lineage.

In the presence of strong mutation, we have seen that trajectories of mutations are dominated by drift at the lowest
frequencies, where the generating function reduces to the generating function of a neutral mutation and is simply equal to the
k = 0limit of the single locus-generating function in Equation D2. We have already calculated the site frequency spectrum that
results from these trajectories in the previous section. Plugging in these results, we find that

2 2NU, 1
f) = ;NUnhk Tty for f < - (11)

The site frequency spectrum at these frequencies is dominated by the contributions of lineages arising in average backgrounds,
with |k —A| < VA = o/s. By the same argument, the frequency spectrum of deleterious mutations at the same frequencies is
also

2NUq

1
Pdel(f ZNUdhk ~ f for f <« No- (I2)

At larger frequencies, the site frequency spectrum becomes dominated by lineages arising in unusually fit backgrounds, with
k — X < — V/A. Their trajectories are instead described by Equation E10. We have seen that the integral in the exponent of
Equation E10 has a different dependence on t for t < t((ik)7 t~ tgo, andt > tfik), which we have labeled the “spreading,” “peak,”
and “extinction” phases of the trajectory. In evaluating the site frequency spectrum p(f), it will be convenient to calculate the
contributions from each of these phases separately. We denote these contributions as pspread (f), Ppeak (f), and pex:(f), and the full

site frequency spectrum is obtained by summing:

p(f) = Pspread (f) +ppeak(f) + Pext(f)- (13)

” .

We evaluate ppeax(f) and pex(f) in the next two subsections of this appendix. We then show in the last subsection of this
appendix that the contribution from pyyread(f) is subdominant to that of pex:(f).

Contribution from the Peaks of Trajectories

In Large Lineages Arising on Unusually Fit Backgrounds in Appendix E, we have shown that, in the peak phase of the trajectory,
the total allele frequency is

ft) = Udgk AWagkern (t - t(k +1)>7 14)

where k. is the class with the smallest number of mutations for which f > g ./[2Ns(k. + 1)] or equivalently, the class with the
smallest number of mutations in which the weight exceeds 1/[NUgs(k. + 1)].

We have seen above in Appendix G that, to achieve such a large weight in class k., a mutation could have arisen in class k = k.
and traced an unusually large trajectory, or arisen in class k. — 1 and traced a smaller trajectory in that class, which led to the
creation of a large number of deleterious descendants in class k., at least one of which had weight exceeding 1/[NUgs(k. + 1)].
Alternatively, it could have also arisen in class k. — 2 and traced an even smaller trajectory in that class that led to a larger
weight in class k. — 1, and a sufficiently large weight in class k. for genetic drift to be negligible in classes i > k. + 1. In other
words, in the range of frequencies
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1 N
1 <f K 15)

1
2Ns(ke + 1) 2NskSk

we see the peaks of trajectories originating in classes k < k., as long their weight in class k. is large enough that genetic drift in
classes of lower fitness can be ignored. All of these peaks contribute to the site frequency spectrum and, by integrating Equation
14 in time, we find that

ke(f)
Ppeak(f) = ZNUnhk p [f = Ug8k +1 W+ |arose in k}
k=
’ (16)
ke(f) 1 f
= NURhy - —— -p [W ketl) = ’arose in k},
T Uggria AT Uggron

where the last term represents the time-integrated distribution of weights in a window of width At*et1) in class k. of a lineage
that arose in class k. This distribution is given by Equation F28 for k. = 0. Otherwise, when k. > 1, the time-integrated
distribution in Equation 16 is equal to the product of the window width, At*:*1) and the distribution of lifetime weights in
the founding class, given in Equation G6.

Since we have previously calculated all of these quantities, we can now turn to evaluating the sum in Equation 16. When
f > g,/(2Ns), then k. = 0, and the sum in Equation I6 has only one term (k = 0). By substituting in the expression for the time-
integrated distribution of weights in Equation F28, we find that

2NUpe™ .
Tn, lff > W
Ppeak(f) = : a7
pe NU, [2¢~*7%/2 1o !
f3/2 |meNs| = NUze™ Nse™*

At lower frequencies (1/(Ny/Ugs ) < f < &;/(2Ns)), lineages originating in multiple different fitness classes will be able to
contribute to the site frequency spectrum. At these frequencies,

At(km( =z ’k+A k). )

ppeak ZNUnhk k 1
+

Plugging in the expression for p(Wy, ) from Equation G6, we find
ke—k+1)

NUA T3 -27)] vy >
ppeak(f) Jaf \/k—(TWZ k (2v7) ki1 (gkc+1> . (19)

Because A >> 1, this sum is dominated by the k = k. term, since h; decays much more rapidly with decreasing k than any of the
other terms increase. To evaluate the f-dependence of this term for f < g;/(2Ns) and k.(f) > 1, we repeat the same procedure
as in Large Lineages Arising on Unusually Fit Backgrounds in Appendix E to obtain an explicit form for k.(f). Briefly, to solve the
self-consistency condition for k.(f), g +1/[2Ns(k. + 1)] < f < &k /(2Nsk.), we setf = g; .1 - C(f)/[2Ns(k. + 1)] for some C(f)
that satisfies 1 < C(f) < A and find that to leading order

ke(f) + 1 ~ log, <]ﬁ> when k.(f) > 1. (110)

Plugging in, we obtain that the leading-order term in the distribution of peak sizes is

NU,C(f)}/? 1

1
, forl — | > 1.
ppeak(f) 2\/~7T\/—st2 log)\( - f) or log, (Nse)‘f)
Nse=A

a1n
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The term C(f) depends on f weaker than logarithmically and on frequency scales on which peax (f) changes substantially it will
be approximately constant, C(f) ~ C.

Because the crossover between the f~3/2 scaling of ppeak(f), which occurs at high frequencies g, /(2Ns) < f < 1/(Nse )
[where k.(f) + 1 = 1], and the f2log[1 /(Nse"‘f)}fl/ % behavior, which is valid at substantially lower frequencies [where
k.(f) > 11, is in principle broad, this constant factor C is difficult to determine: asymptotic matching does not typically work
well in the presence of such broad transitions and crude “patching” methods do not, in general, offer satisfactory results (Hinch
1991). Thus, Equation I11 is undetermined up to the constant factor C'/2, which is between 1 and v/A. For our purposes here,
this level of precision is sufficient—(1) precision in the form of the spectrum was, after all, expected in the Laplace-like
approximation that we used in Large Lineages Arising on Unusually Fit Backgrounds in Appendix E to calculate the stochastic
integral over the trajectory of the feeding class. Thus, by absorbing the 2+/27 term into this constant factor and relabeling C1/2
as C, we find that the peak contribution to the site frequency spectrum is

NU, C 1
~ , forlog, | ——— | > 1, 112
Ppeak ) J/ANsf2 og, ( . ) 5 (Nse"‘f) (I12)
Nse f

with C in the range 1 < C < VA.

Contribution from the Extinction Stage of Trajectories

Once the trajectory is beyond its peak, the total allele frequency decays as

F(€) = feaxe ™ Kelh T Ut tenc), 113)

where f.ac denotes the maximal frequency that the trajectory reaches and Equation I13 is valid for t > t((ik). Note that this stage

only exists for frequencies f < 1/(Nse™*). At higher frequencies, f > 1/(Nse ), the total allele frequency simply mirrors
smoothed fluctuations in the founding class. Equation 113 can be straightforwardly integrated in time to obtain the contribu-
tion of this trajectory to the site frequency spectrum

1 if foeak > f
. /2N 1 10 k )
D (Flfpear) = { lke(F) + 1" 7P (114)
0, otherwise.
Averaging Equation 114 over all possible trajectories, we find that
1 1
Pext(f) = NUn7 o———=7-Prob(fpeak > D), (115)

f k() +1s

where D > 1 is a constant that we have introduced to correctly account for the fact that the peak phase occurs at frequencies
that are at least O(1) higher than the frequencies in the extinction stage.

For peak frequencies fpeax < 1/(Nse *), we have already calculated the overall time-integrated distribution of peak sizes of
lineages arising in classes of all fitness and we can use this result to calculate the total probability that a trajectory passes
through f in its extinction stage,

 JopPoea ()" €

Prob >Df) = = . 116
(fpeak f) NUnAt(kf+1) \/XNfD ( )
This means that the contribution to the site frequency spectrum from the extinction phase of trajectories is equal to
NU, C NU, C
Dext (f ) " n (I17)

= < .
DV/ANsf2 log, (ﬁﬂf) VANsf2 log, (zﬁ)
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Therefore, pex(f) is strictly smaller than ppeax (f) by a factor [log, [1/ (Nse=*f)]]"/*, which is large when f < 1/(Nse™*). Thus,
this phase of the trajectory has a small effect on the low-frequency end of the spectrum.

However, in the high-frequency end of the spectrum, when 1 —f < 1/(Nse *), the only contribution comes from this
extinction phase of the wild type, which starts once the mutant approaches the frequency f > 1 — 1/(Ns) in the 0-class. These
events happen at rate equal to NU,e ™ - 1/(Ne™*) = U, and each contributes ~ 1/{s[k.(1 — f) + 1](1 — f)} to the site frequency
spectrum. Multiplying these two terms, we find that the site frequency spectrum is proportional to

Pdec(f) = % L 1

(1 —f)log, []W}

1 1
if —<1- — I1
, i< f<<ste—A (I118)

Contribution from the Spreading Stage of Trajectories

At frequencies f < 1/(Nse ), the site frequency spectrum also receives contributions from the spreading stage of trajectories,
in which the allele frequency rapidly increases as the allele spreads through the fitness distribution. In this stage, the rate at
which the frequency increases is strictly larger than what it would be if we ignored any contributions from the founding class
after the mutation exceeds frequency 1/(NUy) [i.e., assuming f(t) = e ®tA0=¢) /(NU,)]:

——= = fs(Ae " — k). (119)

Far below the peak of the trajectory, where Ae ™ >> k, the contribution from this stage of a single trajectory to the frequency
spectrum that passes through f is thus simply bounded by

1 1 1 1 1
Psingle(f) = 77 ) S5 ™ = < : (120)
g <|‘2{|> SR sflog (k) sloghog, () kel 1

Since the number of trajectories that pass through frequency f in the spreading phase is the same number that pass through fin
the extinction phase, the contribution from the spreading phase to the site frequency is strictly smaller than that of the
extinction phase throughout the region where both contributions exist, f < 1/(Nse™).

Constructing a Single Curve from Piecewise Asymptotic Functions

In the previous sections of this appendix, we have shown that the site frequency spectrum is given by

2NU, 1
f =
7 or f< No’
NU, 1 et
f - c
- , or No <L f < Ne
Nsf2 | Al —
sf2, | Alog), <N5f>
~ ) 2NU e e et
p(f) ~  225n¢ for & 1-& (121)
o or < f< Ne
NU, 1 et
f — K1 —
1 1 2 , for No < f< Ns
N —
S( f) 08\ Ns(l _f)
2NU, 1
f 1- —
7 or f< No

As we have explained, line 2 of Equation 121 is valid up to a constant factor C; (1) that is bounded by 1 < C1(A) < v/A. These
piecewise functions represent the leading-order behaviors far away from the transitions between the different regimes, which
occur at f = 1/(No), 1/(Nse ), 1—1/(Nse™*), and 1 — 1/(No). For practical purposes, it is often convenient to construct a
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single theoretical curve that joins these curves at these transition points, while maintaining the correct form far away from the
transition points. This procedure is not intended to extend the validity of the results outside of the regimes where asymptotic
forms are available and is certainly not guaranteed to produce the correct functional forms at the transitions. However, it often
yields satisfactory results, especially when the transitions are narrow in practice and when the two asymptotic forms are
expected to lie on opposite sides of the behavior at the transition (i.e., one is expected to overestimate, and the other to
underestimate). In the present case, the latter condition is true at the transitions at 1/(Nse ) and 1 — 1/(Nse ).

Here, we have used a sigmoid function,

1
8f) =1 ey N (122)
to join the functional forms at the transitions, which has the convenient property
1

1, forf<«<——

) N _A
g(f) ~ e (123)

07 forf > W

In addition to this, because the forms are valid when 1/(No) < f < 1/(Nse™*) and 1/(No) < 1—f < 1/(Nse™*) have
logarithmic divergences near the transitions (i.e., for f,1 —f = 1/(Nse™*)), we also add small additive factors to these loga-
rithms to avoid nonsensical results. Specifically, to compare our theoretical predictions with simulations, we plot

pjoined(f) = 2NUn \/ [Cl g((f) ) } =+ [1 _g(f)][l ;g(l _f)}eﬂ\
Nsf2, A - |log( x5y ) + Ca
- (124)
C3g(1—f) 1 1
+ , for —<f<l——
e e B S

C1, Cy, C3, and C4 were chosen to ensure visual smoothness of the curve. Note that the constant Cs is only necessary to ensure
visual smoothness of the curve at limited A (adding C, to the denominator to control the logarithmic divergence causes the
curve to be shifted downward, and Cs helps to correct for this). We tabulate the values used in Table I1.

TABLE 11 Values of small constants defined in Eq. (124) that were used in this paper.

A (& G G Cy
=3 1.5 0.5 1.4 1
=2 1.0 0.5 1.4 1

In principle, we could also use a similar procedure to join the asymptotic forms at the transitions at 1/(No) and 1 — 1/(No).
However, since both asymptotic forms overestimate the site frequency spectrum near these transitions, this works no better
than simply setting

2NU, 1

forf=_——

7 or f No

P(f) = < Pioined(f) 1‘ori<f<1—L (I125)
joine > No No
2N 1
Un forl—-—=f.
f No
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This is the choice we have made when calculating theoretical predictions for site frequency spectra of smaller samples, which
were necessary for comparisons with the structured coalescent.

Appendix J: Distributions of Effect Sizes

When the effects of deleterious mutations are not all identical but instead have a distribution with finite width, p(s), the
deterministic dynamics that arise through the combined action of mutation and selection will be modified. In this appendix, we
consider these deterministic dynamics. For concreteness, we assume that the fitness effects of new mutations come from a
gamma distribution with mean 5 and shape parameter «,

) = g " D)

and that these deleterious mutations occur at an overall rate Uj.

Under the assumption that all mutations have strong enough effects on fitness that the fitness of the population at the locus
does not experience Muller’s ratchet on timescales of coalescence, the mean fitness of an allele at the locus will be equal to — Uy,
with the most-fit individuals being those with no deleterious mutations and an absolute fitness equal to zero. Consider now the
deterministic dynamics of a lineage founded in an individual at absolute fitness —x. The fitness of the lineage founded by this
lineage will change as it accumulates new deleterious mutations according to

x(t) = —x+ Uy /-w dsp(s)e L. (J2)
0

Evaluating this integral, we find

x(t) = —x+ Ud(l +Sa—t) . (J3)

When « is sufficiently large, corresponding to a sufficiently narrow fitness distribution, the resulting trajectory is well approx-
imated by assuming that all fitness effects are the same and equal to the average fitness s [or, more precisely, the harmonic
mean of p(s),5 - (¢« — 1)/a ~ 5]. To calculate how large « needs to be for this approximation to be valid, we can calculate the
deterministic expectation for the average number of individuals in the lineage at time t after founding. This quantity is equal to

g(x,t) = exp {/O.tx(t’)dt’} = exp{—xt +§(Olf+“1) {1 ~(1+ gt/a)*“*l)} } J4)

We see that this differs from the single-s expression only in the last term, proportional to (1 + st/ a)f("‘*l). At sufficiently short

times, t < /s, this is well approximated by e~*t®~1)/®_On sufficiently long timescales, this will not be the case. However,
because the overall magnitude of this term becomes negligible at times long after the peak of g(x, t), t > t4, we only need it to
remain well approximated by an exponential on timescales t < t4, which requires that « >> log(Uy/5) > 1. When this is the
case, g(x, t) is, up to perturbative corrections, given by

U, _
g(x,t) ~ exp {fxt +ﬁi)§ (1 —e a*1t>] : (J5)

and the effects of selection are well described by a single-s model on all timescales.
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