
INVESTIGATION

The Balance Between Mutators and Nonmutators in
Asexual Populations
Michael M. Desai*,1 and Daniel S. Fisher†

*Departments of Organismic and Evolutionary Biology and of Physics and FAS Center for Systems Biology, Harvard University,
Cambridge, MA 02138 and †Department of Applied Physics, Stanford University, Stanford, California 94305

ABSTRACT Mutator alleles, which elevate an individual’s mutation rate from 10 to 10,000-fold, have been found at high frequencies
in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in
mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occa-
sionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the
dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that
when deleterious mutation rates are high in mutators, there will often be many “young,” recently produced mutators in the
population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then
consider how this mutator–nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which
fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators,
so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution
of the population.

BIOLOGY has evolved sophisticated machinery to avoid
errors in replication. Clearly, it is worth much effort to

make sure that mutations are rare. Yet at the same time,
higher mutation rates are selected for in many natural and
experimental populations (Denamur and Matic 2006; Baer
et al. 2007). Since mutations can change mutation rates,
and this heritable variation in mutation rates is acted on
by selection, the mutation rates we observe are a result of
a balance between different evolutionary forces. Our under-
standing of these forces remains incomplete.

In this article we consider large-effect mutator alleles
that increase the mutation rate by a factor of 10 to 10,000.
These are often mutations in the mismatch-repair system
(Denamur and Matic 2006; Baer et al. 2007). Recent evi-
dence suggests that in some circumstances these mutator
alleles can be selected for, in both natural (Gross and Siegel
1981; Leclerc et al. 1996, 1998; Matic et al. 1997; Oliver
et al. 2000; Bjorkholm et al. 2001; Denamur et al. 2002;
Giraud et al. 2002; Richardson et al. 2002; Prunier et al.

2003; Watson et al. 2004; Del Campo et al. 2005; Labat
et al. 2005) and experimental populations (Cox and Gibson
1974; Trobner and Piechocki 1981; Chao and Cox 1983;
Chao et al. 1983; Mao et al. 1997; Sniegowski et al. 1997;
Giraud et al. 2001; Notley-McRobb et al. 2002; Shaver et al.
2002; Thompson et al. 2006; Pal et al. 2007). Since mis-
match-repair systems are maintained in many populations,
there must also be selection operating against mutator
alleles.

Mutator alleles provide a laboratory for understanding
the forces acting on the evolution of mutation rates.
Mutators can be created and monitored in laboratory
environments, allowing for experimental tests of theoretical
predictions. A variety of theoretical (Tanaka et al. 2003;
Lynch 2008; Soderberg and Berg 2011), simulation-based
(Taddei et al. 1997; Tenaillon et al. 1999, 2000; Travis and
Travis 2002), and experimental (Cox and Gibson 1974;
Trobner and Piechocki 1981; Chao and Cox 1983; Chao
et al. 1983; Mao et al. 1997; Sniegowski et al. 1997; Boe
et al. 2000; Giraud et al. 2001; Notley-McRobb et al. 2002;
Shaver et al. 2002; Thompson et al. 2006) studies have
begun to explore mutator dynamics.

Several previous studies have analyzed the evolution of
mutation rates from a game theory perspective (Kimura
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and Maruyama 1966; Kimura 1967; Leigh 1970, 1973;
Painter 1975; Gillespie 1981; Ishii et al. 1989; Johnson
1999b; Dawson 1998, 1999; Andre and Godelle 2006).
These analyses assume that the population is fixed for
a particular mutation rate and ask if an allele that modifies
the mutation rate can invade. They assume that a modifier
invades if the net effect of selection against deleterious
mutations and for beneficial mutations, averaged over
time, increases the frequency of the modifier. They calcu-
late the “evolutionary stable” mutation rate at which no
modifier can invade the population.

This work does not investigate modifier dynamics in
detail. It merely assumes that if the time-averaged selection
pressure is against a modifier, the modifier cannot invade.
Yet at an evolutionary stable mutation rate, mutators will
continually arise. Even if they cannot take over, they are
maintained in the population at some frequency. When
beneficial mutations are available, the modifiers will occa-
sionally sweep through the population and can have
a significant influence on the overall evolution. Thus even
when mutator alleles cannot stably invade a population,
their population dynamics may affect its evolution.

In this article, we focus on the dynamics of mutator
alleles, regardless of whether they are stable. We assume the
population is fixed for a relatively low (nonmutator)
mutation rate and examine the dynamics of mutator alleles
arising within this population. In the absence of beneficial
mutations, we calculate how the constant creation of mu-
tators is balanced by selection against them due to delete-
rious mutations. We then outline the effects of beneficial
mutations in increasing mutator frequencies.

We show that mutation rates can be controlled by
dynamic effects. In this picture, mutation rates can fluctu-
ate with time. When no beneficial mutation has recently
been linked to a mutator, mutation rates will be low
because deleterious mutations have selected against higher
mutation rates. But at some point, mutators may get
a beneficial mutation and sweep through a population
before once more being selected against. Populations may
typically be in this sort of transient regime. When they are,
their mutation rates will typically not be at the “stable” rate,
but rather much higher or lower depending on the recent
history. Our analysis provides a framework for understanding
these dynamics.

We must consider four evolutionary forces in under-
standing the dynamics of mutator alleles. First, mutators
are continually produced by mutations from nonmutators.
When they are created, they inherit the genetic back-
ground of the nonmutator that they arose from. That is,
they initially have the same fitness (apart from direct
effects of the mutator allele) as the nonmutator individual
in which they arose.

Second, mutators have a disadvantage because they
produce more deleterious mutations than nonmutators.
This tends to purge them from a population. Yet this
disadvantage is felt only slowly as the mutator accumulates

deleterious mutations, declines in fitness, and is selected
against. The speed of this decline depends on the cost of
the deleterious mutations.

Third, mutators can have an advantage over nonmuta-
tors because they acquire beneficial mutations faster. When
beneficial mutations are rare, this advantage may only
occasionally be felt, but can have dramatic effects when it
is. When deleterious mutations are common, this effect is
mitigated because beneficial mutations in mutators will
often carry a larger deleterious load than their counter-
parts in nonmutators.

Finally, mutators may have a direct fitness advantage,
because the mismatch repair machinery presumably carries
a physiological cost. The balance between the physiological
cost of lowering the mutation rate and the cost of
deleterious mutations could be what sets most “normal”
mutation rates in the wild. However, the direct physiolog-
ical advantage to a mutator is unlikely to play a major role
in mutator dynamics, because if it was comparable in mag-
nitude to the cost of an increased deleterious mutation
rate, the two effects would balance and mutators would
remain fixed in many natural populations. Since they do
not, we focus on the other three effects, and neglect any
direct benefit to being a mutator.

These four evolutionary forces on mutation rates exist in
both sexual and asexual populations. In asexuals, the alleles
that modify mutation rates remain perfectly linked to the
beneficial and deleterious mutations that they cause. In
a sexual population, this linkage is imperfect and hence
these forces are tempered. In this article, we focus exclu-
sively on asexual populations. For simplicity, we focus on
haploids; in an asexual population the analysis proceeds
identically for diploids provided that there is no dominance
(although ploidy will affect the parameters, particularly the
rate and effects of deleterious mutations; for a more general
discussion of mutators in sexual and asexual populations
including the effects of dominance see Lynch 2008). We also
assume that there is no epistasis between deleterious muta-
tions; if epistasis is indeed pervasive our results could
change dramatically.

We begin with a full treatment of the balance between
the constant production of mutators and the accumulation
of a deleterious load that selects against them. We describe
the growth of the mutator population, the evolution of its
fitness distribution, and the steady-state mutation–selection
balance. Our analysis is similar to that of Johnson (1999a),
but uses a different model that allows us to find simpler and
more intuitive results. We then connect our results to the
dynamics of a single mutator individual. We next consider
the dynamics starting from a population composed entirely
of mutators and describe how the nonmutator population
can become reestablished.

Finally, we consider the effects of beneficial mutations.
We outline the considerations that determine whether
beneficial mutations help the mutators increase in fre-
quency. In certain simple parameter regimes, we calculate
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the probability that a beneficial mutation occurs and
spreads in a mutator.

Deleterious Mutations and the Mutator–Nonmutator
Balance

We begin by considering the first two forces outlined above:
the constant production of mutators from the nonmutator
population and the accumulation of deleterious mutations.
Since in this section we consider only deleterious mutations,
and hence random fluctuations have no significant impact
except on the long timescales associated with Muller’s ratchet,
we use a deterministic infinite population approximation. We
note, however, that if the population is small enough or we are
interested in sufficiently long timescales, the finite-population
effects of Muller’s ratchet can be relevant. Soderberg and Berg
(2011) recently analyzed these interactions between mutator
dynamics and the ratchet in detail; in this article we neglect
these effects and focus instead instead on the dynamics of
mutator alleles in large asexual populations.

We denote the log fitness of an individual as 2x, where
by convention the larger the x, the less fit the individual. We
use a continuous-time model, so that the proportion of the
population with log fitness x grows or shrinks exponentially
at rate hxi2x, where 2hxi is the population-averaged log
fitness. We assume that deleterious mutations occur at rate
Ud in the nonmutator population and lUd in the mutator
population and that their effect is drawn from a probability
distribution r(x) (r(x) is normalized to 1). We assume that
r(x) does not depend on how many mutations an individual
has; this will be roughly true provided that individuals do
not typically acquire a significant fraction of all the possible
deleterious mutations of some particular effect. We also ne-
glect backmutations. We assume that mutators are created
from nonmutators at a rate g and neglect mutations that
create nonmutators from mutators (we discuss this approx-
imation in more detail below). These and other parameters
relevant for our analysis are summarized in Table 1.

Our analysis assumes that the mutator population is
always rare compared to the nonmutator population. We
expect that the rate at which mutators are created is small
and that the deleterious mutations they incur select against
them, so unless we start from a situation where mutators
are common this assumption will typically be valid.
Naturally, our assumption can fail whenever beneficial
mutations arise, so we will treat these beneficial mutations
separately. We define M [ (l2 1)Ud to be the difference in
deleterious mutation rate between the mutator and non-
mutator population.

We define the distribution of fitnesses of the nonmutator
population, fn(x, t)dx, to be the fraction of the overall pop-
ulation that are nonmutators with fitness between x and x +
dx at time t. We define fm(x, t)dx analogously as the fraction
of the overall population that are mutators with fitness be-
tween x and x + dx at time t. The dynamics of the mutator
and nonmutator populations are given by

@fnðx; tÞ
@t

¼ Ud

ðx
0
fnð y; tÞrðx2 yÞdy þ ½hxi2 x2Ud� fnðx; tÞ

(1)

@fmðx; tÞ
@t

¼ lUd

ðx
0
fmð y; tÞrðx2 yÞdy þ ½hxi2 x2lUd� fmðx; tÞ þ g fnðx; tÞ:

(2)

The terms involving hxi reflect the fact that only relative
fitnesses matter (they keep the population size constant).
Provided that the mutators are rare, we have

hxðtÞi �
ðN
0
yfnð y; tÞdy: (3)

Because we neglect mutations that create nonmutators
from mutators and assume that the mutator population is
always rare compared to the nonmutator population, the
dynamics of the nonmutator population is independent of
the mutators. We can thus solve for the behavior of fn(x, t)
neglecting the mutators and then plug this solution into
the equation for ½@fmðx; tÞ�=@t and solve for the mutator
dynamics.

Before doing this, it is useful to introduce unnormalized
fitness distributions gn(x, t) and gm(x, t) for the nonmutators
and mutators, respectively. We define these to be functions
that satisfy Equation 1 and Equation 2 without the hxi terms:

Table 1 Summary of commonly used variables and parameters

Descriptions

Ud Deleterious mutation rate in nonmutators
lUd Deleterious mutation rate in mutators
x Negative log fitness of an individual

(larger x corresponds to lower fitness)
r(x) Distribution of fitness effects of

deleterious mutations
R(k) Laplace transform of r(x)
M Difference between mutator and nonmutator

deleterious mutation rates
g Mutation rate from nonmutators to mutators
fn(x,t) Distribution of fitnesses of nonmutators at time t
fm(x,t) Distribution of fitnesses of mutators at time t
F{n,m}(k,t) Laplace transform of fn(x,t) or fm(x,t)
s Effect of a typical deleterious mutation
a Defined as M/s
dn,dm Average deleterious load of nonmutators or

mutators respectively
pm Fraction of mutators in the total population
t Average lifetime of a single mutator lineage
h Backmutation rate from mutators to

nonmutators
Ub,lUb Beneficial mutation rate in nonmutators or

mutators respectively
N Population size
sb Fitness advantage provided by a beneficial

mutation
s Fitness advantage of a beneficial mutant relative

to population mean fitness
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@gnðx; tÞ
@t

¼ Ud

ðx
0
gnð y; tÞrðx2 yÞdy þ ½2x2Ud�gnðx; tÞ (4)

@gmðx; tÞ
@t

¼ lUd

ðx
0
gmð y; tÞrðx2 yÞdy þ ½2x2lUd�gmðx; tÞ þ ggnðx; tÞ:

(5)

It is straightforward to show that if gn and gm satisfy Equa-
tion 4 and Equation 5, then

fnðx; tÞ[ gnðx; tÞÐN
0 gnðy; tÞdy

; fmðx; tÞ[ gmðx; tÞÐN
0 gnðy; tÞdy

(6)

satisfy Equation 1 and Equation 2.
We can solve these equations by passing to Laplace

transforms. We define Gn(k, t) and Gm(k, t) to be the Laplace
transforms of gn(x, t) and gm(x, t); we have Gnðk; tÞ[ÐN
0 e

2kxgnðx; tÞdx, with an analogous expression for Gm. Sim-
ilarly we define Fn(k, t) and Fm(k, t) as the Laplace trans-
forms of fn(x, t) and fm(x, t). Note that

Fnðk; tÞ ¼ Gnðk; tÞ
Gnðk ¼ 0; tÞ; Fmðk; tÞ ¼ Gmðk; tÞ

Gnðk ¼ 0; tÞ: (7)

With this notation, we have

@Gnðk; tÞ
@t

¼ Ud½RðkÞ2 1�Gnðk; tÞ þ @Gnðk; tÞ
@k

(8)

@Gmðk; tÞ
@t

¼ lUd½RðkÞ21�Gmðk; tÞ þ @Gmðk; tÞ
@k

þ gGnðk; tÞ;
(9)

where R(k) is the Laplace transform of r(x).
We can solve Equation 8 using the method of character-

istics. Assuming we start with a situation where the popula-
tion is composed entirely of nonmutators with no deleterious
mutations, the solution is

Gnðk; tÞ ¼ exp
�ðt

0
Ud½Rðt þ k2 yÞ2 1�dy

�
: (10)

We can now substitute this expression into Equation
9 and solve this with the method of characteristics. We find

Gmðk; tÞ ¼ gexp
hÐ t

0lUd½Rðkþ t2 yÞ21�dy
i

·
Ð t
0Gnðkþ t2 y; yÞexp�2Ð y

0lUd½Rðkþ t2 zÞ21�dz�dy:
(11)

To solve for Fn and Fm, we simply divide these expres-
sions by Gn(k = 0, t).

Note that because of our assumption that the mutators
are always rare compared to the nonmutators, we will
always have Fn(k= 0, t) = 1. The fraction of mutators in the
population at time t is given by Fm(k = 0, t).

Equation 10 and Equation 11 provide a complete solution
for the dynamics of both the mutator and nonmutator
population, starting from a clonal nonmutator population.
However, this formal solution offers very little understand-
ing of the dynamics.

We now turn to several specific examples to get an
intuitive sense of the behavior. We solve for the fraction of
the population that are mutators, and their average fitness,
for three cases: when all deleterious mutations have the
same effect, when there is an exponential distribution of the
fitness costs of deleterious mutations, and when there are
two types of deleterious mutations (a common weak-effect
one and a rarer strong-effect one). We then present an
approximation for general r(x) that is valid for l ≫ 1 and
finally describe an alternative approach to the problem that
treats each mutator clone independently.

All deleterious mutations have the same effect

We begin by considering the case when all deleterious
mutations have the same effect. This corresponds to r(x) =
d(x 2 s), where d is the Dirac delta function and s is the
cost of each deleterious mutation.

Solving Equation 10 for this case and calculating the
resulting Fn(k, t), we find that the Laplace transform of the
fitness distribution of nonmutators is

Fnðk; tÞ ¼ exp
�
Ud

s

�
e2sk2 1

��
12 e2st	�: (12)

We can invert Fn(k, t) and find that the number of deleteri-
ous mutations is Poisson distributed with mean ðUd=sÞ
ð12e2stÞ, consistent with the classical result of Haigh
(1978).

Using this solution, we can solve for the Laplace trans-
form of the fitness distribution of the mutator population.
We find

Fmðk; tÞ ¼ g

s
exp

�
lUd

s
e2skþ Ud

s
e2st

�
12 e2sk

�
2
Ud

s

�ð1
e2st

xa21e2ae2skxdx;

(13)

where we have defined

a [
M
s
: (14)

This solution is rather opaque, but we can calculate from it
two quantities of particular interest: the fraction of individ-
uals in the total population that are mutators, which we call
pm, and the average deleterious load carried by each muta-
tor, dm. From the properties of Laplace transforms, we have
that

pmðtÞ ¼ Fmðk ¼ 0; tÞ; dm ¼ 1
pm

�
2
@Fm
@k

�
k¼0

:

We find that the fraction of individuals that are mutators
is given by
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pm ¼ g

s
ea
ð1
e2st

xa21e2axdx: (15)

The behavior of pm depends on how large a is relative to
1. For a ≪ 1 we can get an approximate solution for the full
time-dependent behavior, pm � ðg=MÞ½12e2Mt�. In this case,
the number of mutators increases linearly for t ≪ 1=M, pm �
gt, eventually saturating at a steady-state value pm � g=M.
For a ≫ 1 the result is more complex. However, asymptotic
analysis of the integral in Equation 15 using the method of
steepest descent shows that for t ≪ 1=

ffiffiffiffiffiffiffiffi
Ms

p
, pm increases lin-

early with time, pm � gt. For longer times, pm saturates at
the steady-state value

ffiffiffiffiffiffiffiffiffi
p=2

p ðg= ffiffiffiffiffiffiffiffi
Ms

p Þ. The dynamics are
thus relatively simple: pm increases linearly with time at rate
g until saturating at the steady-state value

pm �
( g

M; for M ≪sffiffiffi
p
2

p gffiffiffiffiffiffi
Ms

p ; for M ≫s:
(16)

This approximation for the steady-state pm as well as the
time dependence are compared with the exact result Equa-
tion 15 in Figure 1. The result Equation 16 is worth exam-
ining in detail. As we would expect, the number of mutators
is proportional to the rate at which they are produced from
nonmutators. However, we can also see that a[M=s is
a key parameter. When the mutator deleterious mutation
rate is small compared to the effect of the mutations (i.e.,
a ≪ 1), then our result pm ¼ g=M has a simple intuitive
explanation: individuals that acquire deleterious mutations
are effectually dead. Thus mutators produce “dead” off-
spring at a rate M higher than the nonmutator population
and therefore have an effective selective disadvantage M
compared to the nonmutators. Thus this intuition predicts
a steady-state frequency of mutators equal to the rate at

which they are produced divided by their effective selective
disadvantage, or g=M.

However, as we can see from our result, this intuition is
wrong whenever the mutator deleterious mutation rate is
large compared to the effect of these mutations (i.e., a ≫ 1).
In this case, mutators are much more common than g=M;
the mutator frequency instead depends on the square root of
the mutation rate times the selective disadvantage. This is
consistent with the calculations of Johnson (1999a). We
return to the intuition behind this result below.

It is also interesting to calculate from Equation 13 the
average deleterious load, dm, carried by the mutators. We
find

dm ¼ lUd 2Ude
2st 2

M
Ð 1
e2st xae2axdxÐ 1

e2st x a21e2axdx
: (17)

This does not depend on g, as expected. Asymptotic expan-
sions of the integrals in these expressions show that for
small t, dm increases linearly from 0 with time at a rate
proportional to the deleterious mutation rate. For large t,
dm saturates at the steady-state value

dm �
(

lUd 2MM
s forM ≪s

Ud þ
ffiffiffiffiffiffiffiffi
Ms

p ffiffiffi
2
p

q
forM ≫s:

(18)

We thus see that for M ≪ s, the mutators come to their
steady-state mutation–selection balance, with dm roughly
equal to their deleterious mutation rate, as predicted from
classical population genetics. However, when M ≫ s, the
mutator population is dominated by individuals that have
recently been created from nonmutators. Thus the average
deleterious load dm is approximately equal to that of non-
mutators, Ud (set by their mutation–selection balance).
These results are illustrated in Figure 1.

Figure 1 Expected behavior when all deleteri-
ous mutations have the same effect s. (a)
Steady-state fraction of mutators in the popu-
lation, pm, in units of s=g. The exact result,
Equation 15 is shown in red. The approxima-
tions for weak and strong selection relative to
mutation,M/s ≪ 1 andM/s ≫ 1, in Equation 16,
are shown in blue and green, respectively. (b)
Dynamics of pm, from Equation 15, in units of
s=g. In red, we show a = 0.2 (strong selection
relative to mutation); in green we show the
opposite case of a = 5 (weak selection relative
to mutation). Note that dm increases linearly at
rate g for t>1/M (red line) or t ≪1=

ffiffiffiffiffiffiffiffi
Ms

p
(green

line), before saturating at its steady-state value.
(c) Average deleterious load dm of a mutator.
The exact result, Equation 17 is shown in red.
The approximations for M/s ≪ 1 and M/s ≫ 1 in
Equation 18 are shown in blue and green, re-
spectively. Note the results in b and c make use
of the approximation l ≫ 1.
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An exponential distribution of deleterious mutations

We now turn to the case where deleterious mutations have
an effect given by an exponential distribution with mean s.
That is, rðxÞ ¼ ð1=sÞe2x=s.

Solving Equation 10, we find that the Laplace transform
of the fitness distribution of nonmutators is

Fnðk; tÞ ¼ exp
�

1þ skþ st
ð1þ stÞð1þ skÞ

�Ud=s

: (19)

This gives a nonmutator average fitness

dn¼ Ud

�
st

1þ st

�
;

as expected. Substituting this solution into Equation 11, we
find that the Laplace transform of the mutator fitness
distribution is given by

Fmðk; tÞ ¼ g

s

�
1þ skþ st

1þ st

�Ud=s� 1
1þ sk

�lUd=sðst
0
½1þ skþ x�ae2axdx:

(20)

As before, we can calculate the expected fraction of the
population that are mutators and the average mutator
deleterious load. We find

pm ¼ g

s

ðst
0
½1þ x�ae2axdx: (21)

This result is very similar to the case of a d-function distri-
bution of deleterious mutations. Again the number of muta-
tors increases linearly with time at rate g for small t. And
again for long times the number of mutators is given by

pm ¼
( g

M; for M ≪sffiffiffi
p
2

p gffiffiffiffiffiffi
Ms

p ; for M ≫s:
(22)

We can also calculate the average deleterious load in
mutators and find

dm ¼ lUd 2
Ud

1þ st
2M

"Ð st
0 ½1þ x�a21e2axdxÐ st
0 ½1þ x�ae2axdx

#
: (23)

Again this result is very similar to the previous case. The
average fitness of the mutators increases linearly from 0 at
small times and eventually reaches the steady-state value

dm �
(

lUd for M ≪s

Ud þ
ffiffiffiffiffiffiffiffi
Ms

p ffiffiffi
2
p

q
for M ≫s: (24)

These results are illustrated in Figure 2. Note that both
the exact results and the analytical approximations are very
similar to those shown in Figure 1, indicating that an expo-
nential distribution of fitness effects with average effect s

leads to almost identical behavior as if all deleterious muta-
tions had the same fitness effect s.

Two types of deleterious mutations

We have analyzed the mutator–nonmutator mutation–
selection balance for two particularly important distribu-
tions of deleterious mutations. To gain more intuition for
the general case, it is useful to consider the situation in
which two different types of deleterious mutations are pos-
sible: a large-effect mutation that is relatively rare, and a
small effect one that is relatively common. We denote the
cost of these two mutations as s1 and s2, respectively, and
their mutation rates as U1 and U2, where s2 . s1 and U1 .
U2. We define M1 and M2 in the obvious way, M1 [ (l 2 1)
U1 and M2 [ (l 2 1)U2.

We can analyze this situation with the same methods that
we have used above. There are four possible distinct regimes
of the relative sizes of the various parameters. For the
number of mutators in steady state, we find

pm �

8>>>>>>>>>>><
>>>>>>>>>>>:

g
M1

for s2 ≫ s1 ≫M1 ≫M2ffiffiffiffiffi
p
2

p gffiffiffiffiffiffiffiffi
M1s1

p for s2; M1 ≫ s1 ≫M2

Min
h ffiffiffiffiffi

p
2

p gffiffiffiffiffiffiffiffiffiffiffi
M1s1

p ;  
g

U2

�
for s2; M1 ≫M2 ≫ s1

Min
h ffiffiffiffiffi

p
2

p gffiffiffiffiffiffiffiffiffiffiffi
M1s1

p ;  

ffiffiffiffiffi
p

2

r
gffiffiffiffiffiffiffiffiffiffiffi
M2s2

p
�
for M1 ≫M2 ≫ s2 ≫ s1:

(25)

These results initially seem opaque, but they are actually
straightforward: the number of mutators at steady-state pm
is roughly equal to the lesser of the two results for pm that
would be obtained from considering the cases in which only
one or the other mutation was possible. That is, we can
calculate pm using the result for when all deleterious muta-
tions have effect s2 and occur at rate U2 and using the result
for when all deleterious mutations have effect s1 and occur
at rate U1. The smaller of these two values of pm is the
number of mutators at steady state in the case when both
mutations are possible. We obtain analogous results when
we consider the mean deleterious load in mutators, dm.

These results suggest that when multiple deleterious
mutations are possible, those for which M=s≪ 1 produce
a pm of g=s, while those for which M=s≫ 1 produce a pm
of

ffiffiffiffiffiffiffiffiffi
p=2

p ðg= ffiffiffiffiffiffi
Ms

p Þ. The actual value of pm is then dominated
by whichever deleterious mutation would produce the
smallest pm.

General r(x)

Since we are focusing on strong-effect mutators (l ≫ 1), we
can to a good approximation assume that the deleterious
mutation rate in nonmutators is 0. This greatly simplifies
our results and allows us to give relatively simple expres-
sions for Fmðk; tÞ, pm, and dm for general distributions of
deleterious mutations r(x). This will enable us to see
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directly how the deleterious mutations of various different
effects contribute to the mutator dynamics.

Making the approximation that there are no deleterious
mutations in nonmutators, we have

Fnðk; tÞ ¼ 1: (26)

We can use this result in solving for Fm; we find

Fmðk; tÞ ¼ gexp
�
2Mt þM

ðN
0

rðxÞ
x

e2kxdx
�ðt

0
exp

�
My2M

ðN
0

rðxÞ
x

eðy2k2 tÞxdx
�
dy:

(27)

Note that because we are assuming that Ud in nonmutators
is 0, we have M = lUd rather than (l 2 1)Ud. From this
expression we calculate

pm ¼ g

ðt
0
exp

�
2Mz2M

ðN
0

rðxÞ
x

ðe2zx 2 1Þdx
�
dz: (28)

We can gain insight into the mutator dynamics by
studying Equation 28. By approximating e2zx for x ≫ 1=z
and for x ≪ 1=z, we can approximate pm by

pm � g

ðt
0
exp

"
2

Mz2

2

ð1=z
0

xrðxÞdx þM
ðN
1=z

rðxÞ
x

dx2Mz
ðN
1=z

rðxÞdx
#
dz:

(29)

We denote the size of a “typical” deleterious mutation as s.
More precisely, s is the value of 1=z for which the first term
in the above expression becomes becomes equal to the sec-
ond two. Assuming that r(x) falls off rapidly with x (i.e., that
large-effect deleterious mutations are rare compared to
small-effect ones), s will be roughly the effect of the average
deleterious mutation. For z≪ 1=s, the first integral in the
integrand is large compared to other two. For z≫ 1=s, the

first is small compared to the others. So for the steady-state
pm we have

pm�g

ð1=s
0

exp

"
2
Mz2

2

ð1=z
0

xrðxÞdx
#
dzþ g

ðN
1=s

exp

"
M
ðN
1=z

rðxÞ
x

dx2Mz
ðN
1=x

rðxÞdx
#
:

(30)

In the first term in this expression, z is always less than
1=s, so

Ð 1=z
0 xrðxÞdx � s. In the second term, on the other

hand, z is always greater than 1=s so
ÐN
1=zðrðxÞ=xÞdx � 1=s

and
ÐN
1=zrðxÞdx � 1. Thus we have

pm � g

ð1=s
0

exp
�
2

Ms

2
z2
�
dzþ g

ðN
1=s

exp
�
2MzþM

s

�
:

(31)

We can evaluate both of these integrals and find that the
first term is dominant if M ≫ s, while the second dominates
if M ≪ s. We thus have

pm �
n

g
M for M ≪sffiffiffi
p
2

p gffiffiffiffiffiffi
Ms

p for M ≫s:
(32)

This general result is valid for any distribution r(x) that falls
off rapidly with x; it confirms the intution developed from
the specific cases we considered above.

We can use the same analysis to understand the time
dependence of pm. For t ≪ 1=s, pm is given by the first term in
Equation 31, with the upper limit of integration replaced by t.
For t ≫ 1=s, pm is given by Equation 31 with the upper limit of
integration in the second term replaced by t. Analyzing this
equation with the same methods described above, we find
that for M=s≫ 1, we have pm � gt for t ≪

ffiffiffiffiffiffiffiffiffi
p=2

p ð1= ffiffiffiffiffiffiffiffi
Ms

p Þ.
For M=s≪ 1, we find pm � gt for t ≪ 1=M.

Figure 2 Expected behavior when the effects
of deleterious mutations are exponentially dis-
tributed with mean s. (a) Steady-state fraction
of mutators in the population, pm, in units of
s=g. The exact result, Equation 21, is shown in
red. The approximations for weak and strong
selection relative to mutation,M/s ≪ 1 and M/s
≫ 1 in Equation 22, are shown in blue and
green, respectively. (b) Dynamics of pm, from
Equation 21, in units of s=g. In red, a = 0.2,
and in blue a = 5. Note that dm increases line-
arly at rate g for t ≪1=M (red line) or t ≪1=

ffiffiffiffiffiffiffiffi
Ms

p
(blue line), before saturating at its steady-state
value. (c) Average deleterious load dm of
a mutator. The exact result, Equation 23, is
shown in red. The approximations for M/s ≪
1 and M/s ≫ 1 in Equation 24 are shown in
blue and green, respectively. Note the results
in b and c make use of the approximation l ≫ 1.
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This means that the full dynamics of the number of
mutators is quite simple: mutators accumulate approxi-
mately linearly with time at a rate g until they reach the
steady-state value of either

g

M

�
if
M
s
≪ 1

�
or

ffiffiffiffiffi
p

2

r
gffiffiffiffiffiffiffiffi
Ms

p
�
if
M
s
≫ 1

�

We also note that in some contexts it may be useful to
understand how the dynamics of pm depends on the
moments of r(x). We can calculate this by using the full
Taylor expansion of e2zx in Equation 28. We find

pm ¼ g

ðt
0
exp

"
M

XN
n¼1

ð21Þnznþ1

ðnþ 1Þ! xn
#
dz: (33)

We can also analyze the dynamics of the mean fitness of
the mutator population in this approximation that there are
no deleterious mutations in the nonmutators. From Equa-
tion 27, we find

dm ¼ M

"
12

Ð t
0

h
expMy2M

ÐN
0

rðxÞ
x eðy2tÞxdx

ih ÐN
0 rðzÞeðy2tÞzdz

i
dyÐ t

0 exp
h
My2M

ÐN
0

rðxÞ
x eðy2tÞxdx

i
dy

#
:

(34)

We can analyze this with similar techniques to those
described above. In steady state, we find that for M=s≪ 1,
dm �M. ForM=s≫ 1, in steady state dm is small compared to
M (on the order of

ffiffiffiffiffiffiffiffi
Ms

p
).

The fate of each mutator lineage

Thus far we have understood mutator population dynamics
by focusing on the entire mutator population at once and
calculating the time evolution of its fitness distribution. An
alternative approach is to focus on the fate of each in-
dividual mutator lineage. The overall mutator population is
composed of many such mutator lineages, created by
mutations in nonmutators at a variety of different times. If
we can understand the dynamics of each individual mutator
lineage, we can simply add up these results to understand
the overall mutator population dynamics.

This approach was recently used by Andre and Godelle
(2006), who studied the case in which a number of mutators
are created all at once, and no further mutators ever arise.
These mutators eventually reach a steady-state fitness dis-
tribution, which Andre and Godelle (2006) calculate for the
case in which all deleterious mutations have the same effect.
However, we consider a situation in which mutators are
constantly being produced from nonmutators, so there will
always be some mutators that were recently produced and
that therefore have not yet reached their individual steady-
state fitness distribution. Even when the overall mutator
population is in steady state, this overall steady-state fitness
distribution is a sum of transient distributions for individual
mutators. We must therefore also understand the probability

that a mutator lineage is eliminated before its fitness distri-
bution reaches steady state, and its transient fitness distri-
bution, before we can understand the overall mutator
dynamics.

Imagine that we know the expected number of descend-
ants of a single mutator a time t after it was produced. Call
this h(t). Since there are g mutators produced per nonmu-
tator per unit time, starting from 0 at t = 0, at some later
time t the fraction of mutators in the population is

pm ¼ g

ðt
0
hðxÞdx: (35)

The part of this integral near x = 0 corresponds to the
mutators that have been produced recently, while the part
near x = t corresponds to the mutators that originated near
t = 0. In steady state, this becomes pm ¼ g

ÐN
0 hðxÞdx: Note

that this steady-state result depends on the form of h(t) near
t= 0, which corresponds to recently produced mutators that
are not yet in their individual steady state; this is why we
must understand the transient dynamics of h(t).

However, from Equation 28 we can immediately see in
the approximation that deleterious mutations in nonmuta-
tors can be neglected,

hðtÞ ¼ exp
�
2Mt2M

ðN
0

rðxÞ
x

�
e2tx 2 1

	
dx

�
: (36)

This leads to a new interpretation of Equation 29. Following
the same logic leading to Equation 29, we find

hðtÞ � exp

"
2
Mt2

2

ð1=t
0

xrðxÞdx2Mt
ðN
1=t

rðxÞdx þM
ðN
1=t

rðxÞ
x

dx

#
: (37)

The first term here dominates for small t, t ≪ 1=s, where s is
defined as before as a typical effect of a deleterious muta-
tion. This corresponds to the situation in which the mutator
has not yet come to its individual mutation–selection balance
(which occurs only after the order of 1=s generations). The
second and third terms dominate for t ≫ 1=s and correspond
to mutators that were created long enough ago to be in their
individual mutation–selection balance. We have

hðtÞ �

(
exp

h
2Mt2s

2

i
for t ≪ 1

s

exp
�
2Mt þ M

s

�
for t ≫ 1

s:

(38)

A simple argument shows that this solution makes
intuitive sense. For t ≪ 1=s, deleterious mutations are accu-
mulating roughly linearly with time, since selection has not
had time to eliminate them. Thus the deleterious load of the
mutator individual is Mts. The probability the mutator has
been eliminated due to selection, p, is thus given by the
equation _p ¼ 2Mtsp, which gives p ¼ exp½2Mt2s=2�. This
result is consistent with our small-t result for h(t). On the
other hand, for t ≫ 1=s, the expected deleterious load carried
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by this mutator has reached its mutation–selection balance
M. Thus _p ¼ 2Mp, and P = exp[2Mt]. This is consistent
with our large-t expression for h(t).

As we would expect, the t ≫ 1=s part of our result for h(t)
is identical to the result of Andre and Godelle (2006), since
for these large times the mutator lineage has reached its
steady state. Our expressions differ for younger mutators
that have not yet reached this point. We can connect these
results to our previous analysis by plugging Equation 38 into
the steady-state version of Equation 35 to find pm. We find
identical results for pm, both in steady state and for the time
dependence, as we did with the other methods described
above.

This analysis provides intuitive insight into our results for
pm and dm and helps us understand why M=s is a key pa-
rameter. Each individual mutator lineage takes on the order
of 1=s generations to come to its individual steady-state
fitness distribution, and then 1=M generations to be elimi-
nated from the population by selection (because its delete-
rious load in this steady state is M). We illustrate this in
Figure 3, which shows how each mutator lineage
approaches its individual steady states and the fraction of
old vs. young mutators in the population as a whole. When
M ≪ s, we have 1=M ≫ 1=s, so mutators reach their individ-
ual steady-state fitness distribution quickly compared to the
time that it takes to then eliminate them from the popula-
tion. Hence most mutators in the population have reached
their individual steady-state fitness distribution (see Figure
3, a and c). This means that the mean fitness of the mutators
is roughly 2M, and since each mutator takes on the order of
1=M generations to eliminate from the population,
pm � g=M. On the other hand, when M ≫ s, most mutators
in the population are eliminated before reaching their in-
dividual steady-state fitness distribution, and hence muta-
tors which have not yet come to equilibrium dominate the
overall mutator population (Figure 3, b and c). Since the
mutators are accumulating deleterious mutations roughly
linearly in time in this regime, they take a time on the order
of 1=

ffiffiffiffiffiffiffiffi
Ms

p
to eliminate from the population. Hence we get

pm � g=
ffiffiffiffiffiffiffiffi
Ms

p
. The average fitness of the mutators will be

the wild-type mutation rate plus the fitness decline accumu-
lated in 1=

ffiffiffiffiffiffiffiffi
Ms

p
generations, which is Ms=

ffiffiffiffiffiffiffiffi
Ms

p ¼ ffiffiffiffiffiffiffiffi
Ms

p
. In

other words, asM increases past 1=s, the fact that a mutator
lineage has a larger deleterious load in its individual steady
state is partially offset by the fact that on average the muta-
tors present in the population are younger and have not
fully reached this steady state. These results are all consis-
tent with our earlier analysis.

We can get a final perspective on how different effect
deleterious mutations contribute to the mutator dynamics
from a different estimate of pm. We have thus far described
the dynamics as depending on whether M is large or small
compared to the typical effect of a deleterious mutation, s.
However, when deleterious mutations have a variety of
effects, an individual mutator lineage can be in steady state
with respect to larger-effect mutations, but not with respect

to smaller-effect ones. We can understand this by noting
that there is some average time t that a single mutator
survives after being created. In steady state, we have pm =
gt. We can thus find the steady-state pm by calculating t.
Large- and small-effect mutations contribute to t in different
ways. Mutations with s≫ 1=t reach their steady state quickly,
so the selection pressure they exert on the mutator lineage is
equal to the mutation rate to these mutations, M

ÐN
1=trðxÞ.

Smaller mutations with s≪ 1=t, however, do not reach their
steady state during the lifetime of an individual mutator. An
individual lineage has a deleterious load of M

Ð 1=t
0 xtrðxÞdx

from these mutations (increasing with time as they accumu-
late), so averaged over the the lifetime of the lineage these
provide a selective pressure ðMt=2ÞÐ 1=t0 xrðxÞdx. The lifetime
of the mutant lineage t is determined by the sum of the
selection pressure from the small and large effect mutations.
This gives a self-consistent solution for t,

1
t
¼ M

ðN
1=t

rðxÞdx þMt

2

ð1=t
0

xrðxÞdx: (39)

For any particular r(x), we can solve this for t and hence
calculate the steady-state pm. The result is the same as the
other calculations above. However, this perspective high-
lights the fact that there is a certain cutoff size of deleterious
mutations. Above this size, the mutations can be treated as
being effectively in mutation–selection balance, but below it
they cannot. TheM ≪ s andM ≫ s regimes correspond to the
cases in which most deleterious mutations are or are not in
balance, respectively.

Reestablishment of the nonmutators

Thus far our analysis has assumed that mutators are rare.
This is appropriate for studying the deleterious mutation–
selection balance. However, mutators may occasionally
sweep to fixation or near-fixation due to linkage with ben-
eficial mutations. If no further beneficial mutations are avail-
able, the nonmutators will then reestablish themselves as
the majority of the population. In this section, we describe
this process. We imagine starting from a population in which
the mutator has swept to fixation and ask the timescale on
which the nonmutator reestablishes itself.

We assume that mutations within the mutator population
create nonmutators at rate h. These mutations could be rever-
sions of the mismatch-repair mutations that originally created
the mutators, or they could be other compensatory mutations.
We expect h , g, because there are likely more targets for
disabling mismatch-repair genes than there are for repairing
them. However, h may not be much smaller than g because
reversions occur at the elevated mutation rate in mutators.

When the mutator population has swept, the nonmutators
are rare. Thus we can use the exact same analysis described
above to understand the dynamics. We simply relabel the
mutator and nonmutator populations, redefine Ud to be the
deleterious mutation rate in mutators, redefine l, 1 to be the
reduction in mutation rate in nonmutators, and take g / h.
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This redefined system has no steady state, since the
nonmutator population will take over and the approxima-
tion that it is rare will cease to be true. However, we can still
use this analysis to get the timescale on which the non-
mutator population reestablishes. We find that initially it
increases linearly with time, pn � ht. Once t ≫ 1=M, we find
pn � eMt. This makes intuitive sense: the mutators will on
average be M fitter than the mutators, so they reestablish
exponentially at rate M.

For smaller populations, this will be an overestimate of
the reestablishment rate. A mutation that creates a non-
mutator is a beneficial mutation, so the deterministic
description above may not be valid in a smaller population.
Rather, a mutation creating a nonmutator must first occur
and survive random drift before the nonmutator can begin
to expand exponentially. We can calculate the time it takes
for this to occur in the special case in which all deleterious
mutations have the same effect s. In this case, after a muta-
tor sweep, once the mutators are in their steady-state fitness
distribution, the number of mutators with i deleterious
mutations is Nðaie2a=i!Þ, where N is the population size.
This means that nonmutators with i deleterious mutations
are created and survive drift at a rate Nðaie2a=i!ÞhðM2isÞ.
Thus it takes on the order of

ea

NhM
(40)

generations for a nonmutator with no deleterious mutations
to arise. It is only after this time that the exponential growth
of the nonmutators at rate M can begin. For small N or
large M=s, when M=s≫Nhs ln½NM�, nonmutators with
some deleterious mutations will reestablish instead of the
most-fit possible nonmutator. In this case, the reestablish-
ment of the nonmutator population will still occur exponen-
tially, but at a slower rate M 2 is, where i is the smallest
number of deleterious mutations in a nonmutator.

Note that these results imply that generally speaking the
stronger the effect of the mutator, the more quickly selection
will act to reestablish the nonmutators after a mutator
sweep. Thus, other things being equal, larger-effect muta-
tors will tend to be shorter lived once they have swept,
consistent with the observations of Denamur et al. (2005).

Although we have assumed that mutations within the
mutator population create nonmutators at some fixed rate h,
this may not always be the case. Many possible mutations
can lead to mutator phenotypes. These mutations happen in
nonmutators at rate g, so they presumably happen in non-
mutator individuals at rate lg in mutators. This means that
mutator individuals can acquire additional mutations in mis-
match-repair genes, and if these additional mutations reach
high frequency along with the mutators (e.g., by hitchhiking
with a beneficial mutation), it may require more than one
mutation to revert to a nonmutator phenotype. This means
that over time a population dominated by mutators can be-
come “trapped” in a mutator state. On the other hand, it
may be possible for a population to escape such traps
through horizontal gene transfer from nonmutators, partic-
ularly since mutator alleles also often increase recombina-
tion rates (Denamur et al. 2000). Our analysis in this section
does not account for these interesting possibilities.

When are mutators rare?

Throughout most of this analysis, we have assumed that the
mutator population is rare. For this assumption to be valid,
the contribution of the mutators to the mean fitness of the
population must be negligible. This means that we require
dm pm ≪ dn, which reduces to

g≪Ud: (41)

Whenever this is true, initially rare mutators will always
remain rare, and our analysis will be valid. Since we expect
that the overall deleterious mutation rate will typically be

Figure 3 (a) The distribution of the number of
deleterious mutations in an individual mutator
lineage of a given age t, for M/s = 0.1, for the
case in which all deleterious mutations have the
same effect s. Each line represents a different
age; shown from lighter to darker are
t ¼ 1=2s, t ¼ 1=s, t ¼ 2=s, t ¼ 4=s, and
the steady-state t = N. Blue lines represent
“young” mutators where t # 1=s, while red
lines represent “old”mutators; the marginal case
t ¼ 1=s is shown in purple. (b) The analogous
distribution of the number of deleterious muta-
tions in an individual mutator lineage of a given
age t, for M/s = 10. (c) The fraction of the total
mutator population that is young as a function of
M/s, from Equation 36. For M/s = 0.1 the muta-
tor population is mostly old, while for M/s = 10
the mutator population is almost all young. Note
that the fact that each mutator lineage has
a larger steady-state deleterious load as M/s
increases is partially offset by the fact that a larger
fraction of the mutators are young.
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large compared to the mutation rate that produces muta-
tors, this is likely a good approximation in natural situations.
We also require that mutations that generate nonmutators
from mutators can be neglected compared to the selection
on nonmutators, but this will always be true for reasonable
parameters when mutators are rare.

Beneficial Mutations

When beneficial mutations are possible, mutators may have
an advantage because they can acquire these beneficial
mutations more quickly than nonmutators. The size of this
advantage is complex. Because beneficial mutations are
likely to be rare, but have a dramatic effect on the
population dynamics when they occur, stochastic effects
are crucial and the behavior will often depend strongly on
population size. This is particularly true in asexual popula-
tions, where the fixation of a beneficial mutation causes the
genetic background on which that mutation occurred to
hitchhike to fixation.

There are a variety of different scenarios involving
beneficial mutations that we could study. Leigh (1970) con-
siders a model in which beneficial mutations are possible at
any time and cause a selective sweep with a probability K
per generation. Johnson (1999b) considers a similar model.
Andre and Godelle (2006) consider this model as well as the
situation in which beneficial mutations are always available
but their rate is proportional to the population size and
mutation rate. They also consider a model involving a chang-
ing environment, as do Gillespie (1981) and Ishii et al.
(1989); Painter (1975) also considers a related situation.

Much of this work aims to calculate the average
advantage or disadvantage felt by an allele modifying the
mutation rate, and hence an evolutionary stable mutation
rate (Kimura and Maruyama 1966; Kimura 1967; Leigh
1970, 1973; Gillespie 1981; Ishii et al. 1989; Dawson
1998, 1999; Johnson 1999b; Andre and Godelle 2006). As
we have pointed out, this is not the only relevant result for
an asexual population. The mutator frequency may fluctuate
widely, increasing when a beneficial mutation happens to
occur in a mutator and then gradually decreasing to the
mutator–nonmutator balance before increasing again when
another beneficial mutation occurs. The population param-
eters and the particular model for beneficial mutations all
affect the dynamics.

In this article, we make no attempt to explore the wide
variety of possible models for beneficial mutations. Instead,
we consider the simplest possible situation and use this to
highlight some of the important factors involved in mutator
dynamics in the presence of beneficial mutations. Our
analysis is much less detailed than recent work by Tanaka
et al. (2003) and Wylie et al. (2009). However, while these
studies provide a more complete theoretical description of
mutator dynamics in the presence of beneficial mutations,
they are valid only when deleterious mutations have very
strong effects and can be treated as effectively lethal. Our

work, by contrast, is intended to provide a more general
overview of how the interplay between beneficial and dele-
terious mutations influences mutator dynamics. We imagine
a population that lacks beneficial mutations and has come to
its mutator–nonmutator balance. We then imagine that
a beneficial mutation of effect sb becomes available, and
occurs at rate Ub in the nonmutators (lUb in the mutators).
We want to understand the subsequent dynamics. For sim-
plicity, we assume that deleterious mutations in the nonmu-
tators can be neglected.

At first, it may seem that this situation is very simple: the
beneficial mutation will occur either first in a mutator or in
a nonmutator and cause a selective sweep that eliminates
the other population. The rate at which the beneficial
mutation occurs in the mutator subpopulation is NpmlUb,
while in the nonmutator subpopulation it occurs at rate N
(1 2 pm) Ub � NUb. Thus the probability that the beneficial
mutation occurs first in a mutator is

P ¼ lpm
1þ lpm

: (42)

According to this simple intuition, the beneficial mutation
should cause the mutators to sweep a fraction P of the time
and the nonmutators to sweep the remaining 1 2 P of the
time. This result is sometimes used in studies of mutator
dynamics and mutation rate evolution.

Unfortunately, this simple intuition is incorrect. A bene-
ficial mutation that occurs in a mutator will tend to be
saddled with a larger deleterious load than one occurring in
a nonmutator and will be further hampered by the addi-
tional deleterious mutations it continues to accumulate. This
means that beneficial mutations occurring in mutators are
less likely to survive random genetic drift while they are rare
than those occurring in nonmutators.

Further, even if we knew the rates at which beneficial
mutations occur and survive drift in the mutator and
nonmutator subpopulations, the probability the first occurs
in one or the other population is not the only important
quantity to consider. Even if a beneficial mutation occurs in
a mutator first, it will tend to carry a deleterious load, so if
a later mutation occurs in the nonmutator population it can
outcompete the earlier mutator mutation. Conversely, even
if the first beneficial mutation occurs in a nonmutator, a later
beneficial mutation in a mutator can increase the mutator
frequency transiently before the nonmutator sweeps (be-
cause the mutators are at a lower overall frequency in the
population). While this mutator population is transiently
more frequent, it is much more likely to get additional
beneficial mutations, which in turn increase the mutator
frequency even more. This process naturally depends on the
model of beneficial mutations we are considering. If only one
beneficial mutation is possible, it cannot occur. However, if
multiple beneficial mutations are possible, this effect means
that the mutators may sweep even though they would only
rarely do so if only one mutation was available at a time.
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Much of the earlier work described above has explored
aspects of these dynamics in great detail in specific para-
meter regimes. Here we do not aim to give a full analysis of
all possible results above across the wide range of plausible
situations. Instead, we provide an outline of the relevant
effects, with the aim of developing a general understanding
of how various evolutionary forces interact in different
ways in different parameter regimes to determine the fate of
mutator alleles.

The establishment probability of a beneficial mutant

When it first occurs, a beneficial mutation is present in only
one individual. Its lineage is very likely to go extinct due to
random genetic drift, but there is some probability that it
will survive and grow to a large enough population size that
selection dominates drift. Thereafter its behavior is mostly
deterministic. We refer to this process by which a lucky
mutation occurs and survives genetic drift the establishment
of the mutation. We begin by considering the probability
that a beneficial mutation survives genetic drift given
that it occurs in either the mutator or the nonmutator
population.

In the absence of deleterious mutations, the probability
that a beneficial mutation establishes, given that it occurs,
is 2s, where s is the fitness advantage of the mutant rel-
ative to the mean fitness in the population (Ewens 2004).
Since we neglect deleterious mutations in the nonmuta-
tors, this establishment probability in nonmutators is
Pnest ¼ 2sb.

The establishment probability in mutators is more com-
plex, for two reasons. First, the beneficial mutation may
occur in an individual that carries some deleterious load.
Thus its fitness advantage relative to the mean fitness in the
population is 2s, where s [ sb 2 x and x is the deleterious
load in the mutator individual in which the beneficial mu-
tation occurred. Second, while the mutant lineage is rare it
can accumulate more deleterious mutations, further reduc-
ing its establishment probability. Johnson and Barton (2002)
studied this second effect and developed an algorithmic way
of calculating how it reduces the establishment probability.
Unfortunately, there is no closed-form expression for this
probability in terms of the population parameters, and their
result is further restricted to the case where all deleterious
mutations have the same effect. This makes it impossible to
find a general result, but fortunately in certain parameter
regimes we can still calculate Pmest.

The lineage with the beneficial mutation starts as a single
individual and will either establish or die out due to these
stochastic effects on the order of 1

s generations. On the other
hand, it takes on order of 1

s generations for deleterious muta-
tions to reach their steady-state distribution in this lineage.
Thus if s ≫ s, the deleterious mutations reach their steady
state long before the mutant lineage establishes or dies out.
On the other hand, if s ≪ s the mutant lineage establishes or
dies out long before the deleterious mutations reach their
steady-state distribution in this lineage.

We begin with the first case, s ≫ s. This corresponds
roughly to the “ruby in the rubbish” case considered by Peck
(1994), where any deleterious mutation dooms a lineage. In
this case, when M . s, the mean fitness of the mutant lin-
eage is reduced to s2M, 0 before the lineage has a chance
to establish. Thus it can never establish, and Pmest ¼ 0: On the
other hand, if s ≫ M, the deleterious mutations quickly re-
duce the fitness of the mutant lineage to s 2 M � s, and
hence it establishes with probability Pmest � 2s.

In the opposite case, s ≪ s, on average the deleterious
load in the mutant lineage increases linearly with time at
rate Ms. Thus after a time on the order of 1=s, the delete-
rious load in the mutant lineage is on the order of Mðs=sÞ.
Thus if Mðs=sÞ≫ s (i.e.,

ffiffiffiffiffiffiffiffi
Ms

p
≫ s), the beneficial mutant can

never establish, and Pmest ¼ 0: If
ffiffiffiffiffiffiffiffi
Ms

p
≪ s, it establishes with

probability Pmest � 2ðs2Mðs=sÞÞ � 2s: In this case, however,
the mutant lineage can establish and yet be deterministically
eliminated later if M . s, because once the full deleterious
load is felt in this lineage it will be less fit than a nonmutator
without the beneficial mutation.

We must now ask what s is. When a beneficial mutation
occurs in a mutator, it carries a deleterious load x with prob-
ability fm(x, t), and s= sb 2 x. We found above that whenever
s is small compared to M or

ffiffiffiffiffiffiffiffi
Ms

p
, then Pmest ¼ 0: Since s # sb,

this is also true whenever sb is small compared to M or
ffiffiffiffiffiffiffiffi
Ms

p
.

On the other hand, we found that when s is large, Pmest ¼ 2s.
In these large-s regimes, s ≫ dm, so we also have sb ≫ dm. In
other words, the deleterious load of a typical mutator is small
compared to sb. Thus s � sb, and hence Pmest ¼ 2sb in these
regimes. We can estimate the corrections to this result by
using our results for the Laplace transform of fm(x, t). For
sb ≫ s, the average s, hsi � sb 2 dm, and hence
Pmest � 2ðsb2dmÞ. For sb ≪ s, Pmest � 2sbe2M=s, because the mu-
tation must occur in a deleterious mutation-free background
to survive. These results are consistent with earlier calcula-
tion in these parameter regimes (Peck 1994; Johnson 1999b;
Johnson and Barton 2002; Andre and Godelle 2006).

These parameter regimes represent the possible simple
cases. To summarize, we have found that when s ≫ sb we have

Pmest ¼ 0 for sb ≪M
Pmest ¼ 2sb for sb ≫M:

(43)

On the other hand, when s ≪ sb we have

Pmest ¼ 0 for sb≪
ffiffiffiffiffiffiffiffi
Ms

p

Pmest ¼ 2sb for sb≫
ffiffiffiffiffiffiffiffi
Ms

p ðbut 0 when M ≫ sbÞ:
(45)

It may sometimes be the case that none of these situations apply
and that sb is on the order of s,M, or

ffiffiffiffiffiffiffiffi
Ms

p
. These intermediate

regimes must be analyzed using the algorithmic methods of
Johnson and Barton (2002), and no simple formulas exist.

The probability a mutator sweeps to fixation

The next step in our analysis is to calculate the rates at
which the beneficial mutation establishes in both the
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mutator and nonmutator population. These rates are pro-
portional to the probability of a beneficial mutation arising
and then establishing in each of these populations. In the
nonmutators this is 1=tnest ¼ 2NUbsb: In the mutators it is
1=tmest ¼ NpmlUbPmest: In the simple parameter regimes we con-
sidered above, tmest is particularly simple. For the small-sb cases,
1=tmest ¼ 0, and for the large-sb cases 1=tmest � 2NpmlUbsb.
Given these rates, we can understand the effect of beneficial
mutations on the dynamics. This depends on the size of the
establishment times relative to the fixation time of the bene-
ficial mutation once it is established,

tfix �
2
sb

ln½Nsb�:

If the establishment times in both mutators and non-
mutators are large compared to the fixation time, then the
first beneficial mutation to occur dominates the dynamics.
The mutators sweep to fixation if the beneficial mutation
happens first in a mutator, or the nonmutators sweep if the
beneficial mutation happens first in a nonmutator. The
probability that the first mutation happens in a mutator is

P ¼ 1=tmest
1=tnest þ 1=tmest

: (47)

Thus the beneficial mutation leads to a mutator sweep after
a time on the order of tmest with probability P. If this happens,
the nonmutators are eliminated from the population until
they eventually take over again or another beneficial muta-
tion occurs.

In the small-sb regimes we have considered, P = 0. In the
large-sb regimes, we have

P � lpm
1þ lpm

: (48)

(The only exception is when sb ≫
ffiffiffiffiffiffiffiffi
Ms

p
but sb ≪ M, in which

case the beneficial mutation can establish in the mutator but
will never fix, so P = 0.) This result for P is identical to the
naive expectation described above. Thus we see that the
naive result is an approximation valid only when beneficial
mutations are rare (so that the establishment time is long
compared to the fixation time, and multiple beneficial muta-
tions do not arise), and sb is large compared to the delete-
rious mutation rate.

On the other hand, if the establishment times in both
mutators and nonmutators are small compared to the fixation
time, the nonmutator is never eliminated by the first
beneficial mutation. A beneficial mutation will always arise
in the nonmutator, and because it suffers less from deleterious
mutations, this mutant will always outcompete any beneficial
mutations occurring in the mutator population. However, the
mutator population can become transiently common in the
interim and, if additional beneficial mutations are possible,
may be able to eliminate the nonmutators.

In the large-sb case, we can calculate how beneficial muta-
tions increase the mutator frequency in this interim. When the
establishment times of the beneficial mutations are small com-
pared to their fixation times, we can analyze their dynamics
deterministically. We find that the number of individuals with
the beneficial mutation in the nonmutator population
increases with time as ðNUb=sbÞðesbt21Þ, while in the mutators
the beneficial mutations increase as ðNpmlUb=sbÞðesbt21Þ.
This implies that the mutators reach a maximum frequency
of ðNpmlUb=sbÞðsb=Ub21Þ. When sb=Ub ≫ 1, this means that
the mutator frequency increases transiently

pm/lpm: (49)

After this transient increase in the mutator frequency, the
nonmutators take over again if no additional beneficial
mutations are available. The mutator population is reduced
until the steady-state mutator–nonmutator balance is rees-
tablished. However, this transient success of the mutator
population becomes particularly important if multiple bene-
ficial mutations are possible. While it is transiently more
common due to a first beneficial mutation, the mutator pop-
ulation is much more likely to get an additional beneficial
mutation. This second mutation may make it more fit than
any nonmutator, even accounting for the cost of deleterious
mutations. This then makes mutators even more common,
and even more likely to get future beneficial mutations. This
process naturally depends strongly on assumptions about
the availability of beneficial mutations. Tanaka et al.
(2003) analyzed this effect in one situation, showing that
it can substantially increase the probability of mutator
sweeps, although this analysis did not fully account for the
effects of deleterious mutations. This qualitative result was
also found by earlier simulation studies (Taddei et al. 1997;
Tenaillon et al. 1999; Travis and Travis 2002). To fully ad-
dress these multiple-mutation possibilities, we can use our
earlier analysis of Desai and Fisher (2007) to understand the
random distribution of times at which multiple mutations
occur, from which we can calculate the probabilities of
mutator and nonmutator sweeps. This is a broad topic,
which we leave for future work.

A final possibility is that the nonmutator establishment
time is short compared to the fixation time but the opposite
is true in the mutators, or vice versa. When only one
beneficial mutation is available, this is a simple situation:
the subpopulation with the shorter establishment time will
acquire the beneficial mutation first and sweep to fixation.
When multiple mutations are possible, this case becomes
more interesting. If the establishment rate is faster in the
mutator population, the mutators will still always win.
However, if the establishment rate is faster in the non-
mutators, occasionally by chance the mutator population
will get a beneficial mutation and increase transiently in
frequency. During this period, its establishment time is
reduced substantially and it is more likely to get additional
mutations, which reduce the establishment time of triple
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mutations further. This can create a runaway process that
causes a mutator sweep.

Discussion

In this article, we analyzed the evolutionary forces con-
trolling the dynamics of mutator alleles. We began by
calculating how the constant production of mutators is
balanced by the selection against deleterious mutants. We
analyzed a continuous-time model in which mutators are
produced from an initially clonal nonmutator population at
rate g.

Using this continuous-time model, we derived differential
equations describing the effects of deleterious mutations
and selection on the dynamics of the fitness distribution of
both the mutator and nonmutator populations. We solved
these differential equations using Laplace transform meth-
ods, assuming that the mutator population is rare. This
yielded expressions for the Laplace transforms of the fitness
distributions of the mutator and nonmutator populations.
From these expressions we calculated the dynamics of the
frequency of the mutator allele as well as its mean fitness.
This approach is similar in spirit to that of Johnson (1999a)
but is less general, since we must assume that the mutator
population is rare. However, this restriction allows us to
calculate explicit results for more quantities of interest and
to find simpler and more intuitive formulas.

From these solutions, we calculated the full time-de-
pendent fate of each individual mutator lineage. This
extends earlier work by Andre and Godelle (2006), who
calculated the fate of individual mutator lineages once they
reach their mutation–selection equilibrium. Since these
mutator lineages are continually being produced, there are
always young lineages in the population that are not in this
equilibrium. Thus our extension of Andre and Godelle
(2006)’s solution connects their results with the full mutator
dynamics.

We found that for any distribution of deleterious muta-
tions r(x), there is a typical effect of a deleterious mutation
s, which is on the order of the mean fitness effect of a del-
eterious mutation. Starting from a clonal nonmutator pop-
ulation, the mutators initially increase linearly with time,

pm ¼ gt: (50)

This persists until the mutator frequency reaches a steady
state, which takes the order of 1=M generations if M ≪ s and
the order of 1=

ffiffiffiffiffiffiffiffi
Ms

p
generations if M ≫ s. At steady state,

the mutator frequency is

pm ¼
( g

M for M ≪s
gffiffiffiffiffiffi
Ms

p for M ≫s: (51)

The mean fitness of a mutator individual in this steady state
(in the approximation that deleterious mutations in the
nonmutators can be neglected) is

dm ¼
(

M2MM
s for M ≪sffiffiffiffiffiffiffiffi

Ms
p ffiffiffi

2
p

q
for M ≫s:

(52)

Note here that the comparison between M and s is between
the deleterious mutation rate and the typical fitness effect of
a deleterious mutation (as defined in the analysis). Natu-
rally in any real situation there will be some deleterious
mutations with fitness effect that is large compared to M
and others with fitness effects that are small compared to
M; the key question is whether most deleterious mutations
have fitness cost greater or less than M.

WhenM ≪ s, these results are consistent with many earlier
analyses of the evolution of mutation rates, which treated all
individuals with deleterious mutations as effectively dead
(Leigh 1970; Dawson 1998, 1999; Johnson 1999b) (i.e., that
all deleterious mutations can be considered lethal). Since
mutators produce such dead offspring at a rate M greater
than nonmutators, this work assumed that the mutator effec-
tive fitness is lower byM, and hence that they are maintained
in the population at a frequency g=M. This assumption is
implicit in work on mutators that approximates the effect of
deleterious mutations as being simply a constant reduction in
the fitness of mutators (e.g., Tanaka et al. (2003)).

As we can see from our result above, this is indeed
reasonable when M ≪ s. This makes intuitive sense: in this
case, a deleterious mutation takes much longer to arise than
it does to kill an individual, so treating the mutation as in-
stantaneously lethal is not far wrong. Another perspective
on this is to note that each individual mutator lineage rea-
ches its own mutation–selection balance in a time on the
order of 1=s. It is then eliminated from the population after
a time 1=M. When M ≪ s, the former time is short compared
to the latter time. Thus most mutators in the population
have reached their steady-state mutation–selection balance,
where they are M less fit than the nonmutators (see Figure
3, a and c). Hence the mutator population as a whole is M
less fit than the nonmutators, so it is maintained at a fre-
quency g=M. Thus we have dm = M and pm ¼ g=M.

However, as our analysis shows, the assumption that all
deleterious mutations are effectively dead is not justified
whenM ≫ s. In this case, deleterious mutations arise quickly
compared to the rate at which they are selected against.
Although it may be true that individuals that have deleteri-
ous mutations do not leave any offspring in the long term,
the fact that it takes time for them to be selected against is
important, because it means that mutators persist at higher
frequencies for longer. We note that this general effect is
described in a somewhat different context by Gerrish et al.
(2007) as the potential basis for runaway evolution of in-
creasing mutation rates in certain situations.

In this M ≫ s regime, the time it takes for each individual
mutator to reach its own mutation–selection balance is long
compared to the time over which it will be eliminated from
the population. Thus most individual mutator lineages in the
population will not have reached their steady-state fitness
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distribution. Most of them are still much more fit than 2M;
they are closer to the mean fitness of the nonmutator pop-
ulation from which they arose (see Figure 3, b and c). This is
why dm is much smaller than M when M ≫ s. The depen-
dence on

ffiffiffiffiffiffiffiffi
Ms

p
arises because well before each individual

mutator lineage reaches its steady-state mutation–selection
balance, it simply accumulates deleterious mutations line-
arly with time. Thus its average fitness at time t after being
created is 2Mst, which means that the cumulative strength
of selection against this mutation over its lifetime t is just
the integral of 2Mst, or 2Mst2=2. Hence the lineage lasts
t � 1=

ffiffiffiffiffiffiffiffi
Ms

p
generations, and during this time has average

fitness
ffiffiffiffiffiffiffiffi
Ms

p
. Thus the average fitness of the mutator in-

dividuals is dm�
ffiffiffiffiffiffiffiffi
Ms

p
, and the mutator frequency is

pm � g=
ffiffiffiffiffiffiffiffi
Ms

p
. Note that these results show that when

M ≫ s, there are many more mutators, with much lower
deleterious load, than the assumption that all deleterious
mutations are effectively dead would predict.

Our result for the dynamics of the frequency of the
mutators, starting from a clonal nonmutator population,
is remarkably simple. The mutator frequency increases linearly
with time, at rate g, for small t, t ≪ 1=M or t ≪ 1=

ffiffiffiffiffiffiffiffi
Ms

p
, which-

ever is larger. There is a more complex crossover regime when t
becomes on the order of 1=M or 1=

ffiffiffiffiffiffiffiffi
Ms

p
, but by then the

mutator frequency has already become on the order of its
steady-state value. Note that in contrast to the work of Johnson
(1999a), our results show that the mutators do not come to
equilibrium on a timescale on the order of 1=s generations.
Rather, they take 1=M or 1=

ffiffiffiffiffiffiffiffi
Ms

p
generations. This makes

intuitive sense: although each individual mutator lineage
comes to its mutation–selection equilibrium on a timescale
on the order of 1=s generations, the overall mutator popula-
tion is not in steady state until these lineages begin to be
eliminated from the population and new lineages arise to re-
place them. Since the lineages take either 1=M or 1=

ffiffiffiffiffiffiffiffi
Ms

p
generations to be selected against, this is the timescale for
the whole mutator population to come to steady state.

The balance between the generation of mutator alleles
and the selection against them due to deleterious mutations
can be disrupted when beneficial mutations are available. A
variety of experimental work has found that mutator alleles
can be selected for when beneficial mutations are possible
(Cox and Gibson 1974; Trobner and Piechocki 1981; Chao
and Cox 1983; Chao et al. 1983; Mao et al. 1997; Sniegowski
et al. 1997; Giraud et al. 2001; Notley-McRobb et al. 2002;
Shaver et al. 2002; Thompson et al. 2006). However, we do
not yet have a good understanding about under what con-
ditions we expect beneficial mutations to occur in mutators.

This problem has been addressed by several simulation
studies (Taddei et al. 1997; Tenaillon et al. 1999; Travis and
Travis 2002). This work suggests that larger populations,
stronger effect mutator alleles, and a large number of avail-
able beneficial mutations all tend to increase the probability
that mutator alleles will increase in frequency due to bene-
ficial mutations. However, it is not entirely clear how these
various parameters interact. For example, when only a few

beneficial mutations are available, the effect of population
size may be weaker than when there are many. Tanaka et al.
(2003) combined simulations with theoretical analysis to
analyze a situation in which periodic environmental shifts
allow for new beneficial mutations. Their work gives
a deeper understanding of how multiple mutations affect
the possibilities of mutator success at different population
sizes and mutation rates. More recently, Wylie et al. (2009)
developed a detailed and fully stochastic analysis of the
fixation probabilities of mutator alleles in asexual popula-
tions. Both of these analyses explored the effects of benefi-
cial mutations on mutator dynamics in much more detail
than our work here, but under a more restricted set of
assumptions. Most importantly, they were both limited pri-
marily to the regime in which deleterious mutations are
strongly selected, and treating them as instantly lethal is
a good approximation.

When deleterious mutations are less strongly selected,
the interaction between deleterious and beneficial muta-
tions is more complex. In intermediate regimes where the
effect of a beneficial mutation sb is on the order of the mean
fitness of the mutators, we have no analytical expression for
the probability that a beneficial mutation can survive drift,
or for its fitness if it does so. To answer this question, we
have to turn to the algorithmic approach of Johnson and
Barton (2002), which unfortunately does not allow for an
analytical expression that we can use in further analysis.

However, in certain extreme cases we can explore how
beneficial mutations affect mutator success. We have used
this to develop a general outline of the different evolution-
ary forces affecting mutator success. We have seen that for
beneficial mutations of small effect sb, sb ≪ M, or sb ≪

ffiffiffiffiffiffiffiffi
Ms

p
(depending on the size of s relative to M), beneficial muta-
tions can never establish in mutators. In this case, beneficial
mutations do not contribute to mutator success, and muta-
tors cannot help a population adapt. On the other hand, in
the opposite regime of large sb, deleterious mutations do not
hinder the establishment of beneficial mutations in muta-
tors, nor are they hampered by a significant deleterious load
in the mutator individual they occurred in.

In this large-sb case, we calculated the probability of
mutator sweeps or episodes of transiently common muta-
tors. The way in which these situations affects the overall
role and dynamics of mutators depends on the specific
model of beneficial mutations, including details such as
how many beneficial mutations are possible and the distri-
bution of their fitness effects, among other factors.

In the situation where establishment times of beneficial
mutations are long compared to the fixation times (e.g.,
small population size or rare beneficial mutations), each
time a beneficial mutation occurs it creates a sweep by either
the mutator or nonmutator population. This is then followed
by a period of either increase or reduction in the mutator
frequency toward the mutator–nonmutator balance, until
another beneficial mutation occurs. If we imagine that ben-
eficial mutations sweep through the population on
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a timescale t generations, then the dynamics depends on the
relative size of t and the timescales for reestablishment of
the mutator–nonmutator deleterious steady state. If t is long
compared to 1=M (ifM ≪ s) or 1=

ffiffiffiffiffiffiffiffi
Ms

p
(ifM ≫ s), then after

each nonmutator sweep there is time for the mutators to
increase to their steady-state frequency before the next ben-
eficial mutation occurs. Thus the probability of a mutator
sweep the next time a beneficial mutation occurs will remain

P ¼ lpm
1þ lpm

: (53)

However, if t is instead short compared to 1=M or 1=
ffiffiffiffiffiffiffiffi
Ms

p
,

then the mutators will only have reached a frequency pm =
gt by the next time a beneficial mutation occurs, and P will
be correspondingly reduced. Thus when t is short, initial
nonmutator success makes future nonmutator success more
likely. For analogous reasons, initial mutator success makes
future mutator success more likely as well.

The value of t could be set by forces external to the
population, such as the rate of changes in the environment
that make new beneficial mutations possible. Alternatively,
a number of beneficial mutations could always be available
and t could simply be the establishment time of a beneficial
mutation in either the mutator or nonmutator population,
1=t ¼ 2NUbsb þ 2NpmlUbsb. In the latter case, a mutator
sweep would then lead to a drastic reduction in t (and could
make the establishment time short compared to the fixation
time of beneficial mutations, leading to a period of rapid
accumulation of beneficial mutations). On the other hand,
a nonmutator sweep would lead to a slight increase in t

until the mutator population reestablished itself.
In the opposite case in which establishment times are

short compared to fixation times (e.g., large N or high ben-
eficial mutation rates), then the particular model for the
availability of beneficial mutations becomes even more im-
portant. An initial beneficial mutation causes the mutators
to become transiently more common by a factor of roughly l
for a period on the order of 1=M generations. If additional
beneficial mutations become available only when the envi-
ronment shifts, then this has no further effects unless the
environment shifts quickly compared to the reduction in the
mutator frequency. However, if the environment changes
more quickly, then at subsequent times the mutators will
again become transiently more common by another factor
of l, and so on. On the other hand, if multiple beneficial
mutations are possible all at once, limited only by their
establishment rates, the transient increase in the mutator
frequency from the first such mutation will make further
beneficial mutations in the mutators likely, and so on. This
can lead to a runaway process that leads to mutator sweeps.
After the first few such multiple mutations, however, sto-
chastic effects become important and the analysis becomes
difficult. Paradoxically, this situation in which beneficial
mutations are common and establishment times are short
is very favorable for the mutators, despite this being pre-
cisely the case in which the population does not really

“need” mutators in order to adapt. That is, mutators are
particularly likely to succeed in situations where clonal in-
terference and multiple mutation effects mean that raising
the mutation rate only slightly increases the rate of adapta-
tion. This has been noted previously in numerical simula-
tions (Tenaillon et al. 1999), and contrasts with the results
of Wylie et al. (2009), presumably because the latter authors
studied a model in which the effects of multiple beneficial
mutations are neglected.

A variety of experimental work has shown that in natural
and laboratory situations, the conditions are in fact right for
mutators to at least sometimes sweep. This includes cases in
which mutators are found at high frequencies in natural
populations (Gross and Siegel 1981; Leclerc et al. 1996,
1998; Matic et al. 1997; Oliver et al. 2000; Bjorkholm
et al. 2001; Denamur et al. 2002; Giraud et al. 2002;
Richardson et al. 2002; Prunier et al. 2003; Watson et al.
2004; Del Campo et al. 2005; Labat et al. 2005). It also
includes experimental situations in which mutators sponta-
neously arose (Mao et al. 1997; Sniegowski et al. 1997;
Notley-McRobb et al. 2002; Shaver et al. 2002; Pal et al.
2007), and experimental work in which labeled mutator
strains were placed in competition with nonmutator strains
to directly investigate mutator success (Cox and Gibson
1974; Trobner and Piechocki 1981; Chao and Cox 1983;
Chao et al. 1983; Giraud et al. 2001; Thompson et al.
2006). Both types of study relate to our analysis, but each
has important limitations.

Experiments in which mutators appear spontaneously
correspond well to nature and the analysis of this article.
Here mutators are presumably present at the low frequen-
cies given by the mutator–nonmutator balance and occa-
sionally spontaneously sweep due to beneficial mutations.
But since the mutator strains arise naturally and are unla-
beled, it is difficult to follow the dynamics of the mutator
population, particularly while it is rare.

Experiments involving deliberate mixtures of mutator
and nonmutator strains that carry neutral genetic markers
may be more useful in studying the the quantitative aspects
of mutator behavior needed to test the results of this article.
These studies are limited, however, because mutations that
generate additional mutators from the nonmutators are not
genetically marked. Thus the steady-state mutator–nonmu-
tator balance cannot be observed; rather, the initial lineage
of marked mutators steadily declines in frequency until they
are eliminated, unless they acquire one or more beneficial
mutations. However, we can use this decline of the marked
mutators to test our expression for the fate of an individual
mutator lineage h(t). This analysis might be complicated by
beneficial mutations and would need to be done at small
enough population sizes that they would not occur.

These marked-mutator studies can also be used to test the
dynamics of mutators in the presence of beneficial mutations,
looking for transient increases in mutator frequencies (and
possible additional beneficial mutations leading to mutator
sweeps) for large N where the establishment times are short,
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but either mutator or nonmutator sweeps at smaller N where
establishment times are longer.

We note that throughout our analysis we have considered
purely asexual populations, and like many earlier studies we
have neglected the effects of recombination. This assump-
tion reflects our focus on microbial populations. However,
microbial populations are not purely asexual, and horizontal
gene transfer could potentially play a role in mutator dy-
namics. In general, recombination acts to reduce the length of
time that mutator alleles remain linked to the beneficial and
deleterious mutations that they produce, and hence it reduces
the strength of the hitchhiking effects our analysis describes.
However, provided that recombination rates are sufficiently
small compared to selection pressures, mutators remain
linked to the mutations they produce over the timescale in
which these mutations change substantially in frequency.
Thus we expect our asexual analysis to accurately describe
the dynamics in this regime. For weaker selection pressures,
however, further work is needed to analyze the interplay
between recombination and mutator dynamics.

Finally, we note that throughout this article we have
assumed that there is no epistasis among either beneficial or
deleterious mutations. That is, the fitness cost of two
deleterious mutations is the sum of the individual fitness
costs of each one. If epistasis among mutations is pervasive,
our results could change dramatically. Broadly speaking, if
deleterious mutations interact synergistically (the fitness of
the double mutant is less than the product of the fitnesses of
the two single mutants), then mutator frequencies will tend
to be lower than we have predicted. Alternatively, if de-
leterious mutations interact antagonistically (the fitness of
the double mutant is higher than the product of the fitnesses
of the two single mutants), then mutator frequencies will
tend to be higher. The details of this analysis, however, are
complex and difficult to calculate. The main approach of this
article to the mutator–nonmutator deleterious mutation–
selection balance cannot be easily extended to the case
when epistasis is common, so alternative approaches are
necessary to study this situation.

The dynamics of mutator alleles offer a way to test
experimentally for overall patterns of epistasis among
deleterious mutations. We could look at the dynamics by
which marked mutator lineages are eliminated from a pop-
ulation. Differences in the time dependence of this process
(and inconsistencies between the mean fitness of the
mutator lineage and the time dependence of its decline)
from the predictions described in this article would suggest
that epistasis among deleterious mutations is common.
Given solutions for the expected dynamics with different
types of epistasis, it might be possible to tell what types of
epistasis are prevalent in the experimental population.
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