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ABSTRACT

When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are
common, many beneficial mutations will occur before any can fix, so there will be many different mutant
lineages in the population concurrently. In an asexual population, these different mutant lineages
interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in
mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics
of such multiple mutations and the interplay between multiple mutations and interference between
clones. These result in substantial variation in fitness accumulating within a single asexual population.
The amount of variation is determined by a balance between selection, which destroys variation, and beneficial
mutations, which create more. The behavior depends in a subtle way on the population parameters: the
population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential
beneficial mutations. The mutation–selection balance leads to a continually evolving population with a steady-
state fitness variation. This variation increases logarithmically with both population size and mutation rate and
sets the rate at which the population accumulates beneficial mutations, which thus also grows only
logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less
effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of
sex via the Fisher–Muller effect; these are discussed briefly.

THE vast majority of mutations are neutral or dele-
terious. Extensive study of such mutations has ex-

plained the genetic diversity in many populations and
has been useful for inferring population parameters and
histories from data. Yet beneficial mutations, despite
their rarity, are what cause long-term adaptation and
can also dramatically alter the genetic diversity at linked
sites. Unfortunately, our understanding of their dynam-
ics remains poor by comparison.

When beneficial mutations are rare and selection is
strong, positive selection results in a succession of selec-
tive sweeps. A mutation occurs, spreads through the pop-
ulation due to selection, and soon fixes. Some time later,
another such event may occur. This situation is some-
times called the strong-selection weak-mutation regime.
To make its character clear, we refer to it as the successional-
mutations regime: between sweeps, there is a single ‘‘ruling’’
population. In this regime, the effect of positive selection
on patterns of genetic variation is reasonably well un-
derstood. A selective sweep reduces the genetic variation
in regions of the genome linked, over the timescale of the

sweep, to the site at which a beneficial mutation occurs:
other mutations in these regions hitchhike to fixation.

Successional-mutations behavior typically occurs in
small- to moderate-sized populations in which benefi-
cial mutations are sufficiently rare. However, a different
regime occurs in larger populations, in which beneficial
mutations occur frequently. When beneficial mutations
are common enough that many mutant lineages can
be simultaneously present in the population, selective
sweeps will overlap and interfere with one another (i.e.,
different beneficial mutations will grow in the popula-
tion concurrently). If, in addition, selection is strong
enough that it is not dominated by random drift (except
while mutants are very rare), we have a ‘‘strong-selection
strong-mutation’’ regime. For clarity, we refer to this as
the concurrent-mutations regime. The effects of concurrent
mutations in asexual populations are the focus of this
article. As we will see, the concurrent-beneficial-mutations
regime is not an unusual special case: many viral, bac-
terial, and simple eukaryotic populations likely ex-
perience evolution via multiple concurrent mutations.

In populations that contain many different benefi-
cial mutants, there will be substantial variation in fitness
within the population. This variation will be acted on
by selection. But in the absence of new mutations, the
variation will soon disappear. Thus the traditional ap-
proach to evolution of quantitative traits—to assume
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that genetic variation always exists (as for traits not sub-
ject to selection)—fails badly. New mutations are crucially
needed to maintain the variation on which further se-
lection can act. Thus to understand adaptation when
multiple mutations are involved, it is essential to analyze
the interplay between selection and new beneficial muta-
tions, especially how the latter maintains the variation
acted on by the former. Understanding this beneficial
mutation–selection balance and the resulting dynamics is
the primary goal of this article.

Both the successional- and the concurrent-mutations
regimes require that selection dominates drift except
while mutants are very rare. A qualitatively different re-
gime occurs with weakly beneficial mutations: these do
not sweep in the traditional sense because drift domi-
nates their dynamics. This weakly beneficial regime most

readily occurs in small populations, where selective forces
cannot overcome drift, or when considering mutations of
very small effect, such as those that affect synonymous
codon usage (Li 1987; Comeron et al. 1999; Przeworski

et al. 1999; McVean and Charlesworth 2000). In this
article we are interested in beneficial mutations in mod-
erate to large populations, so we focus exclusively on
the strong-selection regimes for which drift is important for
beneficial mutant lineages only while they are a tiny
minority of the population.

The essential difference between the successional-
mutations and concurrent-mutations regimes is pre-
sented in Figure 1, which depicts beneficial mutations in
an asexual population. In a small enough population,
or one whose beneficial mutation rate (Ub) is low, ben-
eficial mutations occur rarely enough that they are well

Figure 1.—For beneficial mutations to be
acquired by a population, they must both arise
and fix. (a) A small asexual population in the
successional-mutations (or strong-selection
weak-mutation) regime. Mutation A arises
early on. Provided it survives drift, it fixes
quickly, before another beneficial mutation
occurs. Some time later, a second mutation
B occurs and fixes. Evolution continues by this
sequential fixation process. (b) A larger pop-
ulation in the concurrent-mutations (strong-
selection strong-mutation) regime. A mutation
A occurs, but before it can fix another muta-
tion B occurs and the two interfere. Here a
second mutation, C, occurs in an individual
that already has the first mutation A and these
two begin fixing together, driving the single
mutants to extinction. These dynamics con-
tinue with further mutations, such as E and
F, occurring in the already-double-mutant
population. The key process is how quickly
mutations arise in individuals that already
have other mutations. This picture has ele-
ments of both clonal interference and multi-
ple mutations, illustrated separately in c and
d. (c) The clonal interference effect in large
populations: a weak-effect beneficial mutation
A occurs and begins to sweep, but is outcom-
peted by a later but more-fit mutation B, which
in turn is outcompeted by mutation C. C fixes
before any larger mutations can occur; the
process can then begin again. Multiple muta-
tions are ignored here. (d) The multiple-
mutation effect: several mutations, A, B, and
C, of identical effect occur and begin to
spread. Mutant lineage B happens to get a sec-
ond beneficial mutation D, which helps it
sweep, outcompeting A and C. Eventually this
lineage gets a third beneficial mutation E. Mu-
tations that occur in less-fit lineages, or those
that do not happen to get additional muta-
tions soon enough (such as BDF), are driven
extinct.
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separated in time and one can sweep before another arises
(Figure 1a). This is the successional-mutations regime, in
which the beneficial mutations all behave independently.
However, in a larger population or at higher Ub, multiple
mutant populations exist concurrently and they are no
longer independent (Figure 1b). Mutations that occur in
different lineages cannot both fix in the absence of
recombination: at least one of them must be ‘‘wasted.’’

In the concurrent-mutations regime, two important
effects occur. The first is when a moderately beneficial
mutation occurs and begins to sweep, only to be out-
competed by a later, more strongly beneficial mutation
that occurs in a wild-type individual. The first mutation is
then wasted, as it is eliminated along with the then-
majority type by the sweep of the stronger mutation. This
effect is referred to as clonal interference; it is illustrated in
Figure 1c. Note that despite earlier broader definitions
we use the term ‘‘clonal interference’’ to refer to only this
first effect, consistent with the focus of recent work on the
subject (Gerrish and Lenski 1998). The second effect is
when multiple mutations occur in the same lineage before
the first beneficial mutation fixes. For example, a second
beneficial mutationcan occur in an individual that already
has one beneficial mutation. The double mutant can then
benefit from the combined effect of the two mutations
and outcompete the single mutant as well as some other
stronger single mutants that arise in the majority pop-
ulation. This process is illustrated in Figure 1d.

The dynamics of evolution in the concurrent-mutations
regime are important to understand. At the very least,
this is essential for forming sensible null expectations
about experimental, observational, and genomic data
from large populations. Knowing how the effects of bene-
ficial mutations depend on mutation rate and popula-
tion size is crucial for making meaningful comparisons
between different populations. Most important, in our
view, is developing an intuition for how large popula-
tions evolve. The simple picture of successive selective
sweeps in the successional-mutations regime is a valu-
able guide to thinking about positive selection. Yet we
have little intuitive guidance when the successional-
mutations approximation does not apply. This is a seri-
ous shortcoming in our understanding of the evolution
of a wide array of populations, including viruses and
most unicellular organisms.

Although it is not as well understood as the succes-
sional-mutations regime, the concurrent-mutations re-
gime has been the subject of substantial interest since
the 1930s. Fisher (1930) and Muller (1932) first noted
the potential importance of interference between ben-
eficial mutations (Muller drew diagrams very similar to
our Figure 1). They proposed what has come to be
known as the Fisher–Muller hypothesis for the advan-
tage of sex: sexual populations can recombine benefi-
cial mutations in competing lineages into the same
individual. This prevents mutational events from being
wasted, as they often are in asexual populations.

Much subsequent work on positive selection in the
concurrent-mutations regime has focused on the im-
plications for the evolution of sex. Crow and Kimura

(1965), Bodmer (1970), and Maynard Smith (1971)
attempted to quantify the Fisher–Muller effect in the
late 1960s and the early 1970s. However, their analysis
was incomplete—it did not fully account for stochastic
behavior, ignored triple and higher mutations, and did
not correctly account for the effects of sex. Contempo-
raneously, Hill and Robertson (1966) looked at this
problem from the perspective of the linkage disequilib-
rium generated by multiple linked beneficial mutations
segregating simultaneously. This has become known as
the Hill–Robertson effect. It is essentially equivalent to
the Fisher–Muller effect (see Felsenstein 1974 for a
detailed discussion). In recent years, Barton (1995),
Otto and Barton (1997, 2001), and Barton and Otto

(2005) have analyzed the Fisher–Muller effect from the
Hill–Robertson perspective. Their work focuses on the
buildup of linkage disequilibrium due to mutations and
selection and the average effect of recombination on the
variance in fitness and the destruction of disequilibrium.
This provides useful insight into the effects of sex, but does
not explain the full evolutionary dynamics or population
genetic structure created by this type of positive selection.

In this article, we step back from the long tradition of
studying the implications of concurrent mutations for
the evolution of sex and focus instead on the basic dy-
namics shown schematically in Figure 1b. We show
how an asexual population in the concurrent-mutations
regime accumulates many beneficial mutations, what
the fitness distribution looks like, how it develops, and
how quickly selected substitutions occur via collective
sweeps. We develop a framework for thinking more gen-
erally about positive selection and its effects that is ap-
plicable to large populations of asexuals or any other case
where linkage between mutations is important.

We do not analyze the questions about sex or patterns
of diversity in this article. However, these questions
should be informed by our results; some can be studied
within the framework we present in this article. For ex-
ample, when recombination is rare, the average effects of
sex may be irrelevant—instead all that matters is whether
or not it creates rare individuals that are much more fit
than the majority of the population. To study this, we
must first understand the full distribution of genetic
diversity within the population. Similarly, before analyz-
ing the patterns of genetic variation exhibited by popu-
lations in which multiple linked beneficial mutations
have occurred—or are occurring—one must understand
the rate of beneficial substitutions and typical interfer-
ence patterns between these within the linked regions.

To understand the concurrent-mutations dynamics in
detail, it is essential to start with a specific model that
focuses on some subset of the important effects. Fea-
tures can then be added after enough understanding
has been gleaned to enable predictions of which effects
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are model specific and which are more general. Positive
selection can involve various complications, including
epistasis (interactions between effects of mutations), con-
ditionally beneficial mutations, frequency-dependent
benefits, and changing environments, among others.
Many different scenarios are possible. At present we have
little understanding of which, if any, of these situations
are biologically ‘‘typical’’ and which ones are unusual.
In this article, we do not attempt to catalog all possible
complications; this is an impossibly broad subject. Instead
we look at the simplest possible situation involving posi-
tive selection of concurrent mutations. We suppose that
a variety of beneficial mutations are available to a popu-
lation and ask how the population acquires them. We
assume these mutations interact in a simple multiplicative
way (additive for the growth rates) with no epistasis, fre-
quency dependence, or changing environment of any
kind. In short, we ask how the population climbs a single
smoothly sloped ‘‘hill’’ in fitness space.

This simple scenario is probably common. Popula-
tions often find themselves in an environment where
they can accumulate quite a few different beneficial mu-
tations that each roughly independently help them
adapt. Even when this simple hill-climbing scenario does
not apply, it is an important null model. Some more
complex forms of positive selection may also prove trac-
table within the framework we describe, while others will
not; these leave open many avenues for future work.

Various other authors have studied the dynamics of
multiple concurrent beneficial mutations under the
simple assumptions outlined above. Gerrish and Lenski

(1998) analyzed clonal interference between mutations
of different strengths; this has since been extended by
various authors (Orr 2000; Gerrish 2001; Johnson

and Barton 2002; Kim and Stephan 2003; Campos and
De Oliveira 2004; Wilke 2004). This work focuses on
the interference between mutations of different strengths
that occur in the same lineage, while neglecting the
competition between mutations that arise in different
lineages—in particular multiple mutants. Yet we show
below that if population parameters are such that clonal
interference is important, the effects of multiple mu-
tants are usually at least of comparable importance.
Thus there is some inconsistency in focusing on clonal
interference alone. Our analysis in this article starts
instead with the other concurrent-mutation effect, mul-
tiple mutants, initially in a model in which clonal inter-
ference is absent. In any real situation, the two effects will
both occur. We thus discuss the interplay between clonal
interference and multiple mutations in a later section.
Kim and Orr (2005) have also recently analyzed a model
that combines some aspects of clonal interference and
multiple mutations.

To focus on the effects of multiple mutants without
clonal interference, two additional simplifying approx-
imations are useful. For most of this article, we study a
model in which each beneficial mutation has the same

effect, s, on fitness (i.e., each step uphill is of the same
size). Furthermore, to focus on the effects of positive
selection, we neglect deleterious mutations in the primary
analysis. Even though neither assumption will typically be
true, these turn out to be reasonable approximations in
many circumstances. Situations in which they are not
appropriate are more complicated scenarios for positive
selection, some of which, especially the effects of a dis-
tribution of fitness increments, we discuss briefly.

Remarkably, even the simplest possible model with
many equal-strength beneficial mutations available is
only partially understood. Kessler et al. (1997) and
Ridgway et al. (1998) analyzed a similar simple model,
but their initial work did not handle random drift
correctly. More recently, they have developed a sophis-
ticated although somewhat unwieldy moment-based
approach (D. Kessler and H. Levine, unpublished
results) from which it is unfortunately hard to un-
derstand the essential aspects of the dynamics. Rouzine

et al. (2003) also studied a model similar in its essential
aspects to our simplest model (although also including
deleterious mutations of the same magnitude). They
were concerned with viral evolution, and their results
are primarily valid for very large mutation rates appro-
priate for many viruses; we focus instead on regimes
primarily applicable to single-celled organisms (and
some viruses). Nevertheless, if worked out more fully
from Rouzine et al.’s analysis, several results can be
obtained that are closely related to ours. But our analysis
involves a less mathematically formal approach—we
believe it is both clearer and a better basis for further
development (some of which is included herein). We
discuss the relationship between our analysis and that of
Rouzine et al. (2003) in more detail below.

The outline of this article is as follows. We begin by
describing in the next section a heuristic approach to
the dynamics. This analysis gets the behavior roughly
correct and illustrates the ideas underlying our approach.
We then describe the simplest model more precisely and
analyze it in the following section. We next discuss tran-
sient behavior before the population has reached its
steady-state fitness distribution and address the effects of
deleterious mutations. In the next section, we make com-
parisons between our analytic results and simulations.
We then relax our assumption that all mutations have
the same effect and discuss the relationship between our
theory and clonal interference analysis. Finally, we sum-
marize our results and discuss future directions.

HEURISTIC ANALYSIS AND INTUITION

In the simplest situation with multiple concurrent
beneficial mutations, there are three important param-
eters: the population size, N, the beneficial mutation
rate per individual per generation, Ub, and the fitness
increase provided by each mutation, s. We refer to the
basic exponential growth rate, r, of a population as its
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fitness (rather than its growth factor per generation
w ¼ er � 1 1 r). That is, we use ‘‘fitness’’ to mean what
is sometimes called log fitness. Thus in the absence of
epistasis, which we generally assume, two mutations of
magnitude s1 and s2 increase fitness by s1 1 s2. We call
the rate of increase, dÆræ/dt, of the average fitness of a
population the speed of evolution and denote it v.

To focus on the effects of multiple mutants in a sit-
uation in which clonal interference does not occur, we
initially restrict consideration to the approximation that
all beneficial mutations have the same effect. A k-tuple
mutant thus has fitness ks greater than the original wild
type. The speed of evolution is then simply v ¼ sÆdk=dtæ.

We begin by reviewing the successional-mutations re-
gime where beneficial mutations are sufficiently sepa-
rated in time for them to sweep independently, as in
Figure 1a. Although this is exactly solvable and well
known, it is instructive to consider it from a heuristic
perspective. We then turn to a heuristic analysis of the
more complex concurrent-mutations dynamics illustrated
in Figure 1d.

Successional-mutations regime and the establishment
of mutants: Small asexual populations evolve by accu-
mulating beneficial mutations sequentially. Beneficial
mutations occur in the population at a total rate NUb.
The probability that a particular mutant will survive ran-
dom drift is proportional to its selective advantage s
(provided 1=N >s>1). The constant of proportionality
depends on the specific model for the stochastic dynam-
ics; for our model it is 1 and we discuss in the simplest

model section below the minor modifications of our
results that are needed for other stochastic dynamics.
We call the process by which the lineage of a beneficial
mutant that survives drift becomes large enough for the
population of its descendants to grow deterministically
the establishment of the mutant clone. As we show below
in the section on the fate of a single mutant, a mutant
population becomes established when its size reaches of
order 1/s individuals. Roughly speaking, this is because
a mutant lineage of size n takes n generations to change
by of order n individuals due to random drift. Since se-
lection adds on average ns individuals to the lineage per
generation, in this time selection has an average effect
of adding n2s individuals. So selection dominates drift
provided n2s . n or n . 1=s. Thus the mutant lineage
must reach a size n � 1=s before it becomes ‘‘safe’’ from
extinction and begins to grow mostly deterministically.

We show in the section on the fate of a single mutant
that if a mutant is destined to become established, it
will reach this size 1/s very quickly. Thus new beneficial
mutations are established at a rate roughly NUbs per
generation (other mutant populations die out due to
random drift), so a new mutation will become estab-
lished about once every testablish ¼ 1=NUbs generations.
Once established on reaching size of order 1/s, the mu-
tant lineage grows roughly exponentially at rate s and
hence takes of order tfix � ð1=sÞln½Ns� generations to fix

(we loosely call ‘‘fixed’’ a mutant lineage that has grown
to represent a large fraction of the population; the con-
ventional definition corresponds to fully fixed, which
takes about twice as long).

When the population size or mutation rate is small
enough, fixation will happen more quickly than estab-
lishment. This occurs when

tfix �
ln½Ns�

s
>testablish �

1

NUbs
; ð1Þ

which corresponds to NUb>1=ln½Ns�. When this condi-
tion holds, we are in the successional-mutations regime,
in which the establishment rate is limiting: a mutation A
that arises and fixes will do so long before the next mu-
tation destined to survive drift, B, is established. Thus
mutation B occurs in a population that has already fixed
A, yielding AB, and B fixes well before mutation C is
established. Beneficial mutations continue to accumu-
late in this simple way. New mutations arise and fix at
average rate NUbs, each one increasing the fitness by s.
Thus fitness increases at a speed

v ¼ NUbs2; ð2Þ

linear in the product NUb. This linear mutation-limited
behavior characterizes the successional-mutations re-
gime of successional selective sweeps.

Concurrent-mutations regime: In larger populations,
the behavior is more complex, as illustrated by Figure 1b.
In this case, the establishment times of new mutants are
shorter than their fixation times, corresponding to

NUb *
1

ln½Ns�: ð3Þ

Thus new beneficial mutations arise and become
established before earlier ones can sweep, causing them
to interfere with one another.

As noted in the Introduction, two types of interfer-
ence are important. First, competition occurs when two
mutations that have different strengths occur indepen-
dently in individuals with similar initial fitness (clonal
interference). We focus in the bulk of this article on
the other type of interference: a mutation that arises
in a fitter background (e.g., one with an earlier benefi-
cial mutation) will outcompete another mutation of
similar effect that occurs in a less fit background. In
the constant-s model clonal interference is explicitly
absent, and we thus initially focus exclusively on this
latter effect. In this constant-s approximation, two dif-
ferent mutants that occur among those with the same
fitness (in particular members of the same clone) will
compete equally and sweep together, each becoming
only partially fixed. Unless we are interested in the
neutral genetic variability of the population, all sub-
populations with the same fitness can be considered
as a single subpopulation: we do this except in the
discussion at the end of this article. Also, we postpone
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discussion of the interplay between clonal interference
and multiple mutants (i.e., going beyond the constant-s
model) to a later section below.

First consider starting from a monoclonal population.
Mutations initially give rise to a subpopulation with
fitness increased by s (Figure 2a). The size of this mutant
subpopulation drifts stochastically, but eventually be-
comes large enough,�1/s individuals, to become deter-
ministic. This takes a (stochastic) establishment time, t1.
After its establishment but before its fixation, mutations
can occur in the still-small mutant subpopulation to
create double mutants with fitness 2s (Figure 2b). This
typically happens well before the single mutants have
fixed (else we are by Equation 1 in the successional-
mutations regime). We assume the double mutants never
arise before the single-mutant subpopulation has estab-
lished; as we discuss below and in appendix g, this
will be true unless mutation rates are extremely high
or selection is very weak. A double-mutant population
thereby becomes established a time t2 after the estab-
lishment of the single-mutant population. Triple mu-
tants then begin to arise and become established after
an additional time t3. This interval is typically shorter
than t2, primarily because double mutants grow faster
than single mutants and hence generate more muta-
tions and, in addition, because the triple mutants are
more fit than double mutants and hence survive drift
more easily (with probability 3s rather than 2s).

This process continues, accelerating at each step.
Eventually, however, enough time passes that the single-
mutant subpopulation (or one of the multiple-mutant

subpopulations) becomes larger than the original wild
type. This near fixation of the single mutants increases
the mean fitness by s, which balances the accelerating
front and creates a moving fitness distribution that will
attain a (roughly) steady-state width with the mean fit-
ness increasing with a steady-state average speed, v. This
is a form of mutation–selection balance: as each new
beneficial mutation becomes established, the mean fit-
ness increases by s and the fitness distribution moves to
higher fitness while maintaining the same shape.

It is useful to consider this process in more general
terms. The key to the behavior is the balance between
mutation, which increases the variation in fitness within
the population, and selection, which decreases the var-
iation by eliminating all but the fittest individuals. If
we were discussing deleterious mutations, mutation
would also oppose the tendency of selection to increase
the mean fitness, leading to a steady-state distribution of
fitness (ignoring Muller’s ratchet, which for large popu-
lations only matters on extremely long timescales). This
deleterious mutation–selection balance, which is in-
dependent of population size for large N, has long been
understood (Gillespie 1998). In our case, the dynamics
are more subtle because the important mutations are
beneficial. The basic idea of mutation–selection balance,
however, is unchanged. Mutations broaden the fitness
distribution while selection narrows it, creating a steady-
state variance around an increasing mean fitness. But
unlike the deleterious case, the dynamics of the rare in-
dividuals near the most-fit tail of the fitness distribution
(the ‘‘nose’’) control the behavior. We show below that

Figure 2.—Schematic of
theevolutionof largeasexual
populations. Shown are fit-
ness distributions within a
population, on a logarithmic
scale. (a) The population is
initially clonal. Beneficial
mutations of effect s create
a subpopulation at fitness s,
which drifts randomly until
after time t1 it reaches a size
of order 1=s, after which it be-
haves deterministically. (b)
This subpopulation gener-
ates mutations at fitness 2s.
Meanwhile, the mean fitness
of the population increases,
so the initial clone begins
to decline. (c) A steady state
is established. In the time it
takes for new mutations to
arise, the less-fit clones die
out and the population
moves rightward while main-
taining an approximately
constant lead from peak to
nose, qs (here q¼ 5). The in-
set shows the leading nose of
the population.
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selection moves the distribution toward higher fitness at a
rate very close to the steady-state variance in fitness—the
classic result in the absence of mutations (the ‘‘funda-
mental theorem of natural selection’’) (Fisher 1930). But
new beneficial mutations at the nose are essential to
maintain this variance: in their absence the fitness dis-
tribution would collapse to a narrow peak near the most-
fit individual and evolution would grind to a halt.

The crucial dependence on new mutations in the
nose makes the analysis of the beneficial mutation–
selection balance more complex than in the deleterious
case. It is now essential to account properly for random
drift in the small populations near the nose. In the case
of deleterious mutation–selection balance, rare new
mutants are less fit than the rest of the population. They
will die out soon anyway, so failing to account properly
for the stochastic dynamics by which they do so has no
serious consequences. Random drift is important with
solely deleterious mutations only if Muller’s ratchet is
operating, i.e., if the most-fit individuals are rare enough
that they can die out due to random drift. The beneficial
mutation–selection balance is quite analogous to this
Muller’s ratchet case. Here too the subpopulations that
are more fit than average control the long-term behav-
ior of the population, and these are small enough that
correct stochastic treatment is essential. As is the case
with Muller’s ratchet, infinite-N deterministic approx-
imations are not even qualitatively correct. Indeed, with a
large supply of beneficial mutations, deterministic anal-
ysis incorrectly predicts a rapid acceleration of the nose
toward an infinite speed of evolution. This nonsense
result is because of the creation in the deterministic
approximation of (what are effectively) fractional num-
bers of new much fitter mutants that then grow ex-
ponentially, unhampered by drift, and dominate the
behavior soon after (we describe this in more detail in
appendix a).

There are two factors that determine the dependence
of the speed of evolution on the population size. The
first is the dynamics of already established subpopula-
tions, which is dominated by selection. The second is
the new mutations that occur in the fittest subpopula-
tion. We define the lead of the fitness distribution, Q,
as the difference between the fitness of the most-fit in-
dividual and the mean fitness of the population (more
precisely, Q � s is the difference between the mean
fitness and that of the most-fit established mutant class).
We define q by Q¼ qs, so that if the lead is Q, the most-fit
individuals have q more beneficial mutations than the
average individual: they have a ‘‘lead’’ Q in the race to
higher fitness. Once it is established, this fittest pop-
ulation grows exponentially. In the time this population
took to become established, in steady state the mean
fitness must have increased by s, so the newly established
population will initially grow exponentially at rate (q� 1)s
and later more slowly as the mean continues to advance.
Growing from its establishment upon reaching size 1/qs

until it reaches a large fraction of N will thus take time
lnðNqsÞ=½ðq � 1Þs=2�, since ðq � 1Þs=2 is its average
growth rate during the period between establishment
and fixation. In this time the mean fitness will increase
by (q � 1)s. Therefore v � ½(q � 1)s�2/½2 ln(Nqs)�. One
can show that this v is equal to the variance in fitness, as
expected if mutation is indeed negligible compared
to selection in the bulk (i.e., away from the nose) of
the distribution, so that the fundamental theorem of
natural selection applies.

The other factor is the dynamics of the nose, where
mutations are essential. A more-fit mutant that moves
the nose forward by s will be established some time
tq after the previous most-fit mutant. Thus the nose
advances at a speed v ¼ s/Ætqæ, where Ætqæ is the average
tq. After it is established, the fittest established popula-
tion nq�1 will grow exponentially at rate (q � 1)s and
produce mutants at a rate Ubnq�1 � Ube(q�1)st/qs. Many
new mutants will establish soon after the time tq at which
Ubqs

Ð tq

0 nq�1ðtÞdt becomes equal to one, so the time it
takes a new mutant to establish is tq � ð1=ðq � 1ÞsÞln
½ðq � 1Þs=Ub 1 1� � ð1=ðq � 1ÞsÞlnðs=UbÞ. This means the
nose advances at rate v � s/Ætqæ � (q � 1)s2/ln(s/Ub).
Significantly, the behavior of the nose depends only on
mutations from the most-fit subpopulation; it is almost
independent of the less-fit populations and thus can
depend on N only via the lead, qs. As far as the nose is
concerned, the majority of the population—destined to
die out shortly—is important only to ease the competi-
tion for the fittest few. Yet we argued above that the bulk
of the population fixes the speed of the mean via the
selection pressure: v � ½ðq � 1Þs�2=½2 lnðNqsÞ�. In steady
state, the speed of the mean must equal the speed of the
nose—the mutation–selection balance. This implies that

q � 2 ln½Ns�
ln½s=Ub�

ð4Þ

and

v � 2s2ln½Ns�
ln2½s=Ub�

: ð5Þ

These results are very close to the more careful cal-
culations below. All the basic qualitative behavior follows
from this intuitive reasoning.

For large NUb, we have found that v depends
logarithmically on N and Ub, much slower than the linear
dependence on NUb that holds for smaller populations.
This reduction occurs because at large NUb, almost all
beneficial mutations occur in individuals far from the
nose of the fitness distribution (i.e., in a bad genetic
background) and are therefore wasted, since these sub-
populations are doomed to extinction. Thus increasing
N does not directly increase the supply of important mu-
tations, as these occur in the relatively few individuals at
the nose. Rather, the effect of increasing N is to increase
the time required for selection to move the mean
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fitness, which increases the lead, which makes individ-
uals at the nose more fit relative to the mean fitness,
which speeds the establishments at the nose. Similarly,
increasing Ub does not directly affect the dynamics of
most of the fitness distribution. Rather, it decreases the
time for new mutations to occur at the nose, which
means that more mutations can occur before the mean
moves, which increases the lead and speeds the evolution.

This also explains why v is not a function of NUb: N
directly affects only selection timescales, while Ub di-
rectly affects only the mutation supply rate, so v depends
on N and Ub separately. It is not a function of the com-
monly used parameter u¼ 2NUb. Instead, it is a function
of the parameters Ns (which describes selective forces)
and s=Ub (which describes the strength of selection rel-
ative to mutation), and it is valid in the regime where
both are large. The expression for q above is of order the
basic selective timescale, ð1=sÞln½Ns� divided by the basic
mutation timescale, ð1=sÞln½s=Ub�, which makes sense
since the lead is set by the balance between these two
forces. More generally, the two factors that determine
the timescales of the multiple mutation dynamics are

L [ ln Ns and ‘ [ ln s=Ub: ð6Þ

Although these are both logarithmic in the population
parameters and thus never huge, they can be large
enough to be considered as large parameters. Many of
our more detailed results are valid in the limit that both
L and ‘ are large, with corrections (some of which we
include) smaller by powers of 1/‘ or 1/L.

We show below that our result for v is consistent with
the fundamental theorem of natural selection. Viewed
in this light, our result for the speed of evolution is not
in itself novel: the speed is just the variance in fitness, as
usual. What our analysis does is to obtain what this
variance is. In many aspects of quantitative genetics, the
variance of a quantitative trait (such as fitness here) is
taken as some external parameter. When the variance
has accumulated during a period when it was neutral
and is only starting to be selected on, this may be ap-
propriate. But beyond that, it is surely not. Our analysis
deals with the case when variance is accumulating while
being selected on. That is, when variance in fitness is
increasing due to mutations while at the same time it is
being acted on by selection, then, even if the adaptation
speed is only indirectly related to new mutations, it is
essentially dependent on them: without mutations the
variance will rapidly collapse to zero.

However, neither our heuristic analysis above nor
our more careful work described below ever explicitly
involves the fitness variance. Rather, the natural mea-
sure of the width of the fitness distribution is the lead. It
is the lead, not the variance or the standard deviation,
that can be most productively thought of as a balance
between mutation and selection. It is true, of course,
that the variance is also increased by mutation and

decreased by selection. However, this is not the clearest
way to understand the behavior. The increase in the
variance from mutations is delayed and indirect. The
new mutations that occur at the nose will only increase
the variance after they have grown enough—and by then
the important new mutations that will keep the variance
high later are happening further out in the nose. This is
not to say that a variance (and higher-moment)-based
approach is impossible, but it is unwieldy and prone to
hard-to-understand errors when any approximations
are made. We discuss such moment-based approaches
in appendix a.

SIMPLEST MODEL

We now turn away from crude (though powerful) in-
tuitive arguments towards more rigorous analysis. We
begin in this section by defining the simplest model
more precisely. We consider mutation, selection, and
drift within a purely asexual population of constant size
N. We assume that a large number of beneficial muta-
tions, each of which increases fitness by s, are available
and define Ub to be the total mutation rate to these
mutations. We consider the situation where the number
of beneficial mutations fixed is small compared to the
total number available so that Ub does not change ap-
preciably over the course of the evolution (we relax
this assumption in appendix c). We neglect deleterious
mutations and other-strength beneficial mutations (see
later sections below for a discussion of the consequences
of these assumptions). These simplifications are not
essential and do not change the basic behavior in many
situations. Indeed, we argue that these assumptions can
all be good approximations even when the situation is
more complex, in particular when N or Ub are not con-
stant, or in the presence of deleterious mutations or
variable s, as we discuss in detail in subsequent sections.
But, more importantly, these simplest approximations
make the analysis clearer.

In addition to the more innocuous simplifications,
we make two essential biological assumptions: that there
is no frequency-dependent selection and that there is no epis-
tasis, so that the fitness of an individual with k mutations
is (k � ‘)s greater than the fitness of an individual with
‘ mutations. When either of these conditions fails, the
evolutionary dynamics can be very different from our
predictions.

Key approximations: There are two primary difficul-
ties in analyzing the multiple subpopulations that occur
even in the simplest model. The first is the stochastic
aspects: when a subpopulation with a given fitness is rare,
stochastic drift plays a crucial role and must be handled
correctly. The second is the interactions between the
subpopulations: the constraint of fixed total popula-
tion size means that there is effectively a frequency
dependence to the growth of a subpopulation—albeit a
simple one.
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To model the stochastic effects, we assume that the
basic process of birth and death is a continuous-time
branching process. All individuals have the same con-
stant death rate 1, which means that the average lifetime
of an individual is 1 (i.e., the units of time are gener-
ations) and that the lifetimes are exponentially dis-
tributed. Each individual in the population has some
number, y, of beneficial mutations. We define �y to be the
average value of y across the population (i.e., the average
number of beneficial mutations per individual). An in-
dividual with y beneficial mutations has a birth rate
1 1 ðy � �yÞs. This ensures that the average birth rate in
the population is 1, so the population stays at a constant
size N. We assume all individuals give rise to mutant
offspring at rate Ub, independent of their birth rate (i.e.,
mutants arise at a constant rate per unit time). If muta-
tions instead occur at a constant rate per birth event,
our assumption underestimates the mutation rate for
the most-fit individuals. However, we always assume
ðy � �yÞs>1 for all individuals (i.e., the lead, Q >1), so
that the two definitions are almost equivalent.

The branching process model allows one to calculate
simple analytic expressions for a number of important
quantities that are not readily available in diffusion ap-
proximations of the standard Wright–Fisher model.
However, branching process models cannot easily deal
with the nonlinear saturation effects required to main-
tain a constant population size. By ‘‘saturation’’ effects,
we refer to when a mutant subpopulation has become
large enough to influence the mean fitness of the popu-
lation and hence begins to compete with itself, slowing
its growth: this is the essential effect of the fixed total
population size. To handle the saturation effects, we
make use of a simple observation: stochastic effects
are important only when a subpopulation is rare, while
saturation is important only when a subpopulation is
common. Thus we use the stochastic branching process
model, ignoring saturation effects, to describe the dy-
namics of a subpopulation while it is small. Conversely,
when it is large, we ignore random drift and treat it with
the correctly saturating deterministic equations. Our use
of both deterministic and stochastic analyses requires an
appropriate way of linking the two together. In this
article, we describe a method for doing so. This method
accounts for all of the important aspects of genetic
drift and is simple and intuitive. It should be of broad
applicability to related evolutionary problems.

This approach works as long as the stochastic regime
and the saturation regime are different. That is, a sub-
population must become large enough to neglect ran-
dom drift before it is too large to ignore saturation. We
can treat a subpopulation of size n deterministically so
long as ns?1. On the other hand, saturation can be
ignored when n>N . Thus to separate the stochastic and
the saturating phases of growth of a subpopulation, we
require Ns?1. Throughout this article, we assume this
condition holds. Unless s is extremely small (s � Ub), a

population small enough that Ns & 1 will usually be too
small for clonal interference or multiple mutation
effects to matter, so this is not a serious limitation.

A situation in which there are multiple subpopula-
tions of varying sizes is illustrated in Figure 3: this shows
the logarithm of a typical fitness distribution within a
steadily evolving population. Where the subpopulations
are small, at the front of the distribution, stochastic
analysis is necessary but nonlinearities can be ignored.
When a subpopulation represents a substantial frac-
tion of the total, nonlinear saturation is important but
stochasticity is not. As long as Ns?1, there is an inter-
mediate regime where neither matters. We can thus use
a nonlinear deterministic analysis in the bulk of the
distribution and a linear stochastic analysis near the
front and match the two in the intermediate regime in
which both are valid. These approximations are fully
controlled and any corrections to our results will be small
for Ns?1.

Relationship of our model to the Wright–Fisher
model: The deterministic limit of our model is identical
to that of the Wright–Fisher model. However, the sto-
chastic dynamics are slightly different. In the Wright–
Fisher model, all individuals have a lifetime of exactly
one generation, while in our model individuals have
a random exponentially distributed lifetime with mean
one generation. In the Wright–Fisher model, the dis-
tribution of the number of offspring per individual is

Figure 3.—Schematic of a typical fitness distribution on a
logarithmic scale. The total population size is large: Ns?1. At
the front of the distribution—the nose—where only a few in-
dividuals are present, stochastic effects are strong but non-
linear saturation is not. The reverse is true in the bulk of
the distribution. Stochasticity is strong only when a subpopu-
lation size n is small, n & 1=s, and saturation is strong only
when a subpopulation size is large, n� N. Thus there is a wide
intermediate regime where neither one matters. We can
therefore use a nonlinear deterministic model in the bulk
of the distribution, use a linear stochastic model at the front,
and match the two in the intermediate regime where both are
valid. The bulk of the distribution is dominated by selection,
which gives rise to a steady-state Gaussian shape except near
the nose.
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approximately Poisson, while in our model the number
of offspring is geometrically distributed. Both the mean
lifetime and the mean number of offspring per in-
dividual are identical in the two models (hence identical
deterministic dynamics), but the different distributions
do lead to slight differences. In particular, although the
probability a beneficial mutation of size s (s>1) will
become established is proportional to s in both models,
it is �cs with the coefficient c ¼ 2 in the Wright–Fisher
model and c ¼ 1 in ours. Since it is likely that the pop-
ulation dynamics in any real population are not well
represented by either of these models, there is no one
‘‘correct’’ model ½e.g., for populations dividing by binary
fission, as in many experimental studies of evolution,
the establishment probability is closer to 2.8s ( Johnson

and Gerrish 2002)�. Fortunately, in our analysis of the
behavior of large populations, these differences cause
only negligible corrections in the arguments of loga-
rithms ½e.g., replacing ln(Ns) with ln(cNs) when Ns?1�.
For smaller populations, however, the speed of evolu-
tion is proportional to the probability of establishment
and thus does depend on more details of the model:
in particular, the successional-mutation result for the
speed is v � cNUbs2.

It would in principle be possible to use a diffusion
approximation to the Wright–Fisher model instead of
our branching process model. This would have the
advantage of being able to handle saturation and drift
at the same time and thus cases where Ns & 1. Such
a model could in principle treat all the different sub-
populations stochastically, including all mutations be-
tween these populations. However, this would lead to a
complex and difficult to analyze infinite-dimensional
diffusion process. There is, however, a controlled
approximation—valid for large Ns—to the full diffusion
process that is exactly equivalent to ours; as it would add
little, we do not discuss this explicitly here.

ANALYSIS

This section contains the primary analysis presented
in this article: the accumulation of beneficial mutations
in the simple model described above. We begin by look-
ing at what happens to a single mutant individual. We
then ask what happens to a mutant population that is
being fed constantly by new mutations. We next couple
this analysis to the behavior of the rest of the popula-
tion to gain an understanding of the evolution of large
asexual populations and obtain our primary results.
Finally, we connect this behavior to the small-population
regime.

The fate of a single mutant individual: We begin by
considering the fate of a single mutant individual. We
assume that in a large clonal population of size N, at
time t ¼ 0 there is a single mutant individual with a
beneficial mutation conferring fitness advantage s. We

denote the size of the subpopulation carrying this ben-
eficial mutation at time t as n(t) ½by assumption, n(0) ¼
1�. We study the effects of selection and drift on this
population by calculating the probability distribution of
future n(t), Prob½n; t�, assuming that no further muta-
tions occur. This provides an essential building block for
all the subsequent analysis and also illustrates our basic
approach in a simple context.

Throughout this analysis, we assume that the number
of individuals with the beneficial mutation is small rel-
ative to the total population size, n>N . Thus the mu-
tants do not interfere with one another. Naturally, if the
mutant becomes established it will supplant the wild-
type population and this condition will cease to be true.
By this time, however, the mutant subpopulation will
be large enough that we can switch from the stochastic
analysis described here to a correctly saturating deter-
ministic analysis.

Because the mutant subpopulation is too small to
affect the mean fitness, mutant individuals have a birth
rate 1 1 s and death rate 1. We define g(n, n0, t) to be the
probability of having n descendants at time t, starting
from n0 descendants at t ¼ 0. We are interested in cal-
culating g(n, 1, t). The probability of a birth or a death
event in a unit of time dt is (2 1 s)dt, and this event is a
birth with probability ð1 1 sÞ=ð2 1 sÞ and a death with
probability 1=ð2 1 sÞ. This means that

g ðn; 1; tÞ ¼ 1

2 1 s
ð2 1 sÞdtdn;0

1
1 1 s

2 1 s
ð2 1 sÞdtg ðn; 2; t � dtÞ

1 ½1� ð2 1 sÞdt�g ðn; 1; t � dtÞ; ð7Þ

where dn,0 ¼ 1 if n ¼ 0 and is 0 otherwise. This is a
standard birth–death process (Allen 2003). Assuming
that individual lineages are independent and defining
the generating function

Gðz; tÞ ¼
X‘

n¼0

g ðn; 1; tÞzn; ð8Þ

we can rewrite Equation 7 as a differential equation for
G(z, t), which we solve to find

Gðz; tÞ ¼ ðz � 1Þð1� estÞ1 zs

ðz � 1Þð1� ð1 1 sÞestÞ1 zs
: ð9Þ

We can now determine Prob½n; t� [ g ðn; 1; tÞ from
G(z, t). A standard inversion yields

Prob½n; t� ¼ s2est

½ð1 1 sÞest � 1�½ð1 1 sÞest � 1� s�

3
ð1 1 sÞest � 1� s

ð1 1 sÞest � 1

� �n

ð10Þ

valid for n . 0, and
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Prob½n ¼ 0; t� ¼ est � 1

ð1 1 sÞest � 1
: ð11Þ

We are interested primarily in understanding the dis-
tribution of n given that the mutant population is not
destined to go extinct. This is given approximately by

Aðn; tÞ [ Prob½n; t jnot extinct�

� s

ð1 1 sÞest � 1� s
exp � sn

ð1 1 sÞest � 1

� �
: ð12Þ

Here we have approximated the geometric factor by
a simpler exponential in n that is valid for t?1=s, the
regime of primary interest. Note, however, that although
the crucial features are more apparent in the approxi-
mate expression, all the results below follow from the
exact equations.

At this stage, the above results merely reproduce clas-
sical analysis, but it is useful to pause to compare them
with various intuitive predictions. We first compute the
average number of mutant individuals at time t,

Ænæ ¼ est ; ð13Þ

which confirms our understanding of what it means to
have a beneficial mutation with advantage s. However,
most of the time the mutation will die out. Conditional
on not going extinct,

Æn jnot extinctæ ¼ est 1
est � 1

s
; ð14Þ

which is larger at long times by a factor of 1/s. At short
times, t>1=s, this is Æn j not extinctæ � 1 1 t. At long
times, t?1=s, the extinction probability becomes 1=
ð1 1 sÞ � 1� s, and Æn jnot extinctæ � ð1=sÞest . Note that
short times correspond to n>1=s, while long times
mean n?1=s. (Note also that none of these expressions
saturate as n approaches N; they are valid for n>N , as
discussed above.)

It is useful to ignore mutations that are destined to
go extinct due to drift and focus only on those that are
destined to become established. We do this for the re-
mainder of this section; all results are thus implicitly
conditional on nonextinction. However, some care is
required. If a mutation occurs at time t ¼ 0 and survives
drift to become established, it may seem that on average
it will grow as n(t) ¼ est, because it started from one in-
dividual at t ¼ 0 and grows on average exponentially.
However, this is incorrect. Given that it survived drift, it
is likely to have grown faster than est in the early stochastic
phase of its growth during which drift is faster than se-
lection (Otto and Barton 1997; Barton 1998). This is
apparent from the expressions above: for t>1=s, Æn j not
extinctæ� 1 1 t, which is much faster than Ænæ¼ est� 1 1 st.
Once the population is large and stochastic effects can
be neglected, it naturally grows as est. However, because it
grew faster than this in the early stochastic phase, it will

on average be larger than if it had grown this fast
through its entire history. As is clear from the expres-
sion for the average n at long times, Æn jnot extinctæ �
ð1=sÞest , the behavior can be crudely approximated by
assuming that it started at size 1=s (rather than size 1) at
t ¼ 0 and then grew exponentially as est thereafter. This
approximation is of course not valid during the early
phase of growth. Note that the above also implies that,
given that a mutation is not destined to go extinct due
to drift, it will fix in a time of order ð1=sÞln½Ns�, not
ð1=sÞln N , as is sometimes seen in the literature. For s�
0.01, this is a difference of �500 generations. To be
more precise, the fixation time is a random variable with
a distribution of width 1/s and mean close to ð1=sÞln½Ns�,
rather than the naive ð1=sÞln N .

For much of the subsequent analysis, we are concerned
with the size of a subpopulation only after it is big enough
to be essentially deterministic. Yet as the above discus-
sion makes clear, the stochastic phase of growth affects
the later deterministic dynamics. Thus we are interested
in ‘‘summing up’’ the stochastic effects in terms of their
impact on later deterministic growth.

Focusing only on the effects of stochasticity on later
deterministic dynamics allows us to make a key simpli-
fication. Once the subpopulation is large enough to grow
deterministically, but still small enough that saturation
can be ignored (i.e., 1=s>n>N ), its dynamics can be
described by n¼ nest. The value of n is a random variable
that depends on how fast the population grew in its
stochastic phase. However, the only effect of this stochas-
ticity on the later deterministic growth is to create
random variation in n. As almost all this stochasticity
accumulates at short times, at large t (after the popula-
tion has become deterministic) we can describe the
overall effects of stochasticity in terms of a probability
distribution Prob½n�. This is a big simplification, because
the full probability distribution conditioned on non-
extinction, A(n, t), depends on both n and t, while for
large t Prob½n� is independent of t, as we show below. This
simplification is possible because at large t the only time
dependence is the deterministic exponential growth.

We can justify the above heuristic argument rigor-
ously. The definition of n is just a transformation of n,
n [ ne�st. This is valid in the early stochastic phase of
growth as well as in the later deterministic phase. How-
ever, in the stochastic phase we do not expect that n will
be independent of t. As we have the probability dis-
tribution A(n, t), it is straightforward to transform this to
the distribution Prob½n; t�. When we take the large-t limit
of Prob½n; t�, it becomes independent of t. This justifies
our expectation that at large t, we have Prob½n�, in-
dependent of time.

Rather than using the probability distribution of n, it
will prove useful to define a related variable t by

n [
1

s
esðt�tÞ: ð15Þ
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The random variable t is simply related to n: t ¼ �ð1=sÞ
lnðnsÞ. Since t is a simple transformation of n, we can im-
mediately calculate Prob½t 2 ðt; t 1 dtÞ; t jnot extinct�[
prob½t; t�dt (with prob½t� the probability density as we are
treating t as a continuous variable) from A(n, t). We find

prob½t; t jnot extinct�

¼ s

ð1 1 sÞest � 1
exp sðt � tÞ � esðt�tÞ

ð1 1 sÞest � 1

� �
: ð16Þ

As with n, this describes the distribution of n both in the
deterministic and in the stochastic phase. Since n
depends on t, so does the distribution of t. However,
as expected from the previous discussion, the distribu-
tion of t becomes independent of t for large t. We define
test as t(t / ‘) and find

BðtestÞ[ prob½test jnot extinct�

¼ s

1 1 s
exp �stest �

estest

1 1 s

� �
: ð17Þ

The average value (as well as higher moments) of test

can be easily computed from this distribution. We have

Ætestæ ¼
1

s
ln

eg

1 1 s

� �
� g

s
; ð18Þ

where g is Euler’s constant g ¼ 0.577216.
We see from Equation 16 that the large-t condition

required for the distribution of t to become indepen-
dent of t is t?1=s. This is the time at which Æn jnot
extinctæ � 1=s. This indicates that our choice of 1=s as
the size at which a population becomes established is
appropriate. After a time t ¼ 1=s, when the population
on average reaches this size provided it has not gone
extinct, the probability distribution of t begins to be-
come independent of t, indicating that the behavior of
the population crosses over from mostly stochastic to
mostly deterministic.

The variable test has an intuitive interpretation: test

is the time at which n would have reached size 1=s had
it always grown deterministically, as calculated by look-
ing at n(t) at large t and extrapolating backward. This is
illustrated in Figure 4a. We can therefore approximate
the destined-to-be-established subpopulation as drifting
randomly for a time test, at which time it reaches size 1=s
and then grows deterministically thereafter. With this
simplification, the only important stochasticity is the
duration of the drift period. This is the key simplifica-
tion that allows us to smoothly connect the branching
process with the nonlinear dynamics once the subpopu-
lation is no longer rare. It jibes with our intuitive ex-
pectation that the subpopulation is dominated by drift
when rarer than 1=s and then behaves deterministically
once it exceeds this size. Note, however, that in addition
to telling us nothing about n(t) before time test, it also
gives a slightly inaccurate picture immediately after test

when n(t) is �1=s. The time test is not in fact the time at

which the subpopulation reaches size 1=s (see Figure 4a).
Rather, it is the time at which n(t) would have reached
size 1=s if we assumed that it always behaved determin-
istically, but it gets the large-t behavior right. In fact,
some small drift does take place after reaching size 1=s;
our approximation does not ignore this drift, but rather
adds up all the drift that takes place through all the
time and rolls it into a change in test. This can thus be
thought of as the time at which the mutation establishes.
In asking how quickly beneficial mutations accumulate,
this is the most natural variable.

The caveats above illustrate why it is perfectly consis-
tent to have test , 0; the distribution B(test) above shows
that this is not even particularly improbable. This re-
flects the fact that, given that a mutant subpopulation is
not going to go extinct, it is reasonably likely to grow
remarkably fast in the early stochastic phase. A test , 0
simply indicates that the mutant subpopulation grew so
fast when rare that if we look at the subpopulation size
much later and assume it always grew exponentially at rate
s, the subpopulation would have had a size .1=s at t ¼ 0.

Figure 4.—(a) The definition of the establishment time test.
A single mutant individual is assumed to exist at t ¼ 0. It drifts
stochastically until it either goes extinct or eventually gets
large enough that it grows exponentially and its behavior be-
comes roughly deterministic. We define test to be the inferred
time at which the population would have reached size 1=s if
one extrapolated backward from the long-time deterministic
behavior. Note that test is not the time the population actually
reached size 1=s (indeed, test can be negative). (b) The def-
inition of tq: the time between successive establishments of
the lead population with fitness qs more than the mean. Mu-
tations occur with a rate that grows exponentially with time.
Here, tq is the time the new lead population would have
reached size 1=qs, extrapolating backward from its long-time
deterministic behavior. This includes both the time to gener-
ate a mutant destined to establish and the time for it to drift to
substantial frequency.
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We note that Ætestæ ¼ ð1=sÞln½eg=ð1 1 sÞ�, while ÆnðtÞæ ¼
ð1=sÞest for large t (as always, conditional on nonextinc-
tion). This may naively seem inconsistent, since nðtÞ ¼
ð1=sÞesðt�testÞ for large t. However, it merely reflects the
fact that ÆeX æ 6¼ eÆX æ. The difference between these two
averages is in fact the essential reason that test will prove
to be such a useful variable to focus on. This is because
the value of Æn(t)æ depends much more sensitively on the
tails of Prob½n; t� than does Ætestæ.

Mutants generated by a changing population: The
above analysis of the population size of a clone founded
by a single mutant individual is an important building
block. However, it does not address the full problem. We
must now ask how the mutants arise in the first place.
In the simplest case, we might imagine a wild-type pop-
ulation of size N, starting with 0 mutants at time t ¼ 0.
This population generates mutants at rate NUb. Each
mutant follows the dynamics given in the above section,
beginning at the time it was created, but now we have
multiple such initial mutants that are created at random
times.

Generally, the relevant process is even more complex.
Starting from a wild-type population, a single-mutant
subpopulation is generated, experiences a stochastic
period, and then begins to grow deterministically. Then
double mutants are created by mutation within the single-
mutant population while it is still growing (i.e., before it
fixes). The rate at which these double mutants are gen-
erated increases with time because the single-mutant
subpopulation is growing. Later, the double mutants
may themselves generate mutants before they fix (and
possibly before the single mutants fix), and so on.

We therefore must tackle a more general problem:
the distribution of the population size n(t) of a mutant
subpopulation that starts with 0 individuals and is ‘‘fed’’
by mutants from a less-fit subpopulation of (growing)
size f(t). If this less-fit clone is small enough that its
growth is stochastic, calculating the probability distri-
bution of the mutant subpopulation is extremely complex.
Fortunately, most nonviral organisms live in parameter
regimes where a clone will never generate mutants de-
stined to establish while it is still so small that it must be
treated stochastically. As we discuss in appendix g, this
parameter regime is Ub=s>1, which we will generally
assume. Thus we take f(t) to be some deterministic function
describing the growth of the clone from which mutants
arise. Later we set the origin of time in f(t) stochastically, to
reflect the stochasticity in the establishment of this feeding
population.

Note that we no longer need to condition on the mu-
tant subpopulation not being destined to go extinct.
Since this subpopulation is being continuously fed with
new mutations, eventually one of these mutations will
survive drift. Thus at long times the mutant subpopula-
tion will never be extinct.

Unlike in the previous section, the growth rate of the
stochastic mutant population n(t) is not necessarily

1 1 s. Rather, the growth rate is 1 1 ðy � �yÞs, where ys is
the fitness of the subpopulation n(t) and �ys is the mean
fitness of the population. For convenience, we write this
as 1 1 rs. The death rate of this population is still 1. Since
�y increases continuously, r is time dependent. Despite
this, we approximate r as a constant. This is justified
because we use the stochastic description of n(t) only
during the brief period during which it is rare, and in
this time r does not change significantly. We discuss this
approximation in appendix h.

We define h(t � tk) to be the number of descendants
at time t of a single mutant that occurred at time tk. That
is, given that a mutation occurs from the ‘‘feeding’’ pop-
ulation at time tk, h(t� tk) is the number of descendants
of this mutation at a later time t. Note that h is the
random variable whose generating function is given
by G(z, t� tk) from Equation 9 above, but with s replaced
by rs. We have

nðtÞ ¼
XM
k¼1

hðt � TkÞ; ð19Þ

where M is the random number of individual mutations
that have occurred and Tk are the random times at which
they occurred.

The number of mutations and their timings are an
inhomogeneous Poisson process, fed by the population
f(t). We therefore have

Prob½M ¼ m�

¼ exp �
ðt

�‘

Ubf ðt9Þdt9

� � Ð t
�‘

Ubf ðt9Þdt9
� �m

m!
: ð20Þ

Note the lower limit of integration here represents the
earliest time that mutations are allowed to occur; we
have chosen this to be infinitely early. We discuss this
choice of cutoff more generally in appendix e. The
timings of the mutations Tk, conditional on M ¼ m, are
the ordered statistics of m independent identically dis-
tributed samples drawn from the distribution

F ðxÞ ¼
lðxÞ
lðtÞ x # t

1 x . t
lðxÞ ¼

ðx

�‘

Ubf ðyÞdy:

8<
: ð21Þ

This means that the joint distribution of the Tk con-
ditional on m is given by

prob½t1; . . . ; tm jM ðtÞ ¼ m� ¼ m!
Ym
i¼1

f ðtiÞÐ t
�‘

f ðxÞdx
: ð22Þ

The generating function for the distribution of the
number of mutant individuals, n(t), is given by H(z,

t) ¼ Æzn(t)æ. Note that H ðz; tÞ ¼ Æz
PM

k¼1
hðt�TkÞæ ¼ Æ

QM
k¼1

zhðt�TkÞæ. Conditioning on the distributions of M and
the Tk given above, and using the fact that Gðz; t � tkÞ ¼
Æzhðt�tkÞæ, we find
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H ðz; tÞ ¼
X‘

m¼0

ðYm
k¼1

½Gðt � tkÞdtk �

3 prob½t1; . . . ; tm jM ¼ m�Prob½M ¼ m�;
ð23Þ

where the integral is over all ordered configurations of
the tk. Substituting the distributions of M and the Tk

above, we find

H ðz; tÞ ¼ exp Ub

ðt

�‘

½Gðz; t � t9Þ � 1� f ðt9Þdt9

� �
: ð24Þ

To understand the full probability distribution of n(t), we
simply have to plug in the appropriate form f(t) and
then invert this generating function.

An exponentially growing population feeding an-
other: In large populations, there will typically be vari-
ous multiple mutants present, as illustrated in Figure 2.
We can now apply the results of the previous section
to this situation. As before, we define the the most-fit
subpopulation that is large enough to treat determinis-
tically to have fitness (q � 1)s above the mean fitness
(note that q is not necessarily an integer). This sub-
population, nq�1, grows exponentially at rate (q � 1)s.
We define the origin of time such that nq�1(t) is given by

nq�1ðtÞ ¼
1

qs
eðq�1Þst : ð25Þ

Note that, analogous to the previous section, we are
approximating q as constant—we discuss this further
below. The reason for defining the origin of time such
that nq�1ðtÞ ¼ 1=qs at t ¼ 0 will become clear below. We
now want to understand the stochastic dynamics of the
subpopulation a fitness qs above the mean ½denote this
population size by nq(t)�. The subpopulation nq�1 feeds
mutations to nq; we therefore have f (t) ¼ nq�1(t) in the
notation of the previous section.

This problem involves one exponentially growing pop-
ulation, nq�1, feeding another, nq. In analyzing it, we first
step back from our specific situation to study the general
case of an exponentially growing population with with
size N1 ¼ n1eR1t feeding mutants at rate Ub to a stochastic
population N2 that on average grows exponentially with
rate R2. We later will substitute n1 ¼ 1=qs, R1 ¼ (q � 1)s,
and R2 ¼ qs. We begin by plugging f ðtÞ ¼ n1eR1t into
Equation 24, using the obvious generalization of G(z, t)
to a population that grows at rate R2. This gives us H(z,
t), the generating function of the probability distribu-
tion of N2. It is convenient at this point to pass from
generating functions to Laplace transforms by defining
the transform variable z ¼ 1 � z. For our purposes we
can assume that z is small: this introduces errors into
Prob½N2; t� when N2� 1, but we will never use Prob½N2; t�
in this regime. We find

H ðz; tÞ ¼ exp �UbnR2

ðt

�‘

zeR2ðt�vÞeR1vdv

zðeR2ðt�vÞð1 1 R2Þ � 1Þ1 ð1� zÞR2

� �
: ð26Þ

Substituting u ¼ zeR2ðt�vÞ, we find

H ðz; tÞ ¼ exp �Ubn½zeR2 t �R1=R2

ð‘

z

u�R1=R2 du

u 1 R2u � z 1 R2 � zR2

� �
: ð27Þ

Assuming that z is small, the integral in this expression is
independent of z and is given by ð1=R2ÞR1=R2 p csc½pð1�
R1=R2Þ�. We find

H ðz; tÞ ¼ exp � pUbn½zeR2t �R1=R2

R
R1=R2
2 sin½pð1� R1=R2Þ�

" #
: ð28Þ

We can now substitute our values of n1, R1, and R2 to
find that in our case

H ðz; tÞ ¼ exp � pUbðzeqstÞ1�1=q

qsðqsÞ1�1=q sinðp=qÞ

" #
: ð29Þ

This is the standard form for the Laplace transform of a
one-sided Levy distribution, a well-studied special func-
tion. An integral representation of this is the inverse
Laplace transform of H,

Pðnq ; tÞ [ Prob½nq ; t� ¼ 1

2pi

ð
enq zH ðz; tÞdz; ð30Þ

where the integral is over the imaginary axis. For large nq

this can be integrated to give PðnqÞ � 1=n2�1=q
q . ½Note

this distribution has infinite Ænqæ, an unimportant and
unbiological artifact of our choice of cutoff in the in-
tegral for H(z, t); this is discussed in appendix e.�

To understand this distribution P(nq, t), we define a
variable tq similar to that described in the section above
on the fate of a single mutant. We first define

nqðtÞ [
1

qs
eqsðt�tÞ: ð31Þ

As before, t is time dependent, but for t / ‘ the dis-
tribution of t is independent of t. We define tq [ t(t /
‘). As before, tq is the time at which the subpopulation
nq(t) would have reached size 1=qs had it always grown
deterministically at rate qs, as calculated by looking at
the size nq(t) at large t and extrapolating backward.
Unlike test, the value of tq includes the time for the
mutation (or mutations) to arise in the first place as well
as time for their initial stochastic growth. This is
illustrated in Figure 4b.

As in the section on the fate of a single mutant, we can
think of the mutant subpopulation as drifting randomly
for a time tq, at which point it reaches size 1=qs and
thereafter grows deterministically. We therefore some-
times refer to tq as the ‘‘establishment’’ time. As before,
this is somewhat inaccurate in describing the dynamics
right around tq (or before) when the population is around
or below a size of 1=qs. Again tq is not actually the time
the population reaches size 1=qs. This is because both
future random drift and future feeding mutations, after
the population reaches size 1=qs, are included in the
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estimate of tq. However, for the purposes of understand-
ing the dynamics of the mutant population once it be-
comes large compared to 1=qs, it is valid to think of tq as
the time it takes the population to reach size 1=qs.

We often wish to use moments of tq. These are
straightforward to calculate in principle, but somewhat
tricky in practice. We first note that because of the
definition in Equation 31, we have

t ¼ t 1
1

qs
ln

1

qs

� �
� 1

qs
ln½nqðtÞ�: ð32Þ

We can therefore calculate Ætæ by computing Æln nqæ and
plugging into this expression. Higher moments of t are
easily computed by similar expressions; these depend
also on higher moments of ln nq. We can calculate
Ælnmnq(t)æ by noting that Ælnmnq æ ¼ limm/0ð@m=@mmÞ Ænm

q æ.
Using the integral representation of P(nq, t), we have

Ænmæ ¼ 1

2pi

ð‘

0

ð
nmenze�az1�1=q

dzdn; ð33Þ

where the z-integral is over the imaginary axis and we
have defined

a [
Ubp

sðq � 1Þsinðp=qÞ
eðq�1Þst

ðqsÞ1�1=q
: ð34Þ

We integrate this to find

Ænmæ ¼ q

q � 1

sinðpmÞ
sinðpmq=ðq �1ÞÞ

Gð1 1 mÞ
Gð1 1 mq=ðq � 1ÞÞa

mq=ðq�1Þ;

ð35Þ

where G(x) is the Gamma function.
We can now calculate derivatives of this with respect to

m to get Ælnmnqæ and hence the moments of t. For large t,
as expected, t becomes independent of t. For the mean
of tq, we find

Ætq æ ¼ 1

ðq � 1Þs ln
s

Ub

ðq � 1Þ sinðp=qÞ
peg=q

� �
; ð36Þ

where g ¼ 0.5772 is Euler’s constant. The variance of tq

is given by

VarðtqÞ ¼
p2

6

1

½ðq � 1Þs�2
� 1

½qs�2
� �

: ð37Þ

Higher moments are also simple to compute if desired
(and demonstrate that there is substantial skew in the
distribution of tq, as tq substantially smaller than Ætqæ can
occasionally occur, while tq substantially larger than this
almost never does—this is important in understanding
the fluctuations in the rate of adaptation around its
steady-state value and is discussed in appendix d).

This calculation of Ætqæ is somewhat involved because
of the need to use the integral representation of P(nq, t).
We can get rough estimates (often useful in other con-
texts) via a simpler method. Namely, we define a typical

population size ñq [ 1=z1, where z1 is defined by H(z1,
t) ¼ e�1. As is apparent from the definition of a Laplace
transform, H ðz; tÞ ¼

Ð
e�znq Pðnq ; tÞ, for well-behaved dis-

tributions this typical value ñq is roughly like the median
of nq. We can then get a typical value t̃q from this by
using the relationship between ln nq and tq. Doing this
leads to a t̃q that is very close to the Ætqæ calculated above.

Note that the careful result for Ætqæ is similar to the
crude result in the heuristic analysis section above, which
approximated the time required for a new mutation
to arise at the nose as

Ð tq

�‘
Ubnq�1ðtÞqs ¼ 1, roughly the

typical time at which the first mutant destined to estab-
lish arises. This crude expression is only weakly de-
pendent on the lower cutoff to the integral, which is
good since nq�1(t) is not given accurately by the deter-
ministic approximation in this regime. This weak de-
pendence appears for the same reasons in the careful
calculation of tq and is discussed in more detail in
appendix e. The crude and careful results do differ,
however. The careful result accounts properly for the
randomness in the timing of a new mutation and the
fluctuations during its early drift phase. It also accounts
for the fact that not only the first mutant destined to
establish at the nose contributes. Rather, as we see later,
of order q different mutations contribute significantly
to the establishment of a new most-fit subpopulation at
the nose.

The rate of evolution and maintenance of variation
at large N: We are now in a position to calculate the rate
of evolution and amount of variation maintained in
large populations. In the above calculations, we set t¼ 0
to be the time at which the population nq�1 reached size
1=qs. This corresponds to the establishment time of this
population. After a (stochastic) time tq, the next more-
fit subpopulation, nq, establishes. For the later deter-
ministic dynamics of nq, we can think of this as the time
when nq reached size 1=qs. At this point, we have reached
the identical situation where we started, but with the
nose of the population fitness distribution moved for-
ward by s. In the steady state, the mean fitness of the
population must also have moved forward by s in the
average establishment time Ætqæ. Thus the population
at nq now has fitness only (q � 1)s ahead of the mean. It
has size 1=qs, but thereafter grows exponentially only at
rate (q � 1)s, giving a population size ð1=qsÞeðq�1Þst .

The process now repeats itself—we can take this esta-
blishment time of the new population (nq, above) as the
new t ¼ 0, and after that this population grows as we
had described for the original population nq�1. In fact, it
now is the population nq�1, since the mean fitness has
increased by s. Thus we can see that the mean fitness
of the population and the position of the nose move
forward by s in a time Ætqæ. Thus the average rate of
increase in fitness in the population is

v ¼ s

Ætqæ
: ð38Þ
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Note that this discussion makes clear why, for consis-
tency, we defined the establishment time for nq�1 to be
when this population reached size 1=qs, not 1=ðq � 1Þs.
We also note that the population that we had originally
called nq�1 is now nq�2 and its size is given by ð1=qsÞ
e ðq�1Þstq eðq�2Þst .

This change in the growth rate of the population we
had originally called nq�1 raises an important point.
We defined nq�1ðtÞ[ f ðtÞ ¼ ð1=qsÞeðq�1Þst and used this
expression in calculating P(nq, t), particularly for large t.
Yet at this large t, our expression for f (t) is not accurate,
because the mean has shifted and the population with
original (relative) fitness (q � 1)s is no longer growing
exponentially at rate (q � 1)s. Fortunately, the muta-
tions that occur after the establishment of nq ½when the
expression f(t) becomes inaccurate� do not greatly
affect its later population size, nq(t). In other words,
the mutations that dominate the population nq happen
early while nq�1 is still accurately given by f(t). Yet one
must also ask whether these mutations happen too early
when f(t) is also not a good approximation for nq�1(t)
½because the definition of tq, which we used to define
f(t), includes mutations and stochastic behavior that
happen later�. Fortunately, the mutations that matter
from nq�1 to nq do occur late enough that nq�1 is ac-
curately described by f(t). This can be checked by
studying the behavior of t(t); we discuss this and related
subtle issues in appendix g.

When q is too small, the approximations above are no
longer justified. Whenever q , 2, the growth rate of the
subpopulation nq�1 slows substantially during the pe-
riod while the important mutations to nq are occurring.
That is, nq�1 saturates while nq is becoming established.
Thus our analysis in this section is valid only for q . 2. As
we will see, this corresponds to large N. We discuss the
q , 2 case in the next section. However, it is the large-N,
q . 2 result that we are most interested in—this is where
there are typically many multiple mutations at once, and
the behavior differs dramatically from the successional-
mutations regime.

Throughout this section, we have asserted a steady
state in which the mean fitness increases at the same rate
as new mutations are established and have defined the
lead in steady state to be qs. Yet we have not discussed the
balance between mutation and selection that sets this
steady state. We now turn to this question. Roughly
speaking, we expect that in larger populations, elimina-
tion of less-fit clones takes longer, and more mutations
can arise in this time, so the steady state q should rise.

The relationship between q and N can be obtained
from tq. As we have seen, immediately after the sub-
population at q becomes established, its size is 1=qs. The
subpopulation at q � 1 has size ð1=qsÞeðq�1Þstq , the sub-
population at q� 2 has size ð1=qsÞeðq�1Þstq eðq�2Þstq , and so
on. All of the subpopulations must add up to size N; in
practice the total is dominated by one or a few (compared
to q) subpopulations so that we can equate N to the size

of the largest subpopulation, the one whose fitness is
closest to the mean fitness. Imposing this condition and
assuming that all the tq are on average Ætqæ, we find

q � 2 ln½Nqs�
ln½ðs=UbÞððq � 1Þsinðp=qÞ=pep=qÞ�

: ð39Þ

This is a transcendental equation for q, but because of
the logarithmic dependence on q on the right-hand side
it is easily solved by iteration. For most purposes, even
the zeroth approximation,

q � 2 ln½Ns�
ln½s=Ub�

; ð40Þ

is sufficiently accurate. To get higher accuracy one can
plug this into the right-hand side of Equation 39.

As expected, the value of q increases with N and also
increases with Ub because when mutations happen more
quickly there are more of them in the population at
once. The dependence on s is more complicated, be-
cause increasing s both decreases the fixation time
(leaving less time for additional mutations to occur) and
increases the rate of mutations that establish (because it
increases the establishment probability).

With the value of q determined self-consistently above
(Equation 39), the mean fitness shifts by s in exactly the
time Ætqæ. Thus the corresponding distribution of the
subpopulations is indeed a steady state (see appendix d

for a discussion of fluctuations around this steady state
and its stability). By plugging Equation 39 into the
expression for Ætqæ and substituting this into v ¼ s=Ætq æ,
we can obtain the speed of evolution. Doing this using
the lowest-order result in the iterative expansion for q
(Equation 40), we find that the speed of evolution is
roughly

v � s2 2 ln½Ns� � ln½s=Ub�
ln2½s=Ub�

� �
; ð41Þ

valid provided q is reasonably large ½basically, when 2
ln½Ns� . lnðs=UbÞ, which will tend to be true when
NUb?1�. If a more accurate result is needed, we can
simply carry the iterative expansion for q to higher
order.

The calculations above confirm the intuitive picture
and results described in the heuristic analysis section
above. The speed of evolution is determined by two
mostly independent factors. One factor is the dynamics
of the nose—the feeding process from nq�1 to nq that
sets tq. This process depends directly only on Ub and s;
the only impact of N here is via its effect on the lead qs.
The other factor is the dynamics of the already estab-
lished populations. This is dominated by selection and
hence depends directly only on N and s; the only role of
mutation here is its role in setting q.

Our result is consistent with the fundamental theo-
rem of natural selection, which states that the speed of
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evolution is equal to the variance of fitness in the pop-
ulation. To see this, we first note that the bulk of the
fitness distribution is Gaussian. This is because a popu-
lation with ‘ more (or less) mutations than the mean
grows (or shrinks) as e‘st, and the mean shifts by 1 during
every time interval tq. This means that at the end of an
interval, the number of individuals with ‘ mutations
more or less than the mean is determined by its cumu-
lative growth or decline over all these time intervals:
exp �

P‘
k¼1 kstq

� 	
� e�ðstq=2Þð‘1 1=2Þ2 , a Gaussian distribu-

tion. We call the variance of this fitness distribution s2.
The number of individuals that differ from the mean by
ks is then roughly Ns exp ½�(ks)2/2s2�, and the fittest
established population—with k � q—will have of order
1=qs individuals. We therefore expect qs � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln Ns
p

.
This means that if the fundamental theorem for natural
selection holds, we expect v ¼ s2 � ðqsÞ2=2 lnðNsÞ. And
indeed, some algebra verifies that this yields the ex-
pression for v in Equation 41.

The fundamental theorem of natural selection should
apply whenever mutation can be neglected compared to
selection. Since this is true in the bulk (i.e., away from
the nose) of the fitness distribution, the correspon-
dence between our result and the theorem is reassuring.
The speed of evolution is equal to the variance in fitness,
as usual. Thus our calculations can be viewed as an anal-
ysis of how much variance in fitness a population can
maintain while at the same time this variation is being
selected on. Yet nowhere did our analysis depend on the
variance in fitness. Rather, the lead proved to be a more
useful measure of the width of the fitness distribution,
because it is the lead that is directly affected by new
mutations at the nose. The variance is of course also
increased by mutations, but only as a consequence of
the dynamics of the lead and only after the new mutant
populations have grown to substantial numbers. The
key fact that the distribution is close to Gaussian out
almost to the nose, which is many standard deviations
above the mean, is indicative of the small significance of
the region near the mean that controls the variance.

Evolution at moderate N: In addition to the evolution
at large N, we want to understand the crossover between
small-N and large-N behavior. In this subsection, we
explore this crossover.

For very small N, the successional-mutations regime
obtains. In the heuristic analysis section, we noted that
mutations take �1=NUbs generations to establish in
this regime and then fix in a much shorter time. Thus
evolution is mutation limited, and we have v � NUbs2. It
is instructive to redo this calculation using the machin-
ery we developed for the large-N case. To do this, we
must replace the exponential form for f (t). As before,
we take the establishment time of the mutation at (q �
1)s to be t ¼ 0. Of course, here q ¼ 1 so (q � 1)s ¼ 0. In
this regime, each mutant fixes soon after becoming estab-
lished. For the purposes of the next establishment, we
can therefore approximate the population at (q� 1)s by

nq�1ðtÞ[ f ðtÞ ¼ N uðtÞ; ð42Þ

where u(t) ¼ 1 for t . 0 and 0 otherwise. We substitute
this form of f(t) into H and integrate and take the
inverse Laplace transform of the result to obtain

prob½t1� ¼
s

GðNUbÞ
exp½�NUbst1 � e�st1 �: ð43Þ

This gives Æt1æ � 1=NUbs, so the velocity v � NUbs2, as
expected.

We now turn to the intermediate regime. For NUb

comparable to 1=ln½s=Ub�, the fixation time is not short
compared to the establishment time. Thus we cannot
use f(t) ¼ Nu(t). At the same time, the establishment
time is not so short compared to the fixation time that
saturation in the feeding population is unimportant
(the large-N case we have focused on thus far). We
therefore need to consider the case of a growing and
saturating population feeding another. We assume that
the single-mutant population always fixes before the
triple-mutant population establishes, so that we have to
consider only two deterministic clones and one stochas-
tic clone in the population (i.e., q between 1 and 2). The
dynamics of the single-mutant population a time t after
it establishes are given by

f ðtÞ ¼ Nest

Ns 1 est : ð44Þ

Note that f(t) initially grows as e(q�1)st, with q¼ 2, but later
slows to e(q9�1)st with q9¼ 1 (i.e., it becomes approximately
constant). This slowing occurs over a time interval of
order 1/s, which is much smaller than the establishment
times and is thus effectively a sharp transition. The
behavior of the feeding population is thus roughly
equivalent to having q between 1 and 2. The stochastic
population that it feeds initially grows at rate qs with q¼
2. The establishment of this stochastic population
occurs at a time t2 when, roughly,ðt2

0
Ubf ðtÞdt [

c

s
; ð45Þ

with c of order unity. This yields

t2 �
1

s
½ln Ns 1 lnðec=UbN � 1Þ�: ð46Þ

A more careful analysis (analogous to the earlier calcu-
lations of tq) that takes into account the distribution of
t2 yields a result that is the same as the above simple
argument but with a factor of order unity inside ln Ns,
which is a small correction over the whole range of val-
idity. While in general c will depend on the detailed
birth and death processes, and the speed of evolution in
the successional mutations regime will be proportional
to c, for the dynamics we have analyzed throughout, c ¼
1. We use this below. For NUb>1, we obtain
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v � s2

ln Ns 1 1=NUb
; ð47Þ

which crosses smoothly—and simply!—over from the
successional-mutations behavior for NUb>1=ln½Ns� but
ln½Ns� � ln½s=Ub� to v � s2=ln½s=Ub�, which is just the
result we obtain for q ¼ 2. When NUb becomes of order
unity, from the above expression we have t2s � ln Ns 1

Oð1Þ. For NUb?1 the behavior is well into the multiple-
mutations regime we analyzed earlier, and the results
obtained for general noninteger q . 2 apply. The two
sets of results match together for Ns� s/Ub, up to order-
unity factors inside logarithms of Ns and of s/Ub. An
example of the crossover between the two regimes is
shown in Figure 5a.

TRANSIENT BEHAVIOR

So far, our analysis has assumed that the mutation–
selection balance has already been reached. If a pop-
ulation starts with an arbitrary distribution of fitnesses, it
will gradually approach the steady-state distribution. A
full analysis of this is beyond the scope of this article, but
in this section we provide an outline of the important
effects and briefly describe a method for analyzing this
transient behavior. We focus on the case where the pop-
ulation is initially monoclonal. Other starting fitness
distributions can be analyzed using similar methods.
We consider the large-N concurrent-mutations regime
(in the successional-mutations regime the monoclonal
population is already essentially in steady state).

Starting from a monoclonal population, we can cal-
culate the dynamics of the single-mutant subpopulation
that arises by using the small-N results above, since here
too the feeding population is f(t) ¼ Nu(t). It would now
be tempting to assume that this single-mutant popula-
tion just grows exponentially at rate s after first becom-
ing established. We could then immediately import
our previous results for the establishment time of the
double-mutant population, t2, triple-mutant popula-
tion, t3, and so on. We could then assume that all these
populations establish in order until the qth population,
at which point the steady state would be reached.

Unfortunately, this is wrong, for two reasons. First, the
single-mutant population grows faster than exponentially
at rate s because it is receiving mutations from the still-
large wild-type population. Because of this, the double-
mutant population establishes more quickly than the
steady-state t2 and then itself grows faster than exponen-
tially with rate 2s because it is receiving more mutants
from the fast-growing single-mutant population. This
then affects the triple mutants, and so on. The second
complication is that the mean fitness does not stay at the
wild-type value until the qth mutation has established, so
it takes more than q establishments to reach steady state.

Rather than attempt to find a closed-form analytical
result, we discuss here an algorithmic solution to the

transient dynamics. We proceed in steps. First, we calculate
the lead from the current fitness distribution. On the
basis of this, we calculate the next establishment time
(interpolating if the lead changes during this period
because of an increase in the mean fitness). We then
calculate the new fitness distribution and the new lead
and repeat the process.

When calculating the establishment times, we must
remember that the feeding populations are not neces-
sarily growing as simple exponentials. Earlier we used
the establishment time tp to approximate the popula-
tion size of np as npðtÞ ¼ ð1=psÞepsðt�tpÞ. We noted that
this is inaccurate while np � 1=ps, because it includes
both future mutations from np�1 to np and future
stochasticity. Since we have used this form of np(t) to
calculate the establishment time of the next more-fit
subpopulation, this approximation for np(t) must be
accurate by the time the mutations that lead to the sub-
sequent establishment occur. In the steady-state case,
this holds, as shown in appendix g. However, for the
transient dynamics it is not always correct.

This problem is most serious for the single-mutant
population, which we consider now. The wild-type popu-
lation has roughly constant size N during the period
when the single-mutant population is rare. This means
that the single-mutant population grows on average as

n1ðtÞ ¼
NUb

s
½est � 1�: ð48Þ

This reaches size 1=s after a time of order 1=NUbs gen-
erations. However, the inferred establishment time (by
extrapolating backward) is t1 ¼ �ð1=sÞln½NUb� genera-
tions. This is substantially negative because mutations
that occur well after the population reaches size 1=s con-
tribute significantly to n1. The approximation we used
before would be to take n1 ¼ ð1=sÞesðt�t1Þ ¼ ðNUb=sÞest

in calculating the establishment time of the double-
mutant population t2. But using the correct form of n1,
we find that the first double mutants occur roughly at
time t ¼ ð1=sÞln½1 1 ðs=UbÞð1=NUbÞ�. Thus when NUb>

ðs=UbÞ, double mutants do not occur until our usual ap-
proximation for n1 becomes reasonable. We can there-
fore use our previous calculation of the establishment
time t2 from the steady-state analysis above. All future
establishment times (i.e., t3 for the triple mutants, etc.)
can similarly be imported directly from the steady-state
calculations. However, when NUb * s=Ub, we must use
the correct form of n1 to calculate t2 and n2. In this case,
n2 will also grow faster than our usual approximation
n2 ¼ ð1=2sÞe2sðt�t2Þ would predict. We must therefore
repeat this procedure to consider whether it is reason-
able to calculate t3 on the basis of our usual approxi-
mation or whether we need to use the more complex
form for n2. However, this effect is much weaker than for
n1; it matters only if NUb is much larger than in the
previous condition. If it does matter, we must again ask if
the more complex form for n3 will be important in
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calculating t4; this will matter only if NUb is larger yet. In
practice, in comparing with previous experiments we
have found that considering the complex form of n1 in
calculating t2 is sometimes necessary, but all future
establishments can be calculated using the steady-state
large-N results (Desai et al. 2007), because in these
experimental situations q is never much larger than 4.

A second subtlety in the above algorithmic approach
is the way in which the mean fitness changes; it does not
increase in evenly spaced steps of size s as it would in
steady state. For example, the double-mutant subpopu-
lation can become established soon after the single-
mutant subpopulation does. Then, as it grows twice as
fast, it will outcompete the single-mutant subpopulation
while both are still rare. We call such an event a ‘‘jump,’’
since it will lead to a jump in the mean fitness by 2s when
the double mutants become the dominant subpopula-
tion. Of course, it is also possible that the triple mutants
will jump past the double mutants or that the double
mutants will jump the singles, and then the quadruple
mutants will jump the triples, etc. These effects can lead
to complex dynamics of the mean fitness before the
steady state is established. However, given the establish-
ment times of the various populations, the time depen-
dence of the mean fitness is straightforward to calculate
from the deterministic dynamics of the competing sub-
populations that are growing exponentially.

Putting all these effects together, we can construct an
algorithmic solution for the transient dynamics. We
calculate the first establishment time and note at what
time this new subpopulation will change the mean
fitness. We then calculate the next establishment time
and again the implied future effects on mean fitness
(modifying previous such results if jumping events will
occur). We continue to repeat this process. When the
mean fitness changes, we note how this changes the lead
and adjust the establishment times appropriately. We
iterate this process until the steady-state lead, qs, is
reached. Even after that there can be some lingering
effects of the transient, as the rest of the fitness distri-
bution may not yet have reached the steady-state Gauss-
ian profile. Yet soon thereafter the steady-state behavior is
indeed reached.

Rather than using this algorithmic approach, it is also
possible to use a deterministic approximation for the
transient behavior. Starting from a monoclonal popula-
tion, the timing of the first few establishments is given
accurately by a deterministic approximation. However,
this typically cannot give us the full transient dynamics,
because stochastic effects at the nose become important
once the fitness distribution grows to a substantial
width, which usually occurs before the transient regime
is over. This deterministic approach is also less versatile,
as it is valid only for some starting distributions.

The transient behavior can be quite important.
During the transient phase, the accumulation of bene-
ficial mutations proceeds more slowly than in the steady

state, because after the first few establishments, but before
the steady state is reached, the lead will be ps with esta-
blishment interval �tp , tq (since p , q). Thus a clonal
population will accumulate beneficial mutations slowly
at first, before the rate of accumulation gradually in-
creases to its steady-state rate. This slower transient
phase lasts a substantial time—longer than it takes to
accumulate q mutations once the steady state has been
established, again because tp , tq for p , q (and, as
noted above, in fact it can take more than q establish-
ments to reach the steady state). While this section
provides a rough sketch of the behavior, a detailed anal-
ysis of these transient effects remains an important topic
for future work.

DELETERIOUS MUTATIONS

Our simplest model neglects deleterious mutations.
But deleterious mutations can alter the dependence of
v on the mutation rate (and on N), because increasing
Ub typically comes at the cost of also increasing the
deleterious mutation rate. This has proved an important
consideration in clonal interference analyses (Orr 2000;
Johnson and Barton 2002). In this section, we con-
sider qualitatively and semiquantitatively various effects
of deleterious mutations in the simple model in which
all the beneficial mutations have the same s. The effects
of deleterious mutations of size s in this model have
been studied by Rouzine et al. (2003). Here we discuss
briefly the effects of deleterious mutations of various
sizes, but leave detailed analysis for future work.

It is useful to separate the effects of deleterious muta-
tions into their impact on the dynamics of the bulk of
the distribution (and hence the mean fitness) and their
effects on the establishment of new most-fit clones at
the nose. In the bulk of the distribution, deleterious
mutations come to a deterministic mutation–selection
balance that alters the shape of the fitness distribution
and reduces the mean fitness. This effect actually speeds
up the evolution: if the deleterious mutations had no
effect at the nose, their impact in reducing the mean
fitness would increase the lead and thus make new
establishments at the front occur faster. But deleterious
mutations at the nose have the opposite effect: they slow
down the growth of the most-fit populations and de-
crease the fitness of some of these individuals, reducing
the rate at which new more-fit individuals establish.

In understanding these effects, it is useful to consider
large-effect and small-effect deleterious mutations sep-
arately. First we consider deleterious mutations whose
cost sd . s. When a deleterious mutation with sd * s
occurs at the nose, that individual is no longer at the
nose. Thus the deleterious mutations reduce the effec-
tive growth rate just at the nose. If Ud

. is the mutation
rate to deleterious mutations with sd * s, then the
growth rates of subpopulations at the nose are simply
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reduced by Ud
. . The effect of deleterious mutations on

the mean fitness is also simple, because the mean fitness
of the population is dominated by the largest subpopu-
lation (which is exponentially larger than all others).
Thus in considering the effect of the deleterious muta-
tions on the mean fitness, we can focus on their impact
in this subpopulation. This remains the largest subpop-
ulation for �1=s generations, which for sd . s is larger
than 1=sd. Thus it comes to a deleterious mutation–
selection balance while it is largest, since this balance is

obtained in 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUd

. Þ2 1 s2
d

q
generations. This means

that the deleterious mutations reduce the mean fitness
by Ud

. (up to small corrections due to the dynamics and
the other subpopulations). This reduction in the mean
fitness effectively increases the lead by Ud

. , which in-
creases the growth rates at the nose by the same amount.
This cancels the effect of the deleterious mutations at
the nose. Thus deleterious mutations with sd * s have
very little net effect on v: they do not change the rate of
new establishments at the nose, up to the small cor-
rections noted above. This is not surprising—the dele-
terious mutants are all doomed, so roughly speaking
their effect is simply to reduce the effective fitness of all
individuals equally, which has no net effect on v. But
they do increase the lead qs, which changes the shape of
the fitness distribution.

For weakly deleterious mutations with sd>s, which
occur at mutation rate Ud

. , the effects are more com-
plicated. In this case, the fact that an individual at the
nose has a deleterious mutation does not make it sub-
stantially less likely to be the source of a new nose-
extending mutation. Thus the effective growth rates at
the nose are unaffected by deleterious mutations. How-
ever, some nose-extending mutations will occur in indi-
viduals with one or more deleterious mutations and
hence will not necessarily extend the nose by s. Instead,
they will sometimes have an effect s � sd, or s � 2sd, or
less. We can estimate the strength of this effect by using a
deterministic approximation for the deleterious muta-
tion accumulation at the nose. When ðUd

, =qsÞln½s=
Ub�>1 (or, roughly, when Ud

, =s>1), we find that on
average, nose-extending mutations are burdened by a
deleterious load of ðUd

, sd=ðq � 1Þs2Þln½s=Ub�. Thus the
effect of the deleterious mutations at the nose is to
reduce the effective s by the amount Ud

, sd=ðq � 1Þsð Þln
½s=Ub�, which is small compared to s. This will tend to
slow the evolution. An analogous calculation applies
when Ud

, =s?1; here the deleterious mutations have a
larger effect, but still produce an average fitness cost
only at most of order sd. The effect of the deleterious
mutations on the bulk of the distribution is again to
reduce the mean fitness of the population. The amount
of this reduction, however, does not depend only on the
most-fit subpopulation as before, because 1=s , 1=sd.
Rather, these small-effect deleterious mutations accu-
mulate throughout the collective-sweep time, qs/v �

ln(s/Ub)/s, in which a subpopulation grows from being
the lead population to the dominant population. We
expect this effect to be largest relative to the effects of
these deleterious mutations on the dominant subpopu-
lations when 1/sd is of order the collective-sweep time.
This effect reduces the mean fitness by an amount at
most of order Ud

, . This again speeds the evolution and
partially cancels the slowing effect at the nose. Thus
deleterious mutations with sd>s affect v by increasing
the effective lead by of order Ud

, and reducing the
effective s by �ðUd

, sd=ðq � 1ÞsÞln½s=Ub� (when Ud
, =s

>1) or by of order sd (when Ud
, =s is larger). These

effects are all small.
To analyze in more detail the quantitative effects of

deleterious mutations (even in the simplest single-
beneficial-s model) is beyond the scope of this article.
Note in particular that the analysis in this section is invalid
when the deleterious mutation rate is large enough that
the deterministic approximation for their behavior at the
nose becomes incorrect. In this regime—on the border
between Muller’s ratchet and adaptive evolution—a
more careful analysis is needed. We leave this discussion,
which is essential for understanding the dependence of
the rate of evolution on the mutation rate when mutation
rates become large, for future work.

SIMULATIONS

Our analysis involves a number of approximations.
While we have analyzed their validity above and in the
appendixes, we also used computer simulations to test
our results. In this section, we describe these simulations
and the comparisons to our results.

We started our computer simulations with a clonal
population with a birth and death rate of 1 and a muta-
tion rate of Ub. We arbitrarily defined this population to
have fitness 0. We divided time into small increments.
At each increment, we first calculated the average fitness
�y and then produced births, deaths, and mutations with
the appropriate probabilities. The birth rate of individ-
uals at fitness y was set to be 1 1 ðy � �yÞ (with �y � y always
small compared to unity), their death rate 1, and the
mutation rate Ub. We then repeated this process to simu-
late the population dynamics, providing a full stochastic
simulation of the simplest constant-s, beneficial-only
model analyzed above. We recorded the mean fitness
and lead as a function of time and, for each set of
parameters, measured the average v and q once past the
initial transient regime.

We carried out these simulations at a variety of dif-
ferent parameter values. The match between simula-
tions and our theoretical results was good, provided the
conditions for the validity of the concurrent-mutations
regime obtained. Examples of these comparisons are
shown in Figures 5 and 6. In Figure 5, we show the
theoretical predictions for the average speed of adapta-
tion (using the lowest-order iterative result for v
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presented in Equation 41) compared to simulation
results as a function of N, Ub, and s. In Figure 6, we
show similar comparisons for the average lead q (again
using the lowest-order iterative result for our theoretical
predictions). The agreement is good in both cases, al-
though our theory slightly underestimates both v and q.

Figure 6.—Comparisons between simulations and our the-
oretical predictions for the mean q. (a) q vs. log10½N� for Ub ¼
10�5 and s ¼ 0.01. (b) q vs. log10½Ub� for N ¼ 106 and s ¼ 0.01.
(c) q vs. log10½s� for N ¼ 106 and Ub ¼ 10�5. All the simulation
results are averages of�30 independent simulations, after the
steady state has been established, as in Figure 5.

Figure 5.—Comparisons between simulations and our the-
oretical predictions for the mean speed of adaptation v (mea-
sured in increase in fitness per generation, 3 105). (a) Speed
of adaptation v vs. log10½N� for Ub ¼ 10�5 and s ¼ 0.01. Both
the large-N (Equation 41) and the moderate-N (Equation 47)
theoretical results are shown in their regimes of validity, which
are above and below N � 1/Ub, respectively (the crossover be-
tween the two regimes is indicated). (b) v vs. log10½Ub� for N ¼
106 and s ¼ 0.01. (c) v vs. log10½s� for N ¼ 106 and Ub ¼ 10�5.
Each simulation result shown is the mean v between genera-
tions 1500 and 5000 of the simulation, averaged over 30 inde-
pendent runs. Beginning the average at 1500 generations
ensures that in all cases the evolution has reached the
steady-state mutation-selection balance (as verified from the
time-dependent simulation data, not shown).
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This may be due to the effects of fluctuations in tq (de-
scribed in appendix d) slightly increasing the mean v and q
because of their nonlinear effects or to other factors arising
from ln(s/Ub) not being sufficiently large for the asymp-
totic results to obtain to this accuracy.

DISTRIBUTIONS OF s, AND RELATIONSHIP TO
CLONAL INTERFERENCE ANALYSES

The simple model we have analyzed assumes that all
beneficial mutations confer the same advantage s. But in
most natural situations different beneficial mutations
will have different fitness effects. This does not change
the basic dynamics of adaptation in large asexual popu-
lations: many beneficial mutations still occur before
earlier ones have fixed and these can help or interfere
with each other’s fixation (Figure 1b). And the success-
ful mutant lineages are likely to have had multiple
beneficial mutations before they fix, while many other
mutations will be wasted when other lineages outcom-
pete them.

Thus far we have focused on how beneficial mutations
are wasted because they occur in individuals who are
not very fit (i.e., away from the nose) and are therefore
handicapped by their poor genetic background. But
when beneficial mutations have a variety of different
effects, there is another way they can be wasted: small-
effect mutations can be outcompeted by larger mutations
that occur in the same or a similar genetic background.
We refer to this latter process as ‘‘clonal interference.’’ As
before, we use the term clonal interference to refer to
this latter effect only (despite some broader definitions in
the literature), consistent with the focus of recent work on
the subject. This can occur only when not all mutations
have the same fitness increment and is thus absent in the
simple constant-s model.

Recent work by Gerrish and Lenski (1998) and
others (Orr 2000; Gerrish 2001; Johnson and Barton

2002; Kim and Stephan 2003; Campos and De Oliveira

2004; Wilke 2004; Kim and Orr 2005) has taken the
opposite approach to the multiple constant-s mutations
approximation and focused instead on the effects of
clonal interference, while ignoring multiple mutations.
In this section, we first summarize the conclusions of
such analyses, which assume all mutations occur on the
same genetic background. We then consider the effects
of including both clonal interference and multiple mu-
tations. As we will argue, whenever the former plays a
significant role, so does the latter.

The now-conventional clonal interference analysis
considers how small-effect mutations can be outcom-
peted by larger mutations. Specifically, if a mutation A
with fitness sA becomes established, one considers the
probability that another mutation B, with effect sB . sA,
will also become established before mutation A has
fixed. If this happens, mutation B drives A to extinction
and mutation A is thus wasted. Of course, it is also

possible that mutation B is subsequently outcompeted
by a still fitter mutation C, and so on. The key ap-
proximation is that the largest mutation that occurs and
is not outcompeted by a still larger one fixes, becomes
the new wild type, and the process then repeats. Addi-
tional mutations that might occur in a lineage that al-
ready has mutation A, B, or C are ignored. For any fixed
population size, there is some selective advantage, sci,
such that sufficiently large mutations, those with s . sci,
are rare enough that they are unlikely to occur before
some less-fit mutation arises and fixes. In the conven-
tional clonal interference analysis, it is assumed that a
mutation of size around sci will thereby fix before any
others, and the process will then repeat. This is equiv-
alent to successional-mutation behavior with a set of
mutations each with the same strength, sci. Since sci in-
creases with the population size, more mutations are
wasted in larger populations, implying that v increases
less than linearly with NUb.

Before discussing the problems with the basic succes-
sional-fixation assumption, we consider how the char-
acteristic sci depends on N and on the distribution of
selective advantages, r(s)ds. Because only beneficial
mutations with substantial s matter for large N, the total
Ub itself is not important. It is more convenient to use
the mutation rate per generation for mutations in a
range ds about s:

mðsÞds [ rate of mutations in interval ðs; s 1 dsÞ: ð49Þ

We assume that large-effect beneficial mutations are
typically much less common than small-effect ones,
so that m(s) is small and decreases rapidly with s. Since
m(s)¼Ubr(s) is dimensionless, it is convenient to define
L(s) by

mðsÞ[ e�LðsÞ: ð50Þ

Note that LðsÞ ¼ ln½1=mðsÞ� increases with s. Mutations
with effect of order s occur at an overall rate of order
sm(s) ¼ se�L(s), so L(s) roughly plays the role that ln(s/
Ub) does in the single-s case.

The basic clonal interference analysis is simple: in
the time that a mutation of size sA will take to fix, tA

fix ¼
ð1=sAÞln½NsA�, some mutation of larger size s will have
time to occur and become established as long as the
total establishment rate for mutations larger than sA is
sufficiently large:

N

ð‘

sA

smðsÞds .
1

tA
fix

: ð51Þ

This will no longer be true above some critical sci, where
N
Ð ‘

sci
smðsÞds ¼ sci=lnðNsciÞ. We can estimate this sci

by noting that since m(s) decreases rapidly with s,Ð ‘

sci
smðsÞds � s2

cimðsciÞ. We find

LðsciÞ � lnðNsciÞ: ð52Þ

1780 M. M. Desai and D. S. Fisher



Using the definition of L, we see that sci(N) is the value
of s at which in the whole population there is of order
one mutation per generation. Further, because m(s) ¼
Ubr(s), we see that sci depends only on the product NUb,
with the functional form determined by r(s). In the
successional clonal interference analysis approxima-
tion, the speed of evolution is assumed to be the size
of these mutations, sci, times the rate at which mutations
of order this effect occur, scim(sci), times the probability
that they become established, sci. This yields

vCI � CN ½mðsciÞsci�s2
ci � CNs3

cie
�LðsciÞ � ½sciðN Þ�2; ð53Þ

where C is a factor of order unity that is not really ob-
tainable from clonal interference analysis, as it depends
on the details of further approximations. (Note that
the details of how we define fixation do not make much
difference in the clonal interference result. We have
also ignored other factors inside logarithms, since L?1.)
At this point we should note that various potential im-
provements are possible. In particular, it is not at all
clear why the establishment time rather than the fixa-
tion time should be used to obtain the accumulation
rate of the sci mutations. As we shall see below, if the
latter rather ad hoc assumption is made instead, the
clonal interference analysis gives closer to the correct
results for certain distributions: those with long tails in
r(s). But with or without such improvements, some of
the predictions of clonal interference analysis are qual-
itatively wrong—in particular, the prediction that as the
overall beneficial mutation rate increases, the typical
size of the mutations that fix (predicted to be sci) also
increases. As we shall see, the opposite is true.

The above clonal interference analysis makes a cru-
cial approximation that is essentially never valid: that
double mutants can be ignored even when mutations
are common enough that they often interfere. This is
manifest in the assumption that the important muta-
tions occur only in the majority (wild-type) population.
The basic problem is that even if a more-fit mutation B
occurs before an earlier but less-fit mutation A fixes, A
may still survive. An individual with A can get another
mutation D such that the A–D double mutant is fitter
than B. If this happens, mutation A (along with D) can
fix after all. Indeed, such events should be expected:
any population large enough for clonal interference to
matter is also large enough for double mutants to rou-
tinely appear even for s � sci. This is because clonal in-
terference can affect the fixation of a mutation of size s
only when the establishment rate of mutations stronger
than s, which is at least NU .s

b s, is large compared to the
rate at which the mutation of size s fixes, s=ln½Ns�. But
when this occurs, we have NU .s

b ?1=lnðNsÞ. Thus, from
our analysis of the single-s model, whenever clonal
interference occurs, multiple mutations also play a role.

The single-s model, in contrast, is unrealistic because it
explicitly excludes competition between mutations of
different effects. Thus the conclusions from this model

and the clonal interference analysis are each only part of
the story. In the remainder of this section, we outline the
behavior for more general distributions of beneficial
mutations, taking into account both clonal interference
and multiple mutations. Fortunately, as we shall see, for
many forms of m(s), the single-s approximation can
implicitly account surprisingly well for the effects of clonal
interference. Detailed analysis will be published elsewhere.

Let us first consider starting from a clonal population
(although this is an oversimplification that misses
important aspects of the dynamics; see below). Depend-
ing on N and Ub, various different mutants will arise, as
well as double mutants, etc. One of these will be the
fittest mutant that is established in the wild-type popu-
lation before any other mutation or combination of
mutations fixes. All the other mutations that have al-
ready occurred will be driven to extinction and thus do
not matter for the long-term evolution. For a given N,
Ub, and r(s), there is a typical fitness effect (call this s̃)
of the beneficial mutations that create—singly or in
combination—this fittest mutant. We call mutations
of roughly this magnitude predominant mutations and
define—crudely at this point—Ũb as the mutation rate
to these mutations. Clonal-interference-like competi-
tion determines the predominant range of mutations.
Unfortunately, however, we cannot simply lift the def-
inition of s̃ from clonal interference theory. Except at
very short times, the population will not be monoclonal
but will include various single and multiple mutants
with a distribution of overall fitnesses. This means that
s̃ is determined by a delicate balance between clonal
interference and multiple mutation effects. Given an s̃,
however, the predominant mutations accumulate via
a process similar to that described by our analysis of
the constant-s model, with population size N and the
effective parameters s ¼ s̃, and Ub ¼ Ũb.

Why should there be a predominant range of s?
The basic argument is simple. Mutations significantly
smaller than s̃ occur frequently. But, by definition, these
mutations are routinely outcompeted by predominant
mutants. Thus these mutations do not interfere with the
accumulation of the predominant mutants. In contrast,
larger-than-s̃ mutations do interfere with others when
they occur. But, by definition, these must be rare enough
that it is unlikely that such a mutation will arise in the
time it takes a predominant mutant—or a combination
of predominant mutations—to fix (else the larger muta-
tion would be the predominant mutant). Thus the
population will primarily evolve via the accumulation of
mutations with s in some range around s̃. Our previous
analysis does not predict s̃, but given a value of s̃ it de-
termines how these mutations accumulate (see below
for more details). This is a slight oversimplification, as
mutations of both smaller effect and larger effect than
s̃ will play some role. These considerations affect the
appropriate definition of s̃ and the range of s around s̃
that is important.
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What we must now address is the crucial fact that s̃
(and Ũb) depend on N and Ub. As we increase N or Ub,
more mutations occur before others fix: this suggests s̃
will thereby change. Clonal interference analyses con-
sider part of this process and predict that the analog of s̃
(sci) increases slowly with both N and Ub (Gerrish and
Lenski 1998; Wilke 2004). But these approximations
oversuppress smaller mutations by ignoring multiple
mutations, which are more likely to involve the common
smaller mutations. Thus we expect that s̃ should increase
even more slowly with N and Ub than clonal interference
models suggest. Nevertheless, even a slow increase in
s̃ could be important, since in the single-s model, v
increases with s2 but only increases slowly with N and Ub.
As we now show, the form of r(s) qualitatively affects the
behavior.

In the extreme case in which r(s) decreases very slowly
with s ½rðsÞ � 1=s3 or slower�, the largest mutation that
can typically occur and establish in a given time always
dominates the cumulative evolution up until that time.
Thus a predominant s̃ does not even exist and neither
our analysis nor clonal interference describes the dy-
namics: they are controlled by successional fixations—
but with no steady-state speed—no matter how large the
population. We do not discuss this seemingly unlikely
situation further.

Whenever r(s) falls off faster than 1=s3, the basic single-s
behavior obtains, with a narrow range of s (roughly a
factor of two or less) around some predominant s̃, with
the effective mutation rate Ũb crudely being that for
mutations in this range. But even though one could then
simply plug the appropriate s̃ and Ũb into our earlier
expressions for the speed, v, the single-s forms for the
dependence on N and Ub may not be accurate, because s̃
and Ũb themselves depend on N and Ub. There are two
possibilities. The first is that s̃ and Ũb depend weakly
enough on N and Ub that our expressions are roughly
accurate. Another possibility is that the evolution is
dominated by larger and larger mutations as the popu-
lation size increases, as found in the clonal interference
analysis. Again mutations in some restricted range will
control the behavior (and some degree of multiple
mutations will still be involved), but s̃ will increase
markedly with N. We shall see that both these behaviors
can occur, depending on the form of the distribution of
mutations r(s)ds.

Predominant-s approximation: A simple approxima-
tion that might be expected to be valid if a sufficiently
narrow range of s dominates is to ignore all the muta-
tions except those in some narrow range about s, com-
pute the evolution speed v(s) from the single-s analysis,
and then maximize this over s to obtain the predominant
s, s̃, and an approximation for the actual speed,

v � max
s

vðsÞ ¼ vðs̃Þ; ð54Þ

which defines s̃. In the above expression, we define v(s)
to be the speed of evolution to mutations with effect of

order s, as calculated from our single-s analysis with the
appropriate Ub being the total mutation rate for these
mutations. We call this approximation the predomi-
nant-s approximation, as it ignores the question of how
wide a range of s is important. We can then make a con-
servative check of our assumption that a narrow range of
s dominates by computing how quickly v(s) falls off away
from s̃, because mutations at other s cannot increase the
actual velocity by more than their v(s).

For concreteness, we consider a class of distributions
m(s) parameterized by three quantities: a characteristic
selective advantage, s, a parameter ‘ that controls the
overall mutation rate, Ub } e�‘, and a parameter b that
characterizes the shape of the distribution of rare large
mutations. We thus write

mðsÞ ¼ e�‘�ðs=sÞb : ð55Þ

For convenience we use the shorthand notation

L [ lnðN sÞ: ð56Þ

We will see that the behavior depends qualitatively
on whether b is larger or smaller than 1. For b . 1,
the distribution falls off faster than exponentially, and
we refer to this as a ‘‘short-tailed’’ m(s). The exponential
case is exactly marginal. For b , 1, the distribution falls
off more slowly than exponentially. We refer to this as
the ‘‘long-tailed’’ m(s) case.

Short-tailed m(s): We begin by considering the case of
b . 1, that is, a distribution that falls off at least ex-
ponentially. The behavior is simplest when the popula-
tion size is large enough that 2L/L(s) is substantially
greater than unity. In this regime we have from Equa-
tion 41 that

vðsÞ � s2 2L

½LðsÞ�2; ð57Þ

where we have used L(s) in place of ln(s/Ub) ½valid
because the total mutation rate to mutations with effect
of order s is sm(s)�. This v(s) has a maximum at s ¼ s̃
given by

s̃
dL

ds
ðs̃ Þ ¼ Lðs̃ Þ: ð58Þ

Plugging in LðsÞ ¼ ‘� ðs=sÞb, we find

s̃ ¼ s
‘

b� 1

� �1=b

; ð59Þ

and thus in the predominant-s approximation we have

v � vðs̃Þ ¼ Cbs2 2 ln½N s�
‘2�2=b

; ð60Þ

with the coefficient Cb¼ (b� 1)2�2/b/b2, valid for b . 1.
We have used the large-q single-s results in making these
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calculations. We can check the consistency of this by
noting that the value of q for the predominant muta-
tions is 2 ln½N s�=Lðs̃Þ, which yields

q � 2Lðb� 1Þ
‘b

: ð61Þ

This is large when 2L/‘ is large, unless b � 1 is small
(i.e., the tail is becoming long), so our results are indeed
consistent.

Note that our result for s̃ is roughly independent of N
in this regime, but (in contrast to clonal interference
analysis) decreases as the overall beneficial mutation rate
increases (i.e., as ‘ decreases). In other words, s̃ does not
depend strongly on N, but does decrease as Ub increases.
This makes sense: as Ub grows, multiple small mutations
become more important compared to single larger mu-
tations. Because of this, the dependence of v on N is very
similar to our single-s approximation, but the depen-
dence on the mutation rate is weaker.

The behavior for b . 1 can also be analyzed when
L is not so large. As L decreases, the predominant s
decreases—i.e., it begins to depend on N. The resulting
expressions are more complicated, but can be com-
puted from Equation 41 in a similar way. However, they
are of questionable validity, since only some of the
significant s will be in the multiple-mutation regime,
while others will be in the crossover regime of q & 2, so
our use of the large-q results becomes inconsistent. As
we have seen in a previous section, this crossover is
complicated even for the single-s model; it will be even
more so with a distribution of s.

Long-tailed m(s): For distributions that fall off more
slowly than a simple exponential—i.e., b , 1—the be-
havior is rather different. This is apparent even in the
crude predominant-s approximation. Again, we begin
by considering the simpler large 2L/‘ limit. We have

vðsÞ � s2 2L � LðsÞ
½LðsÞ�2 ; ð62Þ

with L(s) ¼ ‘ 1 (s/s)b, which we maximize to find

s̃ � s
4Lð1� bÞ

2� b

� �1=b

: ð63Þ

Plugging this into m(s) ¼ e�L(s), we find the correspond-
ing effective mutation rate

mðs̃ Þ} 1

N

� �4ð1�bÞ=ð2�bÞ
ð64Þ

and the predominant s approximation

v � Abs2ð2LÞð2=bÞ�1; ð65Þ

with coefficient Ab ¼ b(2 � 2b)2/b�2(2 � b)1�2/b. In this
case, we see that v grows faster than linearly with ln N.
Surprisingly, the dependence on the mutation rate in

this regime is negligible: Ub determines only how large
N has to be to be in this regime. The smaller the muta-
tion rate, the larger the N needed. But in contrast to the
short-tail case, here

q � 2� b

2� 2b
ð66Þ

is not large, so that even for very large N, the important
multiple mutants still involve onlyOð1Þ of the predomi-
nant mutations. The fact that q never becomes partic-
ularly large for long-tailed m(s) is because in this case s̃
increases substantially with N: in the short-tailed case,
many small mutations contribute, while in the long-
tailed case, fewer larger mutations are involved. But we
must be careful with the above results for the long-tailed
case, as they are not valid if the inferred q , 2: below this
the crossover from successional- to concurrent-mutations
behavior will apply, and our use of Equation 62 becomes
inconsistent. We need to distinguish two cases.

If b . 2
3, q . 2 and the above results apply. The cor-

responding effective mutation rate decreases with a
power of 1/N less than unity, so that the total mutation
supply rate for the predominant mutations, N mðs̃ Þ,
grows with N as N (3�2b)/(2�b). (Of course, many of these
are wasted as multiple mutants outcompete the single
mutants and control the dynamics, as described by our
single-s theory.)

If b , 2
3, then the above analysis would give q , 2 and

N mðs̃Þ>1, which indicates a breakdown of the approx-
imations. In this case q sticks at 2, and the dynamics are
basically successional, with the predominant mutants
being those for which the total rate N mðs̃ Þ � 1=s. This
means that s̃ � sL1=b, and we expect

v � s2

L
¼ s2Lð2=bÞ�1: ð67Þ

Note that the coefficient coincides with the earlier
expression at b ¼ 2

3. The steady state is at the upper
end of the crossover between the successional- and
multiple-mutation behavior as discussed in the Evolution
at moderate N section.

For b , 2
3, the clonal interference-only approximation

agrees with the predominant-s approximation, as the
total mutation rate to the predominant mutants is of
order unity so that s̃ � sci. In contrast, for the interme-
diate case with 2

3 , b , 1, clonal interference analysis
yields sci�sL1/b. This is still the correct behavior, but the
numerical coefficient is wrong: as noted above, the total
mutation rate for the predominant mutants grows
as a power of N, in contrast to the clonal interference
approximation in which it assumed to be independent
of N. For the speed of evolution, naive application of the
clonal interference analysis gives v � s2

ci � L2/b, which is
not even the correct scaling with L. But if, instead, the
fixation rate rather than the establishment rate is used
to give an improved (though it is not a priori clear why

Linkage and Positive Selection 1783



this should improve the result) clonal interference
estimate of v, the correct scaling with L can be obtained.

At this point, it is not clear how good the predomi-
nant-s approximation is for the long-tailed distributions
or how wide a range of s around its predominant value is
important. A more sophisticated analysis is needed for
this, as well as for understanding the crossover from
the successional NUb>1 to the large-q regime analyzed
above; these are topics for future work.

The width of the important range of s around s̃: We
now turn to a discussion of the basic assumption of the
predominant-s approximation: that a narrow range of s
around s̃ dominates the evolution.

In the successional-mutations regime, the speed of
evolution is v � N

Ð
s2mðsÞds. This means that s of order

s dominates ½as long as m(s) falls off faster than 1/s3�.
That is, v(s) falls off quickly enough away from its
maximum that a range of s within a factor of 2 or so of
the typical value dominates the evolution. In the multiple-
mutations regime, the maximization of the single-s
speed v(s) over s gives a predominant s̃ ? s, but no
direct information on the range of s that contributes. To
estimate this range, we look at how quickly v(s) falls off
as a function of s � s̃. A natural estimate is the range over
which v(s) is not lower than vðs̃Þ by more than, say, a
factor of 2. Using these criteria, the width of the range is
comparable to s̃ itself: that is, mutations with effects
between s̃=2 and 2s̃ matter. This confirms our assertion
that the single-s model gives at least a good qualitative
picture of the dynamics. Since all the important muta-
tions are of order s̃, ‘‘leapfrogging’’ (by which, for ex-
ample, a double mutant gets a mutation that makes it
more fit than an existing quintuple mutant) does not
have a large effect on the evolution. We can thus indeed
consider the basic dynamics to be the accumulation of
mutations of roughly size s̃ according to the single-s
description given above.

However, our calculation of the range of s̃ that matters
calls into question the predominant-s approximation:
Why should the actual v be vðs̃Þ as we have defined it
thus far rather than, e.g., v(s) averaged (or some other
weighted integration) over s? A more sophisticated
analysis, which will be described elsewhere, shows that
for short-tailed distributions (b . 1), both s̃ and v are
given correctly by the predominant-s approximation in
the large-L/‘ limit—up to only differing factors inside
logarithms and other small corrections. But the range of
s that significantly affects v is much smaller than that
guessed from the predominant-s approximation. This
should perhaps not be surprising, as the predominant-s
approximation assumes that all s contribute to v as if
different-sized mutations did not interfere. But inter-
ference will in fact tend to suppress the contribution to v
from s away from s̃. We find that for short-tailed distri-
butions, in fact only s � s̃ of order s̃=

ffiffi
‘
p

are important. In
terms of the mutation rate Ũb to mutations with s � s̃,
this range has width s̃=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðs̃=ŨbÞ

p
. That this difference

does not invalidate the predominant-s approximation
result for v can be understood by considering the weak
dependence of v on the mutation rate in the single-s
model. As v depends only logarithmically on Ub, re-
placing Ub either by an effective Ũb that includes a
substantial range around s̃ or by one that includes only a
narrow range will alter factors only inside the logarithms
and thus have little effect on the inferred v. Since the
fuller analysis finds that an even narrower range around
s̃ matters, it strengthens our contention that there is a
predominant s (albeit one that depends on Ub) and that
the full dynamics are very similar to those of the single-s
case analyzed in detail in this article. The exception to
this is the intermediate-N regime in which the crossover
from successive to multiple mutations occurs and the
effective q , 2 or so: we do not discuss this complicated
crossover regime further here, although it may be rele-
vant in many experimental situations.

We have seen that the predominant-s approximation
does well for the primary quantities of interest, s̃ and v,
although it overestimates the range of s that plays a role.
In contrast, the clonal-interference-only analysis yields
the incorrect behavior for short-tailed distributions. For
the model distributions, L(s) ¼ ‘ 1 (s/s)b, the clonal
interference analysis yields

sci � sðL � ‘Þ1=b: ð68Þ
For the short-tail case, this is much larger than the

predominant value, s̃. Indeed it is qualitatively wrong:
sci increases with increasing Ub, while s̃ decreases. Using
sci instead of s̃ leads to incorrect predictions of v; in
particular, clonal interference predicts that v grows only
sublinearly with ln N. This problem stems from the fact
that clonal interference analyses have the wrong basic
picture of the dynamics. The evolution is not in fact
dominated by the rare very large mutations that occur
only once per generation in the full population, as the
clonal interference approximation implicitly assumes.
Rather, the evolution is actually controlled by multiple
mutations of smaller (though still larger than average)
fitness that occur frequently even in the much smaller
subpopulations that exist in the nose of the fitness dis-
tribution of the steady-state evolving population. Be-
cause the multiple-mutation effects depend on there
being sufficiently large rates for the predominant muta-
tions, increasing the overall mutation rate allows multiple
smaller mutations to beat larger ones. Thus increasing
Ub results in decreasing s̃—in contrast to the increase of
sci with Ub.

A simple example: A concrete (albeit artificial) ex-
ample is useful to illustrate the points made above. We
consider a simple model with three classes of mutations,
each with a single s: weak mutations with a small ss, in-
termediate ones with a medium sm, and strong muta-
tions with a large sl; each class has its own mutation rate.
Specifically, we consider ss ¼ 10�3, sm ¼ 10�2, and sl ¼
10�1, with mutation rates Us ¼ 9 3 10�6, Um ¼ 4 3 10�6,
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and Ul¼ 5 3 10�10, crudely approximating an exponen-
tial distribution of beneficial mutations (with, in terms
of the family of distributions discussed above, b¼ 1, s¼
10 3 10�2, ‘ � 7).

For small population sizes, the successional regime
obtains and

v � N Uss
2
s 1 Ums2

m 1 Ul s
2
l

� �
; ð69Þ

which is dominated by the medium mutations. As N
increases, we expect multiple mutations to start to play a
role when NUm � 1/ln(sm/Um) � 1

8, corresponding to
crossover out of the successional-fixations regime for N
� 3 3 104.

To understand the behavior for larger N, we first
analyze the three types of mutations separately, similar
in spirit to the predominant-s approximation. That is,
we consider three submodels, each of which has only
one of the three types of mutation. The corresponding
rates of evolution, vs, vm, and vl must all be less than vtot,
that of the full model, because the full model has more
beneficial mutations than any of the three submodels.
Conversely, we expect vtot # vs 1 vm 1 vl because, at best,
the different mutations can accumulate independently;
in practice, they will tend to interfere (although mul-
tiple mutants with combinations of the different types
can matter and contribute to the actual speed). Each of
the three submodels has only one type of mutation, so
our single-s results can be used directly to obtain vs, vm,
and vl.

For a population of size N ¼ 105—just into the
multiple-mutations regime—we find vs ¼ 3.5 3 10�7,
vm ¼ 1.5 3 10�5, and vl ¼ 5 3 10�7. The leads of the
corresponding fitness distributions—the number of mul-
tiple mutants above the mean that exist at one time—are
qs¼ 2.7, qm¼ 2.2, and ql¼ 1. Thus the small and medium
mutations accumulate primarily as double and triple
mutants, while the large mutations (alone) would be in
the successional-mutations regime. For this moderate-
size population, the mutations with effect sm are the
predominant mutants. They clearly dominate the full
model, since vtot will be in the very narrow range between
vm and vm 1 vs 1 vl. Although the small mutations are
common, they do not matter because even triple-small
mutants—as occur in the small-only model—will be rou-
tinely outcompeted by single medium mutations. The
medium mutations occur frequently in the fixation time
of the triple-small mutants and thus routinely leapfrog
them. The small mutants never interfere with medium
mutations, and those that fix do so only because they
happen to be linked to medium mutants. The large mu-
tations, in contrast, do interfere with the medium muta-
tions, but occur so rarely that they are not important for
the overall evolution rate. In this example, a few hundred
medium mutations fix for each large mutation that esta-
blishes, so almost all medium mutations fix without being
affected by a large mutation. Thus the accumulation of

mutations is very well approximated by the process that
our single-s analysis describes, provided we choose s̃ ¼ sm

and Ũb ¼ Um.
As the population size is increased, vl will increase

faster than vm or vs because it is not yet in the regime
with logarithmic N dependence. For N ¼ 106, vs ¼ 5 3

10�7, vm ¼ 2 3 10�5, and vl ¼ 5 3 10�6. The medium
mutations still predominate, but less strongly than before.
By N¼ 107, we have vs¼ 6 3 10�7, vm¼ 3 3 10�5, and vl¼
5 3 10�5, so the large mutations begin to dominate. For
larger N, they will do so even more strongly. This shows
how s̃ increases with N. With this discrete r(s), s̃ changes
quite rapidly in a small range of ln N, but for a con-
tinuous fitness distribution the increase will be smooth
(of course, continuous distributions present additional
complications involving the proper weighting of muta-
tions near s̃ ).

We could also apply clonal interference analysis to
this three-class model. From these analyses, for a bene-
ficial mutation to fix, it must establish and then not be
interfered with by a more-fit mutation before it fixes.
The probability that a mutation of size s will be in-
terfered with is lðsÞ � ðNUb=sÞln N

Ð ‘

s rrðrÞdr . Thus
the putative distribution of beneficial mutations that
fix will be rF(s) ¼ Kse�l(s)r(s), where K is a normaliz-
ing constant. The average effect of a fixed beneficial
mutation—effectively sci—would be the mean, ÆsæF, of
this rF(s). These mutations arise at average rate ÆkæF ¼
NUbPfix, where Pfix is the average probability of fixation,
Pfix ¼

Ð ‘

0 se�lðsÞrðsÞds. Clonal interference analysis yields
v ¼ ÆsæFÆkæF. For our three-class example, with N ¼ 105,
this gives vtot � 4 3 10�5, �3 times higher than the
maximum possible as calculated from vtot¼ vs 1 vm 1 vl.
For N¼ 106, clonal interference predicts vtot� 4 3 10�4,
�20 times too high. The problem is easy to diagnose.
For both values of N, the clonal interference theory
correctly predicts ÆsæF � sm. However, implicit in the
calculation of ÆkæF is the incorrect assumption that these
medium mutations accumulate singly. Conversely, the
predominant mutation approach is to choose sm as the
single value of s and then analyze how the multiple-
mutation process sets the rate at which this class of
mutations accumulate.

DISCUSSION

Beneficial mutations are often assumed to be rare,
and adaptation therefore to be mutation limited. This is
the basis for the picture of successional selective sweeps
and the conclusion that mutations arise and fix at a rate
proportional to NUbs. This picture of successional sweeps
underlies the strong-selection weak-mutation assumption
that is essential to many conclusions in population gen-
etics and evolutionary theory. This assumption is likely to
be correct for the evolution of some strongly selected
characters in complex multicellular organisms. But most
unicellular organisms and viruses tend to live at much
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larger population sizes and can have larger mutation rates.
For such populations, much of one’s intuition from the
rare-mutations picture will often be wrong. This makes it
important to go beyond the successional-mutations re-
gime and to develop an understanding of evolutionary
dynamics when beneficial mutations are common.

This is a very broad subject. In this article, we have
focused on the concurrent-mutations regime in which
there are strong selection and strong mutation. By strong
mutation, we mean that the total beneficial mutation
production rate NUb is sufficiently large that the time
to establish a mutant population is less that the time it
will take to sweep to fixation. As the establishment time
is 1/(NUbs) and the sweep time is ð1=sÞln Ns, the con-
dition to be in the concurrent mutations regime is
NUb * ð1=ln½Ns�Þ, so that multiple beneficial mutations
are present in the population and tend to interfere. By
strong selection, we mean both Ns?1 and s=Ub?1. The
former condition is what is commonly meant by strong
selection and is required to ensure that selection is
strong compared to drift except when subpopulations
are rare. The latter constraint makes the analysis sim-
pler, because it ensures that only one population at a
time needs to be treated stochastically, but is not
essential for the general picture.

The concurrent-mutations regime that we analyze is
likely to be quite common in nature. Even if there are
only 10 or so beneficial point mutations available to a
population that has a per base pair mutation rate of
order 10�9, this gives Ub � 10�8. To have NUb * ð1=ln
½Ns�Þ, we therefore need only population sizes of order
107 (1/ln½Ns� will typically be � 1

10 for any reasonable
values of s in such large populations). In other words,
if there are even a few mutations of effect s?10�7

available, a population as small as 107 individuals will
experience the multiple-concurrent-mutation effects.
These sizes are well within normal ranges for many pop-
ulations, including, for example, Escherichia coli in a
single human gut, cells in an evolving cancer, pathogens
within a single host, and many others. Moreover, this is a
very conservative estimate. Viral and certain bacterial
populations, or mutator strains in any organism, often
have much higher overall mutation rates. Organisms
with more beneficial mutations available will also have
much larger Ub. In recent experiments in Saccharomyces
cerevisiae adapting to low glucose, we have inferred a
beneficial mutation rate of Ub ¼ 10�5.5 in nonmutator
strains and an order of magnitude higher in mutators
(Desai et al. 2007). Such values are not atypical ( Joseph

and Hall 2004). For these values of Ub and s of order
1% or a fraction of 1%, a mutator population of N� 107

will have q� 4, so that quadruple mutants will be present
and sweep collectively (for nonmutators, q � 3). With
these parameters, each factor of 10 increase in N will
increase q by�1. In general, we see that the concurrent-
mutations regime is surely relevant for many microbial
populations.

Within the concurrent-mutations regime, we have
explored how a population accumulates beneficial mu-
tations and maintains variation in fitness. The funda-
mental theorem of natural selection states that the rate
of increase in the mean fitness of a population equals
the variance in fitness (Fisher 1930). This remains true.
Our work demonstrates how the variance is itself deter-
mined: how fitness variation accumulates while it is
being selected on. The key here is the balance between
selection narrowing the fitness distribution and muta-
tion broadening it. This is an unusual type of mutation–
selection balance, very different from the deleterious
case. Only mutations at the nose of the distribution
matter. Others inherit a less good genetic background
and do not contribute to the long-term evolution of the
population: they are destined to be outcompeted by new
mutations at the nose. The dynamics at the nose, where
subpopulation sizes are small, dominate the behavior.
This means that the natural measure of the width of the
distribution is the lead, not the variance—in contrast
to conventional treatments. It also means that random
drift and finite N effects are crucial, even for arbitrarily
large N, as long as there are more than a few beneficial
mutations to be acquired. Thus for any treatment of
evolution in fitness ‘‘landscapes,’’ these effects need to
be taken into account whenever the population is not
localized around a fitness peak: in contrast to quasi-
species equilibria near fitness peaks, deterministic ap-
proximations give nonsense.

By matching the speed of advance of the nose with the
speed of advance of the bulk of the distribution, we have
shown that the lead depends logarithmically on N and
Ub according to the formula

q � 2 ln½Ns�
ln½s=Ub�

: ð70Þ

This leads to a speed of evolution that is also logarithmic
in N and Ub,

v � s2 2 ln½Ns� � ln½s=Ub�
ln2½s=Ub�

: ð71Þ

Our work extends and complements earlier work on
the concurrent-mutations regime. Kessler et al. (1997)
and Ridgway et al. (1998) studied a model like ours,
although their initial work did not properly account
for all stochastic effects. Recently they have developed a
moment-based approach that provides results qualita-
tively similar to ours in certain regimes (D. Kessler and
H. Levine, unpublished results). This is a potentially
useful technique, although, as discussed in appendix a,
it quickly becomes unwieldy as more moments need to
be kept, and numerical analysis is required.

Rouzine et al. (2003) also studied a model similar to
ours in the context of human immunodeficiency virus
evolution. Their analysis also involves a separation be-
tween deterministic and stochastic behavior, but treats
the stochasticity at the nose in a different and less
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explicit manner. To couple this to the deterministic
results, Rouzine et al. (2003) appear to require a
smoothness in the fitness distribution that would obtain
only when it is broad. Thus their analysis is strictly valid
only at what we would call very high speeds: v * s2. But,
because they treat only one population stochastically at a
time, their analysis also requires Ub=s>1, so their results
are valid only at enormous population sizes ½and very large
q * lnðs= UbÞ�. This regime is likely to be relevant for
certain viral populations, which was their main focus.
Nevertheless, the results of Rouzine et al. (2003) are
similar to ours, in that they involve logarithms of Ns and
Ub=s in similar ways (though they do differ substantial-
ly—in the regimes we have considered their results lead to
errors typically ranging from 650 to 250%). This is
unsurprising, since the simple beneficial mutation–selec-
tion balance arguments (in our heuristic analysis section)
apply to the very fast regime of Rouzine et al. (2003) as well
and lead generally to logarithms of Ns and Ub=s. Further
analysis shows, if some algebraic errors are corrected in
their work, and the large Ns and s/Ub asymptotics are
worked out, that our result for v can be recovered up to
somewhat different factors inside large logarithms (I.
Rouzine, personal communication).

Various studies have been carried out on clonal
interference—the other effect that occurs when there
are concurrent mutations (i.e., in the strong-selection
strong-mutation regime) (Gerrish and Lenski 1998;
Orr 2000; Gerrish 2001; Johnson and Barton 2002;
Kim and Stephan 2003; Campos and De Oliveira 2004;
Wilke 2004). We have discussed the relationship be-
tween this work and ours and analyzed a model with a
distribution of beneficial mutations that includes both
clonal interference and multiple-mutation effects. Kim

and Orr (2005) have also analyzed some of the inter-
play between these effects. Clonal interference analysis
by itself makes qualitatively similar predictions to our
work about the rate of accumulation of beneficial muta-
tions. Both predict that v grows much less than linearly
in N and Ub (as do the analyses of D. Kessler and
H. Levine, unpublished results, and Rouzine et al. 2003),
although the quantitative predictions differ. The major
qualitative differences are in the mechanisms by which
the evolution takes place. In clonal interference analysis
large mutations that occur in individuals that have roughly
the mean fitness—i.e., in the majority subpopulation—
dominate the evolution. Thus one would expect to see
strong selective sweeps and a population that is typically
either nearly clonal or in the midst of such a sweep
(except occasionally when a smaller mutation becomes
transiently very common before being outcompeted by
a larger one). By contrast, except when there is a long
tail to the distribution of s, we have shown that the evo-
lution is dominated by multiple mutations of inter-
mediate effect, so the selective sweeps are much less
pronounced and the population always maintains sub-
stantial variation in fitness. And we have shown that even

when the distribution of s does have a long tail, some of
the quantitative predictions for the speed of the evolu-
tion are different from clonal interference predictions.
We find that the mutations that dominate the evolution
in the concurrent-mutations regime have effects in a
narrow range around some predominant value, s̃. The
simple single-s model is thus surprisingly good, pro-
vided we use s ¼ s̃ and Ub equal to the mutation rate to
beneficial mutations of this magnitude.

Over the past few years, much experimental evidence
has accumulated that supports the prediction that v
grows less than linearly in N and Ub (de Visser et al.
1999; Miralles et al. 1999, 2000; Colegrave 2002; de

Visser and Rozen 2005). This has often been inter-
preted as support for the clonal interference picture.
However, the experimental data on the quantitative de-
tails of the dependence of v on N and Ub cannot dis-
tinguish between clonal interference analysis and our
results. Thus these experiments also support our theory.

We have recently (in collaboration with Andrew Murray)
conducted experiments on asexual evolution of yeast
in low glucose. For a range of different N and Ub we
measured the distributions of fitnesses within the evolv-
ing populations and the dynamics (v(t)) by which the
fitness increased (Desai et al. 2007). Since, unlike earlier
work, these experiments measured the widths of the
fitness distributions and the strengths of selective sweeps,
we were able to distinguish between our analysis and
clonal interference acting alone. The experimental data
support the multiple-mutation theory, with both v and
the leads of the fitness distributions depending on N
and Ub consistent with our predictions. Clonal interfer-
ence analysis, on the other hand, would predict that
populations maintain less variation in fitness and that
this variation would not scale with N and Ub as we pre-
dict. We also measured how the populations increased in
fitness over time, finding smooth increases suggestive of
multiple mutations of intermediate size fixing together.
This was again consistent with our theory and inconsis-
tent with clonal interference alone, which would suggest
that rare larger mutations dominate the evolution. Com-
bining all these data, we found that clonal interference
was ruled out unless several parameters were finely tuned.
Thus in the only experimental test able to distinguish
the two effects, multiple mutation effects explain the data
better than clonal interference alone. This represents
only one set of experiments in one organism in one se-
lective condition, so it is quite possible that in other
circumstances the reverse will be true. Yet, even if clonal
interference is found to better characterize the dynamics
in some situations, we have shown that to understand this
properly one needs to analyze the interplay between this
and multiple beneficial mutations on the same genome.

Despite being consistent with one experimental test,
the model we have analyzed surely has many short-
comings. We have analyzed one of the simplest possible
situations for positive selection. Violations of certain
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simplifying assumptions, such as neglecting deleterious
mutations and assuming a single effect s of beneficial
mutations, may well, as we have argued, have relatively
minor effects beyond modifying the effective parame-
ters Ub and s of the model. Furthermore, the neglect
of interactions between effects of mutations (epistasis)
may not invalidate the overall results. The key assumption
is that the distribution of the magnitudes of available
beneficial mutations is roughly independent of the
genetic background even though the actual set of these
mutations varies. That is, after each uphill-fitness step is
taken, the distribution of possible next steps is similar,
although they may now be in different ‘‘directions.’’

However, breakdown of some of our assumptions will
surely be crucial. For example, certain nonmultiplicative
(epistatic) effects of beneficial mutations, as well as
frequency-dependent selection, can lead to very dif-
ferent behavior. But our results should serve as a null
model, useful in forming baseline predictions. Depar-
tures from the main results—especially the scalings with
population size and mutation rates—indicate the pres-
ence of one or more complicating factors.

Even within the context of our simple model, how-
ever, many important questions remain. One of these is
the expected genetic variation. We have calculated the
expected variation in fitness, but individuals with the
same fitness will often have different sets of beneficial
mutations. Thus the true genetic diversity at the posi-
tively selected sites can be substantially greater than the
variation in fitness. Although sometimes the first new
mutant to establish will dominate the lead population,
typically around q different beneficial mutations will
occur and contribute to extending the nose during
one establishment. Subsequent mutations that further
extend the nose will occur at random among these
different backgrounds, thus changing (and typically
reducing) this diversity, even as the diversity of the new
mutations is created. Eventually particular beneficial
mutations do sweep, but these sweeps are not necessarily
uniform. Instead, frequencies typically go up and down
depending on which backgrounds future mutations
occur in. Understanding this diversity is important if
one is to look for the signature of this type of selection
in sequence data. It is also important to understand the
potential benefits of sex, as we discuss below.

In addition to the diversity at the positively selected
sites, we also want to understand the expected patterns
of variation at linked neutral and deleterious sites.
These will have a very different character than in neutral
evolution or in the successional-mutations picture of pos-
itive selection and may also help us detect concurrent-
mutations evolution in sequence data. The neutral,
deleterious, and beneficial diversity is also important in
understanding the role of epistasis. If potential benefi-
cial mutations have epistatic interactions with other
mutations, the typical variation in the presence of these
other mutations is crucial.

Another important question is the effect of sex
or recombination in a population in the concurrent-
mutations regime. According to the Fisher–Muller
hypothesis, sex should reduce interference effects and
hence prevent the wasting of beneficial mutations. This
allows sexual populations to accumulate beneficial mu-
tations faster than asexual ones. Crow and Kimura

(1965), Bodmer (1970), and Maynard Smith (1971)
attempted to calculate the strength of this effect by
comparing the v in an asexual population to the v in a
population with free recombination. They defined the
advantage of sex to be the difference between these quan-
tities. However, their calculation of the asexual v assumed
that only two beneficial mutations were possible—thus
ignoring triple and higher mutants and not properly
accounting for the competing effects of mutations and
selection. With our calculation of the asexual v, however,
one can make this comparison. In the completely free
recombination case, all beneficial mutations behave in-
dependently: there is no interference between them or
collective behavior among them. Thus with free recom-
bination, vfr ¼ NUbs2, as in the successional-mutations
regime. The difference between our calculated asexual v
and vfr thus predicts a potentially huge Fisher–Muller
advantage to sex, which is zero in small populations and
grows rapidly as N or Ub increases.

However, the above analysis is not directly applicable
to the evolution of sex, since sex and completely free
recombination are certainly not synonymous. Rather,
sex may occur only occasionally or recombination
might be infrequent, so that linkage persists for some
time. An interesting situation is when sex and recom-
bination are relatively rare. We want to understand
whether or not a small amount of sex in an otherwise
asexually evolving population would be advantageous
(and hence be likely to become more common). To do
so within the simplest model for the asexual evolution,
we must first calculate the true genetic diversity among
beneficial mutations within all the subpopulations at
different fitnesses. Given this, we can then calculate the
probability that sex between any two individuals will
produce more-fit offspring.

This is a subtle question, because the average effect of
sex on the variance in fitness or in the tendency to bring
together good mutations more than it breaks them up is
largely irrelevant. Rather, what is important is the rate at
which recombination generates (or eliminates) anoma-
lously fit individuals—that is, its effect on the nose. Sex
will tend to break up beneficial mutations at the nose and
hence tend to destroy some of the most-fit individuals. At
the same time, however, it will occasionally mix two less-fit
individuals in just the right way to create an offspring that
is more fit than the current nose. It is the competition
between these two effects that determines the advantage
of sex. Even if sex on average tends to increase the vari-
ance in fitness, this will not increase the speed of evolu-
tion in the long term if it does not also extend the nose.
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Rather, the increased variance from sex will be balanced
by the actions of selection and mutation (in the end, the
mean fitness cannot advance any faster than the nose),
and the rate of adaptation will be largely unchanged. On
the other hand, if sex does extend the nose it will tend to
speed up the evolution even if it has little effect on the
variance. In this case, these occasional sex-driven expan-
sions of the nose would act like extra mutations, which
modify the mutation–selection balance and cause an in-
crease in the steady-state variance via increasing the lead—
even though sex has no direct effect on the variance.

In recent years, Otto and Barton have made sub-
stantial progress in understanding the effects of sex,
short of completely free recombination, in the Fisher–
Muller picture (Barton 1995; Otto and Barton 1997,
2001; Barton and Otto 2005). This work takes the
Hill–Robertson perspective and does not include the
full dynamics of the asexual population that we have
worked out here. As far as we are aware, it is not clear
whether the effect of sex at the nose within our cal-
culated population structure is the same as the effect of
sex in Otto and Barton’s analysis. Future work is needed
to unify these perspectives and understand the effects
of sex even within the simplest models.

To summarize our work, we have explored evolution-
ary dynamics when beneficial mutations are common
and there are many present concurrently. We have laid
out an analytical and conceptual framework for un-
derstanding how asexual populations accumulate ben-
eficial mutations—the dynamics of adaptation in this
extremely basic situation. Using this framework, we have
demonstrated that the rate at which a population ac-
cumulates beneficial mutations does increase only slowly
with population size or mutation rate beyond a certain
point. Although we have focused on the effects of mul-
tiple mutations, we have also analyzed the interplay be-
tween this and clonal interference between mutations of
different strengths. Our results have implications for
comparing evolution between different populations and
for designing experiments to investigate various aspects
of evolution in the laboratory. Statistical tests that can
distinguish, on the basis of sequence data, between vari-
ous scenarios for ongoing evolution are needed: our
results provide a step in this direction. More generally,
our results provide a framework for starting to address
the effects of sex, of mutators, and of epistatic interac-
tions in large populations.

We thank John Wakeley, Igor Rouzine, Dan Weinreich, and especially
Andrew Murray for useful discussions. This work was supported in part
by the National Institutes of Health via grant P50-GM068763-01, by the
National Science Foundation via grant DMR-0229243, and by the Merck
Foundation.
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APPENDIX A: DETERMINISTIC AND MOMENT-BASED APPROACHES

There are a variety of other possible approaches to studying the problem we have analyzed. In this appendix, we
briefly discuss two of these: deterministic approximations and moment-based approaches. Both of these methods start
by considering the distribution of fitnesses within the population as some function w(x, t), which describes the number
of individuals at fitness x at time t. As long as s is small, w can be treated as continuous: this is equivalent to the
conventional ‘‘diffusion approximation.’’ The forces of mutation, selection, and random drift then lead to a stochastic
differential equation that describes the time evolution of this distribution w(x, t),

@wðx; tÞ
@t

¼ ½x � �xðtÞ � Ub�wðx; tÞ1 Ubwðx � s; tÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; tÞ

p
jðx; tÞ; ðA1Þ

where �xðtÞ is the population mean fitness and j is a Gaussian random term but with subtle correlations needed to
ensure that the fluctuations do not change the total population size N ¼

P
x wðxÞ. Studying this equation can then

lead to predictions of the speed of evolution, maintenance of variation, and other interesting quantities.

The simplest possible approach is to neglect genetic drift and attempt an ‘‘infinite-N ’’ solution to the problem. This
deterministic approach is extremely useful in many situations, including in understanding deleterious mutation–
selection balance. However, when considering beneficial mutations, it is essential to account for genetic drift and,
crucially, the discrete nature of individuals. Fractional numbers of deleterious mutations, implicit in the deterministic
mathematical analyses that are often appropriate for large populations, are of little consequence because they are
selected against. But allowing fractional numbers of beneficial mutants at the nose yields nonsense because fractional
individuals that are highly fit multiply and take over the population. Thus even for very large populations, the
population size, which determines the smallest fraction of the total population that represents at least one individual,
plays a crucial role. Infinite-N deterministic approximations are not even qualitatively correct.

The problems with the simple deterministic approximation to Equation A1 are revealed by analyzing the resulting
behavior. This shows that the deterministic solution does not support a steady state v—rather, it predicts that the speed
of evolution accelerates without bound. This is clearly unbiological, as it involves a concomitant exponentially
increasing width of the distribution and thus smaller and smaller numbers in the nose. Except for very short times
(roughly until the nose develops in the correct analysis), the deterministic approximation is thus drastically wrong
even for very large N. The source of the problem is that each more-fit population grows faster than the one before.
Thus early mutants into a new more-fit fitness class at fitness x 1 s grow faster than the population at fitness x. This
means that even tiny fractions of an individual—certainly nonbiological!—will later give rise to a large population even
without further mutations. Indeed, it is the ‘‘descendants’’ of these early fractional mutants that will later dominate the
population of individuals at fitness x 1 s, despite the fact that there are more mutants occurring from fitness x. These
descendants then produce fractional mutants to fitness x 1 2s, and the unrealistic aspects are further exacerbated.

An alternative way to study Equation A1 is to use a moment-based approach. We can can multiply Equation A1 by x
and integrate to find the rate of change of the first moment of the fitness distribution (the speed of evolution) in terms
of the second moment (the variance). In the limit that mutation is negligible compared to selection in the bulk of the
fitness distribution, dÆxæ/dt � var(x), simply the fundamental theorem of natural selection. One can easily work out
that the time derivative of the second moment (the variance) involves the third moment. The time derivative of the
third moment involves the fourth moment, and so on. This moment hierarchy does not close. Even so, this approach
can yield accurate results for short timescales. The more moments that are kept, the longer the results will be accurate
for, and if enough are kept the steady-state speed of evolution can be calculated accurately. The lowest-order version of
this is familiar—it corresponds to assuming that the variance is given by its value at t¼ 0 and does not change and that
the speed of evolution is equal to that.

D. Kessler and H. Levine (unpublished results) carried out a sophisticated analysis using a moment-based ap-
proach; their work contains a more detailed analysis of the issues involved. Accounting properly for the effects of
mutations, stochasticity, discreteness in population number, and fixed total population size is very difficult. Thus far,
this analysis involves complex moment equations that unfortunately provide little intuition and no simple analytic
results.
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The problems with moment equations are unsurprising on the basis of our analysis. As we have noted, it is the lead
qs, not the variance or another moment that is most naturally thought of as being maintained by the balance between
mutation and selection. This lead is not a moment of the fitness distribution—it is instead a measure of its nose, near to
which the discreteness in population number is crucial. The lead thus represents some combination of high moments
of the fitness distribution, with the order of the moments that matter depending on N: to capture the effects of the
sharp nose of the distribution, at least of order 2 ln Ns moments are needed, and such high-order moments may
be dominated by rare fluctuations of the lead. It is hardly surprising that getting at the dynamics of the lead with
a moment expansion is very cumbersome. Our approach, in contrast, handles the stochastic issues at the nose in a
natural way while simply tracking the effects of selection that dominate in the bulk of the distribution.

APPENDIX B: VARIABLE N AND EFFECTIVE POPULATION SIZE

We have thus far assumed that the population size is constant. We now consider what happens when we relax this
assumption.

If changes in N are rapid compared to the changes in the mean fitness, then we can define a constant effective
population size Ne. The definition of Ne can be complicated—it is not necessarily the geometric mean of the actual
population sizes. Rather, Ne is the value of the constant population size in our model that gives the same dynamics as
the changing-N situation averaged over a timescale long compared to the shifts in N. In practice, this means that if our
variable-N population were clonal, NeUbs must be the time-averaged rate at which beneficial mutations would
establish. Our theory at constant N is then correct provided we use N¼Ne. Strictly speaking, this Ne must also describe
the time selection takes to operate, which can mean that a single effective population size does not exist—but since the
timescale for selection depends only weakly on N, this can often be neglected. Serial dilution protocols are one case
relevant to many experimental situations. Here, a population grows exponentially for G generations, is diluted back to
its original size Nb, and then this cycle is repeated. The effective population size in this scenario was calculated by Wahl

and Gerrish (2001), who found Ne ¼ NbG ln(2).
In the opposite regime where the changes in N are much slower than changes in the mean fitness, the lead and

fitness distribution adjust quickly enough that the correct steady-state behavior for the current N always obtains. This
means that we can simply replace the N in our results with the time-dependent N(t).

If the changes in N occur on comparable timescales to the changes in the mean fitness, the situation is much more
complicated. We cannot define an effective population size, because the changes in N are too slow to be ‘‘averaged’’
over. On the other hand, the changes in N are too fast to allow the population to continuously adjust and stay in steady
state. Rather, the population will often be in a transient regime with a complex dependence on past values of N. We do
not analyze this case. Though it is an interesting subject for future work, it is a special situation that is unlikely to have
general importance.

APPENDIX C: RUNNING OUT OF BENEFICIAL MUTATIONS

We have taken the beneficial mutation rate Ub to be a constant. However, each beneficial mutation that establishes is
likely to change the total number of beneficial mutations that are available. Clearly once an individual has a beneficial
mutation, that particular mutation is no longer available. But it is also possible that one mutation may open up or close
off other possibilities. Thus the beneficial mutation rate Ub may change in complicated ways.

In many cases, Ub will change slowly with each mutation. Our theory predicts that the steady-state value of q at a given
Ub is qðUbÞ ¼ 2 ln½Nqs�=ln½ðq � 1Þs=Ub�. Provided that the change in q(Ub) over q mutations (after which the fitness
distribution has moved through its full width) is small, then the population is always approximately in the steady state
and our theory still holds—we simply replace Ub everywhere with the appropriately varying Ub(t). This condition holds
provided the change in Ub from a single mutation is small enough that q(Ub) changes by >1.

When Ub changes rapidly enough with each mutation that this condition is violated, the population fitness dis-
tribution does not adjust quickly enough to stay in steady state. In this case, the population will often be in a transient
regime with a complex dependence on past values of Ub. This situation can be analyzed with the algorithmic methods
described in the section on transient behavior.

One type of change in Ub is of particular interest: when each mutation that establishes is no longer available, but
does not open up or close off any other possibilities. We assume that there are initially k beneficial mutations, each of
which occurs at a rate m. After i such mutations have been established, there are ‘¼ k� i left, and the mutation rate is
Ub¼ ‘m. This situation has been analyzed in great detail by Rouzine et al. (2003). We can get a sense of the behavior by
substituting Ub¼ ‘m into our formula for q to calculate how much q changes after a single establishment. If this is >1,
our steady-state theory is a good description of the dynamics; we simply use the appropriate (changing) value of Ub.
Otherwise, the population will often be in a more complicated transient regime. This condition corresponds to
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where q‘ is the value of q corresponding to Ub ¼ ‘m. Since we have assumed that s=Ub?1, this condition will
almost always be satisfied, even for very small values of ‘ (i.e., when the population has almost reached the fitness
‘‘peak’’). The only potential complication is that if s=m & 1, then our assumption s=Ub?1 may break down for small
values of ‘.

APPENDIX D: FLUCTUATIONS IN t, VARIATIONS IN v, AND STABILITY OF THE STEADY STATE

The establishment time tq is a random variable. Above we calculated the steady state assuming that each esta-
blishment takes the average establishment time Ætqæ. However, there are stochastic variations in this establishment time
that lead to fluctuations in the speed of evolution. These variations could also affect the average v, because the average
v is really determined by the average effect of variable tq, not the effect of the average tq as we have assumed thus far.

The full distribution P(tq) is a special function—a change of variable in the one-sided Levy distribution P(nq).
However, we can calculate arbitrary moments Ætm

q æ. The second moment is

Æt2
q æ ¼ 1

½ðq � 1Þs�2 ln2 s

Ub

ðq � 1Þsinðp=qÞ
peg=q

� �
1

p2

6

2q � 1

q2

� �
: ðD1Þ

From this we can calculate the variance in tq,

VarðtqÞ ¼
p2

6

1

½ðq � 1Þs�2 �
1

½qs�2
� �

: ðD2Þ

The relative variation in tq is thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtqÞ

p
Ætq æ

� p

q ln½s=Ub�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q � 1

q

s
: ðD3Þ

For small Ub=s, this is small even for q¼ 2 and decreases as 1=q for large q. Thus the total fluctuations in the lead (and
the speed of evolution) are small, and ignoring them in calculating the average v is reasonable.

From these fluctuations in tq, we want to calculate the expected fluctuations in v. This would explain how much
variation in adaptation we should expect between different populations experiencing the same conditions (for
example, geographically distinct subpopulations or different experimental lines). Unfortunately, however, this is a
difficult problem. This is because successive establishment times are not independent. A shorter than average tq

immediately increases the lead. This tends to make subsequent establishments shorter as well. The opposite is true for
longer than average tq. Thus the lead is unstable to fluctuations in the short term—increasing the lead due to a short tq

creates a tendency to further increase the lead, and vice versa. This effect is enhanced because a shorter than average tq

means that the population is less influenced by subsequent mutations, so its size earlier is slightly bigger than usual ½i.e.,
t(2tq) is closer to tq than usual�. Again, the opposite is true for longer than average tq. This short-term instability is
checked at later times. A subpopulation with a short tq is more fit relative to the mean than it would be with an average
tq. It thus becomes the dominant subpopulation, increasing the mean fitness, more quickly. When this happens, the
lead is decreased—roughly q establishments after the short tq. Thus the various tq are correlated in a complicated way:
a short tq tends to favor further short tq, until roughly q establishments later when it favors longer tq, and the opposite is
true for longer than average tq.

To understand these complications, it is important to consider more carefully the form of the distribution of tq,
especially for large q. Since ‘ [ ln s/Ub is large, it is convenient to define

tq ¼
1

ðq � 1Þs½‘� D�; ðD4Þ

with D having both average value and stochastic fluctuations of order unity (and thus small compared to ‘). For small q,
the characteristic magnitude of the fluctuations is correctly captured by the variance. The behavior for large q is
somewhat more subtle. In this limit, the mean value of D is of order 1/q, but its distribution has an interesting form: D

is typically >1/q and is rarely negative, but with probability of order 1/q it is positive of order unity. The variance of D is
thus of order 1/q as can be seen from the above result for Var(tq), but, in contrast to what one might expect, all higher
moments are also of order 1/q. The strongly asymmetric form of the distribution of tq has a simple origin: there is some
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chance that an establishment occurs anomalously early, but as the feeding population is producing mutants at an
exponentially growing rate, it is highly unlikely that the establishment will be anomalously late.

For large q the form of the distribution of tq has implications for the distribution of the ‘‘sweep’’ time, ts, until new
mutants dominate the population. This is tsqtq� q‘/(q� 1)s� ‘/s on average for large q. The variations in ts will arise
from two sources. The first is the sum of the variations of q successive tq’s. From the above discussion, the sum of q D’s
will have a distribution with typical and average value both of order unity. This will give rise to fractional variations of ts
of order 1/qs, which is smaller than the mean ts by a factor of 1/q‘.

But another factor needs to be taken into account: a short tq will increase the lead and thus make the next
establishment likely to happen somewhat sooner, thereby making subsequent ones likely to be even earlier. Until the
mean population feels the effects of the series of new mutant subpopulations, the lead is thus exponentially unstable.
But this effect is not large: the deviation from average, u(t), of the speed of the lead, grows proportionally to the
increase, l(t), of the lead from qs with

du

dl
� s

l
: ðD5Þ

Thus dl/dt¼ ls/‘, so that for large q in a time ts� ‘/s, an anomalously large lead will grow further only by a factor of e.
This means that the effects of the exponential instability of the lead are only beginning to be felt before they are
counteracted by a sooner than typical advance of the mean fitness. The above estimate from a sum of roughly
independent D’s thus correctly gives the rough magnitude of the small variations in ts. But the correlations between
successive tq’s mean that the velocity fluctuations are correlated over times of order ts.

On timescales ?ts, the mean fitness �yðtÞ will grow, with the mean speed �v and diffusive fluctuations around this
described by

Æ½ �yðtÞ � �yðt9Þ�2æ � ½�vðt � t9Þ�2 1 2D j t � t9 j ; ðD6Þ

with the diffusion coefficient inferred from the above to be

D � s3

‘3: ðD7Þ

APPENDIX E: ON THE CUTOFF IN THE INTEGRAL IN H AND THE PATHOLOGIES OF Ænq(t)æ

One initially surprising property of the distribution P(nq, t) is that it has infinite mean: that is, Ænqæ¼ ‘. The infinity
arises because we have allowed mutations from nq�1 to nq to occur arbitrarily far back in the past—even before the
establishment of the q� 1 population (as described in the main text, this was implicit in using�‘ as the lower limit of
integration in the expression for H). Naively, it seems that this is a serious problem and that the solution is to impose a
realistic cutoff in time before which mutations are disallowed. That is, we could say that before t¼ ti there is a negligible
chance of mutations occurring and therefore set the lower limit of integration in H to be ti. This does remove the
infinite Ænqæ. However, it does nothing to address the underlying issue. Rather than being infinite, we would then have
Ænqæ depending very strongly on ti. This is biologically unreasonable, since the population nq arises from mutations that
tend to occur only after nq�1 reaches a relatively large size (naively, of order 1=Ub). Certainly the important properties
of nq(t) should be independent of whether we consider only mutations that occur after nq�1 reaches one individual vs.
two individuals, for example. Indeed, since our expression for nq�1(t) is not valid at these small subpopulation sizes
anyway, for our results to be valid, they had better not depend on such early times.

The solution to this apparent dilemma lies in the fact that the average nq(t) is not an important property of the
distribution of nq(t). Rather, Ænqæ is dominated by events so rare that they will never actually occur in practice—namely,
when a mutation occurs in the subpopulation nq�1 while nq�1 is extremely small. The reason for the resulting large Ænqæ
is that even though mutations are very rare far back in time when nq�1 is small, they have a huge effect on the future nq

when they do occur and establish. Since the subpopulation nq grows faster than the subpopulation nq�1, the very early
mutations dominate over later ones. This can be seen explicitly. The probability of a mutation from the population
nq�1 at a time t0 is ðUb=qsÞeðq�1Þst0 , and if a mutation occurs at that time it will on average lead to a lineage that at later
time t is of size nq � eqsðt�t0Þ. Thus the contribution to Ænq(t)æ from mutations at time t0 is of order ðUb=qsÞe�st0 eqst. The
dependence on t is as expected. However, the dependence on t0 is such that the smaller t0 is (especially at large
negative t0), the larger the contribution to Ænqæ. This average nq is thus dominated by mutations that happened very
early. The essential point is that although the probability of a mutation decreases exponentially at rate (q � 1)s as we
decrease the initial time t0, its effect on nq increases exponentially at the faster rate qs.
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But the lower limit of the mutation times is important only for determining the very-large-nq form of P(nq, t). This
part of P(nq, t) contains extremely small probabilities of extremely large nq, in such a way that all integer moments of nq

depend crucially on this choice. However, this high-nq part of P(nq, t) represents such a small total probability that
it would not occur in any real population. Thus getting P(nq, t) correct for this high nq cannot matter. To get the
quantities of interest—in particular Æln nq(t)æ—we can therefore use any cutoff we choose, and �‘ is a convenient
choice.

The problems with Ænq(t)æ all stem from the fact that the population grows exponentially once mutations occur.
Thus it is natural to ‘‘factor out’’ this deterministic exponential growth in defining aspects of the distribution P(nq, t)
and then focus on the distribution of ln nq(t)� qst. This is what our definition of tq accomplishes. The variable tq, as we
have seen, has none of the problems of Ænq(t)æ and its distribution is independent of the cutoff we choose (except for a
tiny and irrelevant tail for very anomalously small tq). As described in the section on the fate of a single mutant, the
essential point here is the difference between ÆeXæ and eÆXæ. The former (analogous to Ænqæ) is very sensitive to the tails of
P(X), while the latter (analogous to e Ætq æ) is not. And it is the latter that will determine the mean speed and fluctuations
around this.

APPENDIX F: MULTIPLE STOCHASTIC CLONES AND Ub/s

Our analysis rests on a separation between deterministic and stochastic dynamics, which we used to overcome the
limitations of branching process models. Such a separation is always possible for Ns?1, as noted above, because
nonlinear effects are not important when stochastic effects are, and vice versa. However, we have made a stronger
assumption: that the separation is possible right at the nose, so that only the most-fit subpopulation must be treated
stochastically but that all other subpopulations are deterministic. This is an important assumption, as a full stochastic
treatment would involve, for example, a double-mutant subpopulation whose size is a random variable sending
mutations into a triple-mutant subpopulation whose size is also a random variable, and so on. These multiply random
processes are difficult to understand analytically.

Fortunately, there is a broad parameter regime in which only the most-fit subpopulation is small enough to require
stochastic analysis. Two conditions must be met. First, the most-fit subpopulation at the nose cannot generate new
mutations that are destined to fix until it has become large enough that the stochastic effects are negligible. Implicit in
this condition is the assumption that the most-fit subpopulation can generate mutations that are destined to go extinct
due to drift. This naively seems reasonable, as mutations destined to go extinct due to drift should not matter in the
long term. This leads to the second condition: a population destined to go extinct due to drift cannot itself generate a
mutation that will become established—otherwise it does matter after all. Here we consider this latter condition. In
appendix g, we consider the former.

We begin by studying the dynamics of the lineage founded by a single mutant. Thus we are concerned with a
stochastic subpopulation with a fitness s (or some ps) greater than the mean fitness of the population, evolving by our
branching process model starting from 1 individual at t ¼ 0 and with no further mutations. We denote the size of this
subpopulation at time t by n(t). We have already calculated P(n, t), but this quantity offers no straightforward ways to
understand whether mutations can arise while n is still stochastic.

The expected number of mutations that arise from the mutant lineage is
Ð ‘

0 UbnðtÞdt. Inspired by this, we define

W ¼
ð‘

0
nðtÞdt ðF1Þ

as the ‘‘weight’’ of the mutant lineage. If the lineage becomes established, W will be infinite (the nonlinear saturation
effects are not part of the branching process). However, if the lineage goes extinct due to drift, W is the overall
integrated population size. The expected number of mutations destined to survive drift, k, that arise from this lineage
is therefore k ¼ WUbs.

We can exploit the independence between stochastic lineages (valid because Ns?1) to calculate W. The initial
mutant that founds the lineage will either die ½with probability 1=ð2 1 sÞ� or give birth ½with probability ð1 1 sÞ=ð2 1 sÞ�.
The time T until this happens is exponentially distributed with rate 2 1 s ½i.e., prob½T ¼ t� ¼ ð2 1 sÞe�ð21sÞt �. If it dies,
W is simply T. If it gives birth, W is T plus the W of each of the two offspring. We therefore have

prob½W ¼ w� ¼ 1

2 1 s
prob½T ¼ w�

1
1 1 s

2 1 s

ðw

v

ðw

0
dudv prob½T ¼ u�prob½W ¼ v�prob½W ¼ w � u � v�: ðF2Þ
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Converting to Laplace transforms, we can solve for W to find

W ¼ 2 1 z 1 s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 1 2zs 1 s2 1 4z
p

2ð1 1 sÞ ; ðF3Þ

where W(z) is the Laplace transform of prob½W ¼ w�. Note that W ðz/0Þ ¼ 1=ð1 1 sÞ, not 1. This is because there is a
finite probability (roughly s) that the lineage becomes established and thus has infinite weight. To focus on the
lineages that do go extinct, we simply ignore this weight at infinity.

This form of W(z) is impossible to invert analytically for general w. However, the small-z behavior controls the
dynamics at large w. For w?1 we have that prob½W ¼ w� falls off at least as fast as

prob½W ¼ w� � 1

2
ffiffiffiffi
p
p ð1 1 sÞe

�s2w=4w�3=2: ðF4Þ

Values of w * 1=s2 are exponentially suppressed. Integrating this result, we find that less than a fraction s of the
lineages have a weight .1=s2, and almost all of these are right at w ¼ 1=s2. This makes intuitive sense. The largest size a
lineage can reach without establishing is�1=s. If it does so, it takes�1=s generations to get to this size and another 1=s
generations to then go extinct. This is because the dynamics are an approximately neutral process while the lineage
size is ,1=s (drift dominates selection in this regime), so the classical neutral result applies. During this period its
average size is �1=2s, so the maximum value w can take should indeed be �ð2=sÞð1=2sÞ ¼ 1=s2. The chance of the
lineage reaching size 1=s is also�s (again by analogy to the classical neutral result) and once there it is about as likely
to establish as to eventually go extinct. So our result that w takes on this maximum value roughly a fraction s of the
time also makes intuitive sense.

To assume that mutations destined to establish never arise from a subpopulation destined to go extinct, we require
k ¼ WUbs>s. Note that the right-hand side of this expression is s because 1=s lineages go extinct for every one that
establishes and mutations destined to fix must be much more likely to arise from lineages that establish. Since the
maximum value of w is�1=s2 and this occurs a fraction s of the time, this translates to the condition Ub=s>1. (Values of
w , 1=s2 are more common, but in sum are still less likely to produce a mutation.) Thus we can ignore mutations from
stochastic lineages destined to go extinct provided

Ub

s
>1: ðF5Þ

We have not yet considered whether mutations can arise in the stochastic period of lineages destined to survive. We
address this question in more detail in appendix g. However, below a size 1=s the lineages that establish behave
similarly to the lineages that are destined to reach size 1=s and then go extinct, and above this size the surviving
lineages quickly become deterministic. Thus we expect that whenever mutations never arise from lineages that go
extinct, they will also never arise during the stochastic period of lineages destined to survive.

APPENDIX G: THE t(t) APPROXIMATION

Our method of linking the deterministic behavior of the bulk of the population to the stochastic behavior at the
nose hinges on our definition of tq. We defined tq as t(t / ‘), where t(t) is defined by

nqðtÞ ¼
1

qs
eqsðt�tÞ: ðG1Þ

The variable t(t) is just a change of variable from nq(t). From its definition, we see that t(t) is the time at which the
subpopulation would have reached size 1=qs had it always grown exponentially at rate qs until reaching size nq(t) at
time t. Thus t(t) accounts for all the incoming mutations and stochastic behavior up to time t and allows us to
summarize it by saying nq reached size 1=qs at time t(t) and was deterministic thereafter. The definition of tq as t(t /
‘) thus summarizes all the random behavior and all incoming mutations into a time the subpopulation would have
reached size 1=qs. Yet this is not actually the time the subpopulation reached size 1=qs (Figure 4). It could, for example,
have reached 1=qs earlier than this but by chance have grown slower than e qst for a while thereafter. Despite this, we have
assumed that the subpopulation did in fact reach size 1=qs at its establishment time in defining its size thereafter. That
is, we have written nq�1ðtÞ ¼ ð1=qsÞeðq�1Þst , defining t ¼ 0 to be the establishment time of this population. And we use
this form of nq�1(t) in calculating how many mutations this subpopulation generates.

For this to be reasonable, our form of nq�1(t) must be accurate once this population becomes large enough that
it starts generating mutants. This happens �tq generations after nq�1 became established (by definition, it takes �tq
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generations for the next mutations to occur, because tq is dominated by the waiting time for the first mutation to
occur). Thus for our result to be accurate, t(2tq) must be �tq (to be precise, we require tð2tqÞ � tq>1=s). That is,
there must not be much stochasticity after the population is large enough to generate mutations (and additional
incoming mutations must be negligible). Looked at another way, this means that the population cannot generate
mutations while it is stochastic.

To calculate t(2tq), we return to our solution H(z, t) for the Laplace transform of P(nq, t). The time dependence of t

is hidden in Equation 27—our assumption that z is small here assumes we are interested only in larger nq and is thus
equivalent to taking t / ‘. We can do this integral more carefully; the result involves hypergeometric functions. These
can be expanded for z>qs but nonzero, corresponding to values of nq(t) . 1=qs but before this subpopulation
generates mutations. We find

H ðz; tÞ ¼ exp �Ub

s
ðzeqstÞ1�1=q p

sinðp=qÞðqsÞ1�1=q
� z1=q

s

" #" #
: ðG2Þ

Unfortunately, this form of H is more complex and we cannot exactly compute t(t). However, we can find typical values
of t(t) and tq from this by the same methods as before. We can also compare the size of the second term in H ½which
gives the time dependence in t(t)� to the first for values of z � qsðUb=sÞ, which corresponds to nq � ð1=qsÞ ðs=UbÞ, the
time this subpopulation begins to generate new mutations. Both calculations demonstrate that our approximation is
valid provided that

Ub

qs
>1: ðG3Þ

This result can be confirmed with a deterministic analysis. About tq generations after becoming established, a
subpopulation has a size n ¼ ð1=qsÞððq � 1Þs=UbÞ. Once it has reached this size, selection dominates drift and muta-
tions. Thus subsequent random or mutational events will not significantly affect n, so t(2tq) and tq¼ t(‘) are similar.

Thus whenever Ub=s>1, our method of linking together stochastic and deterministic dynamics is reasonable.
Populations never generate mutations while they are stochastic, and hence we are justified in using a deterministic
approximation for all but the most-fit population. When this condition fails, we must treat multiple populations
stochastically and the analysis becomes much more complex. We could still divide up the population into a nonlinear
deterministic part and a linear stochastic part (provided only that Ns?1), but the stochastic part would have to include
multiple subpopulations.

APPENDIX H: APPROXIMATIONS IN THE BEHAVIOR OF q

In our analysis to this point, we have assumed that the mean fitness �ys changes abruptly, increasing by s every tq

generations. We used this assumption in calculating q and it is the reason why we have a constant q. In this appendix, we
discuss this approximation.

Two important timescales determine the relative sharpness of the changeovers from one dominant population to
the next and, concomitantly, from the lead population growing with rate qs to rate (q� 1)s. Because the second largest
population grows at rate s, the timescale for this changeover is 1/s. But the time between such changeovers is tq. The
ratio of these is

w [
1

stq
¼ v

s2; ðH1Þ

which is 1/ln(s/Ub) and thus small at the crossover from the successional- to the multiple- mutations regimes. Indeed
as long as w>1, the changeover is relatively sharp on the scale of tq and it is a good approximation to consider it
abrupt, as we have done.

We can make this more precise by computing the actual behavior of the mean fitness as a function of time. Assume
(for convenience) that at t¼ 0, the mean fitness is at y ¼ � 1

2, i.e., in the middle of a changeover. The subpopulations at
y ¼ �1 and at y ¼ 0 are equal in size, and those at other values of y are smaller by a factor of e�

Py

k¼1
kstq ¼

e�ðstq=2Þ½ðy11=2Þ2�1=4�. For small w, the one or two largest subpopulations strongly dominate, as these factors are all very
small. This is because the variance of the fitness in the population in the multiple-mutations regime is simply v, since
the dynamics of the bulk of the population are controlled by selection. Thus the standard deviation is ,s, making the
other subpopulations far smaller than the dominant one. The parameter w is simply the variance in units of s2.
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At future times, the subpopulations all grow (or shrink) exponentially at a rate ys reduced by the mean fitness (but
we can neglect the mean fitness in this calculation because it affects all subpopulations equally). To keep the total
population fixed thus requires that the mean fitness be

�yðtÞ ¼
P

q
y¼�q ye�ðstq=2Þð j y j11=2Þ21ystP
q
y¼�q e�ðstq=2Þð j y j11=2Þ21yst

: ðH2Þ

We can perform these Gaussian sums by the Poisson resummation formula to yield

�yðtÞ ¼ vst � 1

2
1 d=dðstÞ ln

X1 ‘

k¼�‘

e2pikwst�2p2wk2

" #( )
: ðH3Þ

If w were large, the k ¼ 0 term would dominate, and the k ¼ 61 would yield relative variations in the speed

vðtÞ
�v
� 1� 8p2we�2p2wcosð2pwstÞ1Oðe�4p2wÞ ðH4Þ

and corresponding variations in �yðtÞ � t=tq that are a smaller by a factor of 1/(2p). Thus in practice the parameter that
needs to be large for �yðtÞ to increase smoothly is 2p2w. Only for w , 0.2 do the variations in v become more than a factor
of 2, and substantial deviations of �yðtÞ from smooth occur only for w , 0.1. Above this, our abrupt-transition
approximation is not valid, but despite this our earlier results are still good; we discuss this below.

The parameter that we have taken to be small throughout is 1/ln( s/Ub). This is the value of w at the crossover from
successional- to multiple-mutations regimes. Strictly speaking, this means that w is small until ln Ns � (ln s/Ub)2. For
even larger population sizes, the behavior near the nose changes somewhat, as discussed in the main text.

When w is small enough that the shifts in �y are abrupt, the dynamics can be worked out more generally than we have
done in the main text. There, we approximated the most-fit deterministic subpopulation to be growing as e(q�1)st for tq

generations, after which �y increases by 1 and the subpopulation growth slows to e(q�2)st, and so on. This is strictly valid
only for integer q. When the naive value for q, 2L/‘, is noninteger, the populations shift between growth rates some
fraction of the way between one establishment and the next. The effects of this can be taken into account
straightforwardly as long as the shift between growth rates is indeed abrupt on the scale of tq : i.e., that w is small. Here
we ignore factors inside logarithms: to get these one would need to use the fuller analysis of the feeding and lead
population dynamics used in the text. For our purposes here, the heuristic derivation of the establishment times is
sufficient.

It is convenient to keep q an integer, with qs the growth rate of the lead population when it first becomes established.
We then define a noninteger generalization of q to be q̂ with

q ¼ GIðq̂Þ; ðH5Þ

the greatest integer #q̂. It is q̂ that is simply related to the population parameters via

q̂ � 2L=‘; ðH6Þ

i.e., what was previously found for q. The dimensionless speed is found to be

w � qðq � 1Þ
‘ð2q � q̂Þ; ðH7Þ

which is equal to the result in the text, w � ðq̂� 1Þ=‘, for integer q̂. The difference between these is small for large q̂,
with the fractional error of the simple result (which is an overestimate) largest at q̂ ¼ q 1 1

2, where it is only 1/4q(q� 1)
and thus small even for the worst case q̂ ¼ 2:5; q ¼ 2.

In the opposite case where w is not small, the approximation of abrupt shifts in �y is not valid. In this case, we can
make the opposite approximation that the mean fitness increases at a uniform rate: from the above discussion, this is
valid unless w is quite small (although strictly speaking this is not true in the limit that ‘ is large with fixed q). In the
constant mean-speed approximation, one obtains

w �
q̂� 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq̂� 1Þ2 � 1

q
2‘

; ðH8Þ

which is an underestimate that is worst at integer q̂; for large q̂ the worst fractional error is 1/4(q � 1)2. Since this is
small compared to the speed, the approximation in the main text is reasonable.
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We can get an intuitive understanding of why this approximation of abrupt shifts in �y gives reasonable results, even
when �y actually increases smoothly. First we consider the deterministic dynamics of the bulk of the fitness distribution.
Here the shape of the distribution (and hence the identity of the most common subpopulation) depends only on the
relative growth rates of the subpopulations, so assumptions about �y are irrelevant. For the stochastic behavior at the
nose, our assumption is more problematic. When the mean fitness in fact increases steadily, rather than jumping by s
every time an establishment occurs, our calculated lead q gives the correct average mean fitness over the stochastic
period. This means we calculate the stochastic dynamics assuming the correct average mean fitness, but this is slightly
different from the stochastic dynamics given the changing mean fitness. Essentially, we have used q¼ 3.4, for example,
as an interpolation for the correct behavior when the lead is just below 4 immediately before an establishment,
declining gradually to below 3 shortly before the next establishment. Rather than calculate t3.4 from the stochastic
behavior while the lead shifts correctly, in the main text we have calculated it on the basis of a constant lead of 3.4. As
we have seen above, however, the difference is small.

We conclude with some comments on the stochastic aspects of the speed of the nose. These make the above analysis
questionable because of the assumption of deterministic establishments of the lead populations. But, as we discuss in
appendix d, the variations in the establishment times are at worst of order 1/qs compared to the mean tq that is of
order ðln s=UbÞ=qs (for large q they are even smaller than this, as discussed in appendix d). Thus the variations in the
time intervals between takeovers of the population by new dominant subpopulations are small compared to the time
intervals themselves. Hence the deterministic approximation for the increase of the mean fitness is good, at least as far
as its effects on the dynamics of the lead populations.
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