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Abstract. Recent advances in the mathematical analysis of models describing
evolutionary dynamics are rapidly increasing our ability to make precise
quantitative predictions. These advances have created a growing need for
corresponding improvements in our ability to observe evolutionary dynamics
in laboratory evolution experiments. High-throughput experimental methods
are particularly crucial, in order to maintain many replicate populations and
measure statistical differences in evolutionary outcomes at both phenotypic and
genomic levels. In this paper, I describe recent technical developments which
have greatly increased the throughput of laboratory evolution experiments, and
outline a few promising directions for further improvements. I then highlight a
few ways in which these new experimental methods can help to answer simple
statistical questions about evolutionary dynamics, and potentially guide future
theoretical work.
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1. Introduction

Experimental evolution is not a new idea. Plant and animal breeders have practiced it,
sometimes inadvertently, for thousands of years, and the first explicit attempts to evolve
laboratory populations to test evolutionary theory date to contemporaries of Darwin [1].
Since then, many others have carried out evolution experiments in organisms such as
flies [2,3], beetles [4], microbes [5,6], and viruses [7] (see [8] for a collection of recent
reviews). The past two decades have seen an explosive growth in this field, driven primarily
by Lenski’s long-term evolution experiments in E. coli, along with the subsequent work
of many of his students and collaborators [5, 9].

Because of the physical demands of the experiments, almost all of these laboratory
evolution studies have been limited to a small number of replicate populations (e.g. 12
independent F. coli lines in Lenski’s long-term experiments). This limit to throughput
has colored the types of question the field has addressed. Many experiments are intended
to be primarily observational and exploratory: the experimenter challenges a population
with some specific selective challenge and watches what happens. In other cases the
primary aim is to understand the biological mechanisms underlying adaptation to a
specific challenge, such as the response of yeast to nutrient starvation [10], or the
evolution of a genetic switch [11]. 1In still other cases, the main aim is to watch
evolutionary dynamics. Experiments in this latter category sometimes attempt to test
simple qualitative predictions of evolutionary or ecological theory, such as whether sex
increases the rate of adaptation [12, 13], whether increases in mutation rates can be favored
in adapting populations [14], or whether certain types of population structure promote
the evolution of antibiotic resistance [15].

Despite their often limited statistical power, these existing approaches to experimental
evolution continue to be productive. Yet evolution is inherently a random process, so
any theoretical prediction or experimental result is inevitably a statistical statement.
As recent advances in the analysis of mathematical models of evolutionary dynamics
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make ever more precise and quantitative statistical predictions, parallel improvements
in experimental evolution have become increasingly important. This calls for high-
throughput experimental methods to maintain and observe many independently evolving
replicate populations, in order to measure the relative probabilities of different outcomes.
Recent technical advances in experimental evolution have made it possible to do exactly
this, by dramatically increasing the throughput at which we are able to maintain evolving
lines and assay evolutionary outcomes. This has opened new directions for productive
interactions between experiments and theory.

In this paper, I describe some of these new developments, and highlight a few
important open questions and challenges. I begin in section 2 by describing technical
advances which have made it possible to evolve thousands of laboratory populations in
parallel. T then describe a few simple statistical questions in evolutionary dynamics that
these new high-throughput methods can help us to address.

2. High-throughput methods for experimental evolution in microbes

Recent efforts to increase the throughput of laboratory evolution experiments have focused
primarily on two areas: improvements to strain maintenance techniques, and improved
methods to assay changes in evolved lines. Here, I focus on methods relevant for microbial
populations such as bacteria and yeast. Current work is also making rapid progress along
similar lines in improving the throughput of viral evolution experiments (see e.g. [16]),
but I do not discuss this work specifically here.

2.1. High-throughput strain maintenance

Experimental evolution of microbial populations is largely an exercise in liquid handling.
Other approaches do exist, such as evolution on agar plates [17], but most experiments
are carried out in liquid media. Much work has made use of chemostats (figure 1(A)),
in which new medium is continuously dripped into a culture vessel while older medium
is drained out [18]. These chemostats require regular observation and maintenance. A
single researcher can typically maintain at most a few dozen at a time, and avoiding
contamination for more than a few months is nearly impossible.

A somewhat higher-throughput alternative to chemostats is batch culture experiments
(figure 1(B)). In batch culture, a population is diluted into a fixed volume of new sterile
medium on a regular basis, typically at least daily. This is very straightforward, but
in practice it is hard to maintain many populations simultaneously by hand over long
periods of time. Repeating the same procedure every day (or in some cases several
times a day) over periods of months or years makes it easy to lose concentration and
make mistakes. Experimental evolution is particularly sensitive to cross-contamination
between independent replicates—even a single contaminating cell can be disastrous, and
these events can easily go undetected for months. Personally, I have found it impossible to
maintain by hand more than about fifty budding yeast lines simultaneously for extended
periods, or more than about five hundred lines for a few days.

In the past few years, experiments have begun to achieve much higher throughput
in batch culture by using liquid handling robots to transfer cultures. This is an obvious
improvement (these robots have been widely available for decades), but special care must
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Figure 1. Schematic illustration of microbial evolution experiments in liquid
culture. (A) A chemostat. New medium is slowly dripped into a stirred culture
vessel, and old medium is slowly removed. The population is maintained in a
steady state. Samples of the outflow can be frozen periodically for future analysis.
(B) Batch culture. On a regular schedule, a small aliquot of cells is removed from
a saturated culture and inoculated into new sterile medium. This new culture
will become saturated with cells and the process will be repeated. An aliquot is
occasionally removed and frozen for future analysis.
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be taken to avoid contamination and cross-contamination of lines. The details necessary
to achieve this depend on the organism and the type of robot being used, but over the
past decade these difficulties have been fully resolved in a number of systems. As a result,
experimental evolution has embraced the liquid handling robot. It is now fairly common
to evolve lines in 96- or 384-well microplates, using a robot (often a Biomek or Tecan) to
dilute 96 populations at a time (see e.g. [19]-]22]).

Some experimentalists have attempted to fully automate the entire process, using
robotic arms to move microplates between incubators, plate readers, and liquid handling
systems [23]. In principle this makes it possible to run an experiment for months without
any manual input, though in practice this is difficult to achieve. Others use the robots
simply for the liquid handling, and move the microplates around by hand. This latter
approach allows the highest possible throughput to date: a single researcher can maintain
of the order of five thousand lines in parallel indefinitely [20].

To achieve still higher replication, alternative approaches will be required. Recent
work has begun to exploit the potential of micro- and milli-fluidic devices to generate
millions of replicate populations, each maintained in a single small bubble of medium
surrounded by oil [24]. These bubbles can be rapidly created in sizes ranging from
picoliters to hundreds of nanoliters, depending on the device, and can be merged and split
to ‘dilute’ each population, analogously to batch culture experiments [25,26]. Numerous
technical challenges remain to be fully resolved, but this approach is a promising direction
for increasing throughput by several more orders of magnitude. Microfluidic devices which
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operate as hundreds or thousands of miniature chemostats on a chip have also been
explored in recent years, but these have not yet been exploited for long-term evolution.

2.2. High-throughput phenotypic analysis

Maintaining thousands of replicate populations is pointless unless we can also assay the
changes in the evolved lines that result. We can in principle draw useful conclusions
from observations of any phenotypic characteristic we choose to measure. There is a wide
range of possibilities—for example, Levy and Siegal recently introduced a high-throughput
screen for several hundred morphological phenotypes in yeast [27]. Others have focused
primarily on quantities expected to be related to fitness, such as growth rate or yield [28].

As the quantity that selection acts on, fitness itself is a special phenotype, and
extensive effort has been devoted to measuring it as quickly and accurately as possible.
Although there is often controversy about precisely what fitness means (see e.g. [29]),
within the context of simple batch culture or chemostat evolution experiments it has
a straightforward operational definition: fitness measures the speed with which a given
genotype tends to increase or decrease in frequency in competition with other genotypes.
Nontransitive or frequency-dependent effects sometimes complicate the picture, but while
these effects have been found in a number of specific systems (e.g. [30]-[36]), they are
generally the exception rather than the rule, at least to the limits of current experimental
resolution.

Since fitness in this context is defined in terms of the outcomes of competition, a
natural way to measure it is to allow different strains to compete and measure the change
in their ratio. This is typically achieved by labeling a ‘reference’ strain with a drug
resistance or fluorescent marker. The reference strain is then mixed with an evolved line,
and the ratio of the two is measured. The lines are then maintained in competition using
the same protocol as during the experimental evolution, and after a short period the
ratio of the two strains is measured again. The rate of change in the ratio of the two
strains provides a measurement of competitive fitness. This procedure is illustrated in
figure 2. This process is repeated for each evolved strain, always in competition with the
same reference. Assuming that nontransitive interactions are negligible, this provides an
estimate of all relative fitnesses.

This pairwise competitive fitness assay has two major bottlenecks: the need to
measure the ratio of evolved to reference strain, and the need to evolve the strains in
competition. This latter evolution can be carried out using the same high-throughput
methods as described above. Since this is only carried out for a short period, it is
often possible to achieve of the order of tenfold higher replication than the experimental
evolution itself, so multiple replicate measurements or measurements of fitness at several
evolutionary timepoints can all be made in parallel. Measurement of the ratio of
strains is more difficult to carry out quickly and accurately. Recent experiments have
labeled the reference population using a fluorescent protein, and counted the ratio of
fluorescent reference to non-fluorescent evolved strains using commercially available 384-
well systems designed for fluorescence activated cell sorters (FACS) [20,21]. Using these
FACS methods, it is possible to count of the order of 10* cells per population in 384
populations in less than 2 h. This is a dramatic improvement over what is possible with
earlier methods based on drug resistance markers.
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Figure 2. Schematic of a competitive fitness assay. The evolved strain to be
assayed is mixed with a labeled reference strain, and the ratio of the two is
measured. The strains are allowed to compete for a short period in the same
environment in which the evolution was carried out, and the ratio is measured
again. The fitness of the evolved strain relative to the reference is then determined
from the rate of change in the ratio.

There are numerous potential sources of error in these competitive fitness assays.
First, the ratios of reference to evolved cells will not be perfectly accurate, both due to
stochastic counting error and due to systematic problems associated with FACS (e.g. dead
cells, sticky cells, bubbles, and between-well carry-over). Second, the estimate of the rate
of change in the ratios is also sensitive to errors in our estimates of the time in generations
of the assay. Third, new mutations and selection on existing variation during the assay
will affect our estimate of fitness. Finally, frequency dependence, density dependence, and
nontransitive fitness interactions can all confound our measurements.

There is of course a tradeoff between accuracy and throughput. Recently Gallet et
al [37] conducted a detailed analysis of the various sources of error in these competitive
fitness measurements, and showed that it is possible to assay a few bacterial populations
simultaneously with errors in absolute fitness of less than 1073, Using a somewhat
less careful but higher-throughput approach, we have recently shown that a single
experimenter can carry out of order five thousand replicate competitive fitness assays
in one week with errors in absolute fitness of the order of 0.005 [20]. Since even tiny
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differences in fitness can have dramatic evolutionary effects, continuing improvements in
the throughput and accuracy of these measurements will be an important area of research
for some time to come.

Throughput is achieved in pairwise fitness assays by carrying out many such assays
in parallel. An alternative approach is to mix together a large number of strains
simultaneously in a single competition. To measure the changes in the ratios of these
strains, each must have a different marker, typically achieved using DNA barcodes. The
frequencies of these barcodes can then be estimated using hybridization to a microarray
designed for the purpose, or more recently by deep sequencing of the barcode region. This
approach has been used for example to simultaneously assay the fitness of all ~5000 strains
in the yeast deletion collection in a variety of different environmental conditions [38]-
[41]. Frequency measurements and hence estimates of fitness using these methods are less
accurate (and also more time consuming and expensive) than the FACS-based fluorescence
measurements in pairwise assays [42]. However, this is offset by the ability to measure the
fitness of many strains simultaneously, and improvements in sequencing technology are
rapidly reducing both the costs and the errors associated with this approach. It therefore
seems likely that this type of measurement will become a new standard within the next
few years.

2.3. High-throughput views of genetic changes

Recent years have also seen rapid advances in our ability to probe the evolutionary
dynamics of the individual mutations underlying adaptation. A common approach has
been to track changes in the frequencies of neutral markers—either those that arise
naturally during the course of evolution [43,44] or markers seeded into populations at the
start of an experiment [45,46]. From changes in the frequencies of these neutral markers
we can infer the dynamics of the individual mutations which drive these marker shifts,
though this inference can be somewhat complicated [47, 48]. We have recently introduced a
related system in which a specific class of adaptive mutations alters a fluorescent marker,
allowing the frequency of these mutations to be tracked as they arise naturally during
evolution (figure 3) [21]. All of these ‘marker-divergence’ experiments act as a poor-man’s
sequencing. They provide an incomplete and low-resolution view of the dynamics, but to
make up for this the markers are designed to be easy to measure in thousands of parallel
lines, allowing us to draw statistical conclusions from the results.

Of course, the declining cost of sequencing is rapidly opening up new possibilities,
and numerous studies have begun to use full genome sequencing to track genetic changes
through time in evolving populations [10,46,49,50]. However, costs remain a major
obstacle, and this will be the case for the foreseeable future. A single lane of Illumina
HiSeq can now generate of the order of 30 Gbp of sequence data for less than $2000
(corresponding to about 3000x coverage of a yeast genome). This can be split up
using multiplexing however the experimenter desires: to deeply sequence a single entire
population, to more shallowly sequence several multiplexed populations, or to sequence
many individual clones. However, each additional multiplexed clone or population
incurs substantial time and expense in library preparation and barcoding. Further,
sequencing errors are a serious problem, requiring significant coverage for sequencing
of individual clones and limiting our ability to detect low-frequency mutations using
population sequencing even at very high depth.
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Figure 3. Examples of marker dynamics in a system where a spontaneously
occurring beneficial mutation creates a measurable fluorescent marker. The
top row illustrates a hypothetical scenario that could produce each of the four
observed types of marker dynamic. Below each illustration are five representative
examples of each dynamic. For each experimental population, the frequency of
sterile mutants is shown as a function of time. Note the logarithmic y-axis. (A)
The simplest case is a selective sweep. (B) More commonly, marked beneficial
mutations are outcompeted by more fit lineages, a process known as clonal
interference. (C) In some cases we observed the reemergence of marked mutants
after clonal interference. This could occur either by a second marked mutation (as
shown in the illustration at the top) or by an additional beneficial mutation arising
in the original marked lineage. (D) Long-term maintenance of marked mutations
at a given frequency could indicate the action of frequency-dependent selection,
where the difference in fitness between the marked and unmarked subpopulations
is a function of the frequency of the subpopulations. The figure and parts of the
caption are reproduced from [21].

Methods for handling these problems are developing extremely rapidly, but at present
it is difficult to sequence more than several hundred yeast populations in a single study
at sufficient depth to detect mutations at frequencies above about 5-10%. It is even more
challenging to detect mutations at frequencies as low as 1%. The situation in bacterial
populations is only slightly better. Alternatively, a single study might sequence as many
as a few hundred individual yeast or bacterial clones [51]. While methods are quickly
improving, for the foreseeable future we are unlikely to be able to sequence evolving lines
through experimental timecourses at anything approaching the throughput with which
we are able to carry out the evolution and assay changes in fitness.
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3. Simple statistical questions in experimental evolution

The high-throughput experimental methods described above can be exploited to address
more complex questions about evolutionary dynamics than previously possible, or to
address simple questions with greater resolution. The former approach often involves
problems at the interface between ecology and evolution, such as how spatial structure
and social interactions alter evolutionary dynamics (e.g. [19,22]). Here, I focus primarily
on the latter approach: experiments focused on the detailed quantitative analysis of simple
evolutionary questions. These experiments aim to use high-throughput experimental
evolution to study statistical questions related to recent theoretical advances in a way
that was not previously possible.

Experiments in this spirit are often undertaken with the aim of ‘testing’ theory.
The idea is to reproduce the situation envisioned by theory as closely as possible in
the laboratory, and compare the results with theoretical predictions. This approach is
often unproductive in practice, because any inconsistency between experiments and theory
usually only implies that the experiments were not set up carefully enough to accurately
represent the situation the theory aimed to describe. In other words, the experiments
serve as little more than wet simulations.

To make better use of experiments, it is helpful to separate two basic types of question
one can ask about evolutionary dynamics. The first concerns the raw material on which
evolution acts. That is, what is the spectrum of possible mutational trajectories available
to a population—i.e. the mutations and combinations of mutations that can occur, the
rates at which these mutations arise, and their effects on fitness in present and future
environments? The second concerns the evolutionary process: given a particular spectrum
of possibilities, how does evolution choose among these possibilities, and how does this
choice depend on parameters such as population size and structure?

This second question is the focus of the extensive theoretical work on evolutionary
dynamics that is the subject of many other articles in this special issue. Yet all of
this theory faces a basic question: which scenarios matter? The relevant spectrum
of possible mutational trajectories could vary dramatically from system to system. It
is possible to imagine a nearly infinite array of situations, without any clear way to
determine which effects are most essential. To address this problem, theory must be
accompanied by parallel efforts to answer the first question: what is the spectrum of
possible mutational trajectories (SPMT) in any given system? This SPMT is a simple
but statistical quantity—we want to determine the rates and relative probabilities of the
distribution of possible mutational trajectories. By studying this fundamentally empirical
question, new high-throughput methods in experimental evolution can help to guide
theoretical work.

Exactly how we should parameterize the SPMT is a major problem in itself, which I
turn to momentarily. Regardless of our choice, however, the details of the SPMT depend
on all of the complicated details of the biology of the organisms in question, and their
interactions with each other and with the environment. There is no guarantee that any
general rules exist. If not, it will be necessary to understand the specific SPMT relevant
to any particular situation before making any predictions about how evolution might act.
This is a daunting task. Fortunately, although the mechanistic details of the SPMT
(e.g. the functional consequences of specific mutations) will likely vary dramatically
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between populations, there is reason to hope that there are general rules governing
certain statistical aspects of the SPMT. This reason is evolution: the set of genotypes
extant in any population is not random, but is the result of a long evolutionary history
which has favored certain sorts of changes throughout the past. Thus genotypes that are
mutationally close to these existing genotypes may have statistical properties that reflect
the general constraints imposed by past evolution. For example, arguments that extant
genotypes will tend to be ‘robust” and ‘evolvable’ (see [52] for a recent review) describe
two specific aspects of this phenomenon.

To study systematically whether there are general rules governing typical
characteristics of the SPMT, we need a sensible and quantitative way to characterize
precisely what this spectrum of possibilities is. A number of different approaches are
common in the literature. One body of work takes a global approach, focusing on the
concept of a general mapping between genotypes and fitnesses, known as the ‘fitness
landscape’ [53]. Other work takes a reductive approach, assuming a specific small set of
possible mutational trajectories and asking how evolution chooses between them [21], [54]—
[56]. Still others rely on some form of biological intuition, ranging from models based on
a detailed understanding of some set of genetic networks [57, 58] to models based on more
abstract intuition about phenotypes, such as Fisher’s geometric model [59]-[61]. Each of
these descriptions has advantages and disadvantages. Since at any given moment evolution
can usually only choose among a small number of closely related genotypes, my preference
is instead usually to describe the SPMT by the statistical properties of the distribution
of fitnesses in the local mutational neighborhood of extant genotypes: the local statistical
structure of the spectrum of possible mutational trajectories. This characterization is
particularly common in the literature on both experimental evolution and population
genetics, since it involves simple measurable quantities such as the mutation rates and
distribution of fitness effects of new mutations. We can think of it more generally as
analogous to a Taylor expansion of the fitness function around a specific point on the
hypercube of all possible genotypes, where the distribution of fitness effects of new
mutations represents the statistics of the linear Taylor coefficients, and higher order
coefficients correspond to more complex epistatic interactions.

Experimental work aimed at measuring aspects of the local statistical structure of the
SPMT has already had important effects in uncovering general rules, and in highlighting
parameter regimes that were originally thought to be of limited importance, but now
appear to be pervasive in microbial evolution. Below, I describe how earlier lower-
throughput experiments were able to uncover a surprising general fact about one of the
very simplest aspects of the SPMT: the beneficial mutation rate. This has since guided
much theoretical work. I then turn to highlighting other aspects of the local statistics
of the SPMT where the higher resolution of more recent experimental methods has the
potential to uncover other important general properties, and guide future theory into new
productive directions.

3.1. Beneficial mutation rates and the importance of genetic variation

Fifteen years ago, adaptation in microbial populations was widely assumed to be limited
by the availability of rare beneficial mutations, and laboratory adaptation experiments
were interpreted in terms of ‘periodic selection’ [43], [62]-[66]. In this picture, adaptation
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was assumed to consist of a sequence of selective sweeps: a new beneficial mutation would
occasionally occur, spread rapidly through the population, and fix; this entire process
would then repeat.

This view of adaptation also dominated theoretical work in both evolutionary
dynamics and population genetics, leading to extensive analysis based on concepts
such as the ‘adaptive walk’ (see [67] for a review). Of course, theorists have long
recognized that in large populations, beneficial mutations might not be rare. Fisher and
Muller first described how this leads to complicated ‘clonal interference’ dynamics where
many different beneficial mutations occur and segregate simultaneously in a population,
interfering with each other’s fixation [59, 68]. These interference effects received attention
in the context of the evolutionary advantage of recombination [69]-[73], and in population
genetics more broadly [74]. However, these effects were not recognized as widely important
throughout microbial adaptation, and much theoretical work focused instead primarily on
the mutation-limited ‘strong selection weak mutation’ regime [67].

This view began to change about fifteen years ago, as Lenski’s group found numerous
signatures of clonal interference in their long-term experiments [75]. The discovery that
mutations which increase mutation rate by one or more orders of magnitude are often
selected for in microbial adaptation experiments also suggested that beneficial mutations
may occur much more frequently than previously believed [76]-[78]. Before long, a number
of further experiments in a variety of different systems confirmed the pervasive importance
of these interference effects in laboratory evolution experiments [12,46], [79]-[83]. These
studies suggested that beneficial mutations with effects greater than about 1% occur at
strikingly high rates, between Uy, = 107 and 1075 per genome per generation, in a range
of bacterial and yeast evolution experiments. These surprisingly high rates were orders
of magnitude higher than previously believed, but have been corroborated by many other
studies [84]-[87].

These experimental observations have spurred broad interest in the theory of clonal
interference, beginning with the work of Gerrish and Lenski [88] and Levine and
collaborators [89,90]. Since then, many authors from the statistical mechanics community
have analyzed how these interference effects determine the rate at which a population
increases in fitness, the distribution of fitness effects of fixed mutations, the probability of
hitchhiking of neutral and deleterious mutations, and other related questions ([91]-[98];
see [99] for a recent review). The interactions between these theoretical developments and
experimental work were recently reviewed in [100].

One of the main qualitative implications of this work is that clonal interference
maintains substantial genetic variation within populations even in the face of selection,
blurring the traditional distinction between adaptation on new mutations and adaptation
on standing genetic variation. This observation continues to spur both theoretical and
experimental effort, particularly focusing on how interference effects lead to a ‘traveling
wave’ of fitness within the population that maintains substantial variance even as it moves
towards higher fitness [81,92,93,97]. We have recently analyzed how this variation in
fitness in turn influences the fate of each individual mutation (whose fates must then
collectively determine the population-wide variation) [101], building on a ‘bubble-surfing’
approach introduced by Neher et al [102]. We have simultaneously begun to use the high-
throughput methods described above to experimentally probe this interaction between
genetic variation and the fate of each new mutation [21].

doi:10.1088/1742-5468 /2013 /01 /P01003 11


http://dx.doi.org/10.1088/1742-5468/2013/01/P01003

Statistical questions in experimental evolution

Recent work in population genetics is now suggesting that these interference
phenomena are important far more broadly than just microbial evolution experiments, and
may be generally important in interpreting patterns of molecular evolution [103]-[106].
These developments have thus far been largely independent of the work described above,
but the two areas are beginning to connect. For example, the interaction between genetic
variation within the population and the fate of each new mutation is at the heart of much
recent work by myself and others that uses structured coalescent approaches to describe
patterns of molecular evolution in the presence of strong interference effects [107]-[111].

3.2. The statistics of epistasis

Work on interference effects was inspired by one general observation about a particularly
simple aspect of the SPMT, that beneficial mutations are remarkably common in a wide
range of adapting microbial populations. To measure the SPMT in more detail, we must
begin to exploit the higher resolution offered by more recent high-throughput methods.
Extensive recent work along these lines has aimed to characterize the most local aspect of
the SPMT, the distribution of fitness effects of new mutations (the ‘DFE’) [44], [112]-[118].
The DFE, along with the corresponding beneficial and deleterious mutation rates, is clearly
crucial to understanding how evolution acts on short timescales [118]-[121]. Theoretical
arguments based on extreme value theory suggest that a general principle should exist: the
DFE for beneficial mutations should be exponential [112]-[114], [122,123]. A number of
experimental tests have largely supported this theoretical expectation, though the results
are not entirely conclusive [44], [115]-[117], [124,125]. Thus at least this aspect of the local
statistical structure of the SPMT does have some general properties which are common to
a broad range of experimental systems. This has influenced a number of recent theoretical
studies (e.g. [96,101, 126]).

Evolution on longer timescales can depend on the next most local aspect of the SPMT,
the epistatic interactions between mutations (i.e. the effects of combinations of mutations
above and beyond the sum of their individual effects, such as when two mutations
are individually deleterious but jointly beneficial). These interactions are fundamental
to the evolution of complex features involving mutations at several loci [127], such as
new receptor-ligand interactions [128,129], compensated antibiotic resistance [130, 131],
multiple mutations required for immune escape [132], or multiple gene knockouts enabling
cancer evolution [133]. To systematically measure the statistics of this slightly less
local aspect of the SPMT requires even higher experimental resolution than needed
to measure the DFE. Nevertheless, recent work has provided some intriguing insights
which suggest that epistasis is pervasive throughout microbial evolution. For example,
a number of studies have measured epistasis between deleterious mutations [134]-[141]
and between single gene deletions in yeast [142]-[145], finding interactions ranging from
generally synergistic to generally antagonistic. Several more recent studies have focused
instead on epistasis between beneficial mutations, which is more directly relevant to
adaptation, finding pervasive strong epistatic interactions between beneficial mutations
fixed during the adaptation of a single gene [56, 128,146, 147]. For example, Dean [146]
described strong epistatic interactions between mutations fixed during natural evolution of
isopropylmalate dehydrogenase, and Weinreich [56] discovered pervasive epistasis among
mutations involved in the evolution of antibiotic resistant E. coli. These studies paint a
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picture of strong ‘sign’ epistasis between mutations in a given gene, where each mutation
is only beneficial in combination with specific others. This has led to the view that
epistasis may substantially slow adaptation, since most potential mutational trajectories
from a wildtype to an adapted multiple mutant are not uniformly favored by natural
selection. Other recent studies have shown a somewhat different pattern of epistasis
between mutations accumulated across the entire genomes of bacteria during experimental
evolution [148]-[150]. In these systems, epistasis between beneficial mutations was also
pervasive, but showed a general ‘diminishing returns’ pattern: all the mutations involved
would confer a large advantage if they occurred before others, but a smaller advantage if
they occurred later. This diminishing returns pattern also suggests that epistasis slows
adaptation.

This work makes it clear that epistasis is strong and common during natural and
experimental evolution. However, even if epistasis is common between specific pairs of
mutations, this does not necessarily imply that it slows (or speeds) adaptation, nor is
it clear how epistasis affects the repeatability of evolution at genotypic and phenotypic
levels. For example, a given mutational change may have strong epistatic interactions
with numerous other mutations, but this merely represents a ‘reshuffling’ of their fitness
consequences, leaving the DFE invariant (figure 4(A)). In this case, epistasis opens up
new avenues for adaptation even while it closes others, leading parallel populations down
different genotypic but similar phenotypic paths, and despite the fact that epistasis seems
to dramatically reduce the accessible evolutionary trajectories, it does not in fact constrain
adaptation. Alternatively, each mutation may have some tendency to change the DFE for
future mutations (figure 4(B)). A few studies have identified specific examples of situations
where particular mutations do in fact affect ‘evolvability’ and hence help or hinder further
adaptation [151]-[154], but it is not clear whether these situations are typical, or unusual
special cases.

To guide future theoretical work into the most important directions, there is a
need for experimental surveys of the overall statistics of epistasis that are relevant for
constraining microbial evolution. Ideally this work will eventually go beyond the recent
studies which have probed epistasis between a small and specific set of mutations or
found particular examples of differences in evolvability to provide a more comprehensive
picture of the overall statistics of epistatic interactions and the degree to which they alter
evolutionary dynamics. However, attempts to provide such a high-resolution survey by
directly measuring large numbers of individual epistatic interactions are still beyond the
reach of even the best experimental methods. Instead, it will be essential to infer key
aspects of the overall statistics of epistasis by combining experimental observations of
evolutionary dynamics with theoretical predictions for how these dynamics depend on the
underlying epistatic interactions.

Since epistasis affects evolutionary dynamics primarily by offering different possible
mutational trajectories to different initial genotypes, experimental studies of the
interactions between genetic variation and epistasis offer an ideal system for this type
of inference. Omne possible approach is to exploit recent experimental studies of the
repeatability of evolution at both genotypic and phenotypic levels between identical
replicate lines [10,51]. However, to infer the statistics of epistasis from this type of
experiment, we must first develop a theoretical understanding of how the observed
degree of variation and repeatability between replicate lines depends on the interplay
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Figure 4. Illustration of how epistasis might alter the statistics of the DFE.
Shown at the left is the distribution of fitness effects of new beneficial mutations,
with mutations at several specific loci highlighted in different colors. At the right
we show a hypothetical way in which the DFE shifts after the gray mutation
occurs. These shifts in the DFE are the local statistical effects of epistasis
that can affect future evolutionary dynamics. (A) A case where strong epistasis
exists between the black and white highlighted mutations, and several previously
beneficial mutations (blue and yellow) become deleterious while other previously
neutral or deleterious mutations (cyan and green) become beneficial. However,
this merely represents a reshufling that does not alter the DFE and hence will
not affect evolutionary dynamics. (B) A case where epistasis alters the DFE.
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between the statistics of epistasis and inherent evolutionary stochasticity. An alternative
approach is to experimentally evolve subdivided populations at a variety of migration
rates [20]. Subdivided populations maintain more genetic diversity, and hence explore
epistatic interactions more thoroughly, at the cost of reducing the rate of fixation of
beneficial mutations. Here too, a better theoretical understanding of how we expect this
tradeoff to depend on the interaction between evolutionary randomness and epistasis will
be necessary before we can use experiments along these lines to infer aspects of the overall
statistics of epistasis. A third approach is to systematically mate individuals within and
between evolved populations (e.g. in budding yeast), and measure the distribution of
fitnesses of the resulting recombinant offspring. As with the other approaches, theoretical
developments will be necessary to properly interpret the resulting data.

3.3. Windows into evolutionary dynamics

In addition to guiding theory by helping us to find important parameter regimes and
general rules, higher-throughput methods in experimental evolution can be inspiring in a
more open-ended way simply by opening new windows into evolutionary dynamics. For
example, we now have the opportunity to watch the frequency dynamics of spontaneously
arising mutations, or to survey similarities and differences in gene expression patterns
between many identically evolved lines. Watching these new aspects of evolutionary
dynamics can inspire theory to tackle new types of questions and goals. My own view
is that this makes it a top priority to continue to push the bounds of replication and
resolution in experimental evolution, even when it is hard to know or plan in advance
what we expect to find.
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