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Abstract

A population evolving in an inhomogeneous environment will adapt differently to different areas. We study the conditions under

which such a population can maintain adaptations to a particular region when that region is not stationary, but can move. In

particular, we consider a haploid population living near a moving favorable patch (‘‘oasis’’) in the middle of a large ‘‘desert.’’ At one

genetic locus, individuals may have one of a few gene sequences that convey an advantage while in the oasis at the cost of a

disadvantage in the desert. The distribution of genetic states in the population, possibly localized in genome space around the oasis-

adapted genotypes, is known as a quasispecies. We find that the ratio of oasis-adapted individuals to desert-adapted ones exhibits

sharp transitions at particular oasis velocities. We calculate an extinction velocity, and a switching velocity above which the

dominance switches from the oasis-adapted genotype to the desert-adapted one. This switching velocity is analogous to the

quasispecies mutational error threshold. Above this velocity, the population cannot maintain adaptations to the properties of the

oasis.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spatial inhomogeneities in the environment are often
essential to understanding the dynamics of natural
populations. Populations may for example be confined
to limited reserves or live in an environment with
gradients in resources or large-scale inhomogeneities in
habitability. The evolution of a population in an
inhomogeneous environment is particularly interesting.
When individuals move over the environment suffi-
ciently rapidly relative to the length scale of the
inhomogeneities, they see and adapt to an ‘‘averaged’’
environment (Roughgarden, 1974; Wiens, 1976). When
this is not true, however, the dynamics can be much
more complex. Some individuals may randomly see
primarily one part of the range while others see other
parts. The population in the distant future will likely be
e front matter r 2004 Elsevier Inc. All rights reserved.
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dominated by the descendants of a few exceptionally
lucky individuals in the present, who will have seen an
unusually favorable subset of the set of possible
environments. Thus it is not at all clear a priori exactly
how different regions of the environment will influence
the evolution of the population.

This question of population genetics in a spatially
non-uniform environment was first considered by
Haldane (1948), who generalized the work of Fisher
(1937) on the spread of a mutant in a uniform
environment. He found that in environments where a
particular allele is beneficial in one region and deleter-
ious in another, its frequency will tend to be high in the
regions where it is favored and low where it is
disfavored, establishing a gene frequency ‘‘cline.’’ The
properties of such a cline in one dimension in a diploid
population experiencing migration, selection, and genet-
ic drift have been analyzed by a number of authors
(Endler, 1973; Felsenstein, 1975; Fisher, 1950; Nagylaki,
1975; Slatkin, 1973; Slatkin and Maruyama, 1975).

www.elsevier.com/locate/ytpbi
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More recent work has extended this analysis to consider
multiple alleles at the selected locus in arbitrary spatial
geometries (You and Nagylaki, 2002).

In this paper, we consider a simple environment with
two regions, a favorable ‘‘oasis’’ in a large less favorable
(or unfavorable) ‘‘desert,’’ as studied by several previous
authors (Hanson, 1966; Nagylaki, 1975, 1978). The
favorable area could be realized as a game reserve, a
region of favorable climatic conditions, or a patch of
light, among other things. Provided that the favorable
region is stationary and sufficiently large, a population
will adapt to the special properties of this region
(Hanson, 1966; Nagylaki, 1975). Alleles with an
advantage in each area will be more common there,
and a steady-state gene frequency cline will become
established. However, in many cases the oasis will move
at some typical velocity v; for example due to seasonal
weather patterns or human intervention. Equivalently,
the population could be blown across the oasis at speed
v by asymmetric migration (May et al., 1975; Nagylaki,
1978; Pauwelussen and Peletier, 1981) or some other
form of ‘‘wind.’’ In this situation, there is a velocity
beyond which the population will not be able to
maintain adaptations to the properties of the oasis.
Rather, the evolution will be dominated only by
the desert environment. We focus in this paper on
calculating this velocity, which we call the ‘‘switching
velocity’’.

We consider population densities cð~x; tÞ given by a
linearized Fisher equation with drift,

@cð~x; tÞ

@t
¼ Dr2c �~v � rc þ Rð~xÞc; (1)

where D is the diffusion constant and ~v is the drift
velocity. We consider a haploid population with two
types of individuals. Thus cð~x; tÞ is a two-vector

cð~x; tÞ ¼
c1ð~x; tÞ

c2ð~x; tÞ

 !
(2)

and Rð~xÞ is a two-by-two matrix with diagonal elements
specifying the growth rates of the two genotypes and
off-diagonal elements specifying the mutation and back-
mutation rates. A nonlinear saturation term can be
added, and is important for some purposes. We assume
that the population c1 has some gene or sequence which
conveys an advantage in the oasis, but has an overall
cost which makes it disadvantageous in the desert. The
population c2 consists of all individuals who have lost
the function of the gene by one or more mutations.
Individuals of type 1 are thus those that have adapted to
the special properties of the oasis, while type 2
individuals are desert-adapted.

This is a simplified model of a quasispecies, which is a
distribution of genome sequences localized in sequence
space around an ‘‘ideal’’ sequence. In our model,
genotype 1 represents the population of the ‘‘ideal’’
sequence, while type 2 represents all others. There is
mutation back and forth between the two, typically with
the mutation rate away from the ideal sequence greater
than the mutation rate towards it. A few recent papers
have examined other versions of a spatial quasispecies
model, with many different possible types of individuals
representing all possible Hamming distances from the
ideal sequence (Altmeyer and McCaskill, 2001; Gerland
and Hwa, 2002). Here, we focus on a simple two-type
spatial model, although it is straightforward to general-
ize our results. Our model is qualitatively similar to that
of Nagylaki (1978), though Nagylaki neglects mutation
and considers a diploid population.

Our analysis is an extension of previous work
examining a population without genetic structure
diffusing and drifting in a random environment. Nelson
and Shnerb (1998) examine such a population in two
dimensions in the case where the population growth rate
is a random function of ~x; using the non-Hermitian
methods developed by Hatano and Nelson (1997, 1998).
In the limit of small v (v5vF � 2

ffiffiffiffiffiffiffi
aD

p
; where a is the

average of rðxÞ), the population is dominated by a few
colonies that grow up around ‘‘oases,’’ regions which
happen to have higher growth rates than surrounding
areas. As v increases, individual colonies on less
prosperous oases are blown away in a series of
‘‘delocalization’’ transitions. In the limit of large v all
organisms are blown away from individual oases and
convect across the environment. At long times, the
population is dominated by those individuals that
happened to take very special paths through the random
environment, travelling through a disproportionate
number of the oases. Thus, this is an example of a
system in which a typical individual will evolve in
response to a very special subset of the environment. In
subsequent work, Dahmen et al. (2002) examined the
transition between the small and large v regimes by
looking at a model of a single oasis. Their predictions
have been qualitatively confirmed by recent experiments
on Bacillus subtilis growth (Neicu et al., 2000).

We generalize the work of Dahmen et al. (2002) to
consider the genetic state of our population as we
change the velocity v:We find two important transitions.
When the growth rate in the desert is negative, there is
an extinction velocity ve where the entire population
goes extinct. When the genotype 2 desert growth rate is
positive, there is a ‘‘switching’’ velocity vs where the
behavior of the population changes dramatically. Below
this velocity the population (particularly within the
oasis) is dominated by genotype 1. Above it, the oasis-
adapted genotype is outcompeted, genotype 2 dom-
inates, and c1=c2 ! 0 at long times. This transition is a
velocity-driven analog of the classical mutational error
threshold in non-spatial quasispecies models (Eigen,
1971; Eigen et al., 1989; McCaskill, 1984).
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Our results have interesting implications. If the oasis
represents some part of a species’ habitat, the switching
velocity is simply how quickly this can move before the
species can no longer maintain adaptations to the
properties of this aspect of its range. Our analysis is
also a first step towards understanding the spatial
quasispecies model in a random environment, where
the population does not evolve in response to the
averaged environment but rather in response to a
different, highly selective subset of the environment.

The outline of this paper is as follows. In Section 2, we
give a detailed description of our model. In Section 3, we
outline the calculation of the critical velocities and
the behavior of the population in the different regimes.
In Section 4, we compare our analytical results
with computer simulations. Finally, in Section 5, we
discuss the main biological implications of these
calculations.
2. Model

We consider a population with two types of indivi-
duals whose densities are described by

cð~x; tÞ ¼
c1ð~x; tÞ

c2ð~x; tÞ

 !
: (3)

The dynamics is exponential growth (or decay) with
diffusion and convection

@cð~x; tÞ

@t
¼ Dr2c �~v � ~rc þ Rð~xÞc; (4)

where Rð~xÞ is a two-by-two matrix. We are primarily
concerned with the extinction and delocalization transi-
tions. Thus for the bulk of our analysis, we neglect the
possibility of a nonlinear saturation term. In Section 5.1
we discuss the consequences of such a nonlinearity.

We define the growth and death rates of individuals of
type i within the oasis to be ai and gi; respectively.
Outside the oasis, the growth and death rates are defined
to be bi and di: The probability that a type 1 mother will
produce a type 2 daughter because of mutation is
defined to be m1; and the back-mutation probability is
m2: Based on these definitions, the matrix Rð~xÞ is given
by

Rð~xÞ ¼
a1 � g1 � m1a1 m2a2

m1a1 a2 � g2 � m2a2

 !
(5)

inside the oasis and similarly (with a ! b and g ! dÞ in
the desert.

We next define the Malthusian parameters ai � a1 �
g1 and bi � bi � di: For simplicity, we assume that the
growth rates within the desert and the oasis are the
same, i.e. ai ¼ bi: This means that the desert is less
hospitable because of a higher death rate, not a lower
growth rate. This yields the growth rate matrix

Rð~xÞ ¼
a1 � m1a1 m2a2

m1a1 a2 � m2a2

 !
(inside oasis) (6)

in the oasis and similarly in the desert,

Rð~xÞ ¼
b1 � m1a1 m2a2

m1a1 b2 � m2a2

 !
(outside oasis): (7)

The results for aab are also straightforward to calculate
with our methods. However, the assumption ai ¼ bi

simplifies the analysis by implying that the effective
mutation rates per unit time inside and outside the oasis
are the same. If mutation rates are constant per unit
time rather than per generation, this is true anyway (in
this case, we simply replace miai ! mi throughout). In
our discussion, however, we retain the definition of m1
and m2 as mutation probabilities per generation.

We consider the case where any individual is better off
in the oasis than the desert (i.e. it is a beneficial oasis),
but genotype 1 holds a relative advantage in the oasis
and genotype 2 holds a relative advantage in the desert.
That is, genotype 1 is beneficial in one region (the oasis)
and deleterious elsewhere, as in classical cline models.
This implies a14b1; a24b2; a14a2; and b24b1: Absent
these inequalities, one or the other type will be more fit
everywhere, and this type will unequivocally dominate
the population (up to the mutational error threshold),
independent of the drift velocity. In that case, we can
ignore the inferior type at long times and the problem
reduces to that studied by Dahmen et al. (2002). Our
assumptions imply that individuals of type 1 have some
function that conveys an advantage inside the oasis, at
the cost of a disadvantage elsewhere. Our analysis will
determine whether or not this function can be main-
tained in the face of mutational pressure when the oasis
is moving at velocity v:

We could of course make any number of assumptions
about the geometry of the desert and the oasis. We
consider for simplicity a one-dimensional system with an
oasis of width W in the middle of an infinite desert, as
depicted in Fig. 1a. This analysis also describes the long-
time behavior of the two-dimensional system with
geometry as described by Fig. 1b. If the initial
conditions are uniform in the y direction, the one-
dimensional system of Fig. 1a is equivalent to the two-
dimensional system of Fig. 1b. If the conditions are non-
uniform, the two become equivalent after a time of
order ‘2=D (Dahmen et al., 2002). More complex
geometries are certainly possible, and we discuss these
briefly in Section 5.2.

We assume throughout that differential equations are
an adequate representation of these biological processes.
We neglect genetic drift and discreteness in population
number, which may have some importance near the
extinction transition. The effects of discreteness may be
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Fig. 1. (a) The one-dimensional system we consider, for the case of a

deadly desert. The dashed line is the growth rate of genotype 1, the

dotted line the growth rate of genotype 2. This is an approximation to

the two-dimensional system shown in (b), valid when the initial

conditions are uniform in the y direction or the time is greater than

‘2=D:
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analyzed using the methods of Doi (1976a, b), Peliti
(1985), and Cardy and Tauber (1996).
3. Calculation of the population dynamics

We analyze our model using non-Hermitian methods
(Hatano and Nelson, 1997, 1998; Nelson and Shnerb,
1998). We first rewrite our system in the form

@cðx; tÞ

@t
¼ Lc; (8)

where L is given by L ¼ LinyðW=2� jxjÞ þ

Loutyðjxj � W=2Þ; and W is the width of the oasis.
The function yðyÞ ¼ 1 if yX0 and 0 otherwise, and

Lin ¼
D@2x � v@x þ a1 � m1a1 m2a2

m1a1 D@2x � v@x þ a2 � m2a2

0
@

1
A;

ð9Þ

Lout ¼
D@2x � v@x þ b1 � m1a1 m2a2

m1a1 D@2x � v@x þ b2 � m2a2

0
@

1
A:

ð10Þ
L is non-Hermitian, but we can diagonalize it with a
system of left and right eigenfunctions /R

n ðxÞ and /L
n ðxÞ;

with their (common) eigenvalues Gn: These eigenfunc-
tions (which we also call ‘‘states’’) satisfy the ortho-
normality conditionZ

/L
mðxÞ � /

R
n ðxÞ dx ¼ dmn: (11)

Using this result, we can write the initial condition as a
linear superposition of the right eigenfunctions, i.e.
cðx; t ¼ 0Þ ¼

P
n cn/

R
n ðxÞ; where

cn ¼

Z
ddx/L

n ðxÞ � cðx; t ¼ 0Þ: (12)

We can then immediately write down the solution valid
for all times, namely

cðx; tÞ ¼
X

n

cn/
R
n ðxÞe

Gnt: (13)

This result has a clear biological interpretation.
Initially, the population is in some particular arrange-
ment, expressible as a linear combination of the different
eigenfunctions. Due to the structure of the eigenfunc-
tions, this combination will necessarily include the
eigenfunction corresponding to the largest Gn � Ggs

(which is always real). This eigenfunction is special, and
we refer to it as the ‘‘ground state.’’ As time passes, the
population distribution looks more and more like the
ground state. This distribution will grow (or die out)
exponentially with rate Ggs: The other /R

m may be
important initially, but since they grow more slowly
than the ground state, they soon become irrelevant.
Thus understanding the ground state function and its
eigenvalue are the key to understanding the long time
behavior of the population.

It remains to solve for the eigenfunctions and
eigenvalues /L

n ðxÞ;/
R
n ðxÞ; and Gn: For the case v ¼ 0;

the solution is straightforward and will be discussed in
detail below. For non-zero v; we make use of the fact
that the eigenfunctions of Lv¼0 are related to the
eigenfunctions of L by an ‘‘imaginary gauge transfor-
mation’’ (Nelson and Shnerb, 1998). That is, if /R

n;v¼0ðxÞ

is a right eigenfunction of Lv¼0 with eigenvalue Gn; then

/R
n;vðxÞ ¼ evx=2D/R

n;v¼0ðxÞ (14)

is a right eigenfunction of L; with eigenvalue

Gv
n ¼ Gv¼0

n �
v2

4D
; (15)

as can be verified by allowing L to act on /R
n : Similar

expressions hold for /L
n;v: The eigenvalues Gv¼0

n are all
real. Thus, eigenfunctions for v40 are very similar to
the eigenfunctions for v ¼ 0: The genotype 1 versus
genotype 2 composition of the states is not altered at all.
The only change is that the wind causes a distortion of
the population in the direction of the wind, and the
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Fig. 2. An example of eigenvalue spectra, shown here for 3 values of

v̄ ¼ v
vF

� v

2
ffiffiffiffiffiffi
Da1

p with ā1 ¼ ā1 ¼ 1; b̄1 ¼ �1; ā2 ¼ ā2 ¼ 0:6; b̄2 ¼
�0:6;m1 ¼ 0:01;m2 ¼ 0:001; and D̄ ¼ 0:25; where the overbars indicate
the non-dimensionalized parameters discussed in Appendix C. To

allow easy distinction from the v̄ ¼ 0 results, the localized v̄ ¼ 0:9
eigenvalues have been shifted slightly upwards. Note the rigid shift of

the localized eigenvalues (those on the real axis) to the left as we

increase v̄: This is highlighted by the three v̄ ¼ 0 states marked by

upwards arrows, which for v̄ ¼ 0:9 are shifted into the three states

marked by downwards arrows. The two (and only two) delocalization

transitions Ḡ�

1 � �1 and Ḡ�

2 � �0:6 are also clearly visible. Note that

these transition points, and all the delocalized states, do not shift to the

left as v̄ increases. On the left half of the spectrum (omitted from the

figure), the delocalized eigenstates form closed loops, an artifact of the

computational discretization used to produce this figure.
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growth rates of the states shift downward ‘‘rigidly’’ (i.e.
independent of n) by an amount v2

4D
:

However, this procedure works only for small v: To
see this, consider the behavior of the eigenfunctions as
x ! 1: We expect (and will soon verify) that the v ¼ 0
eigenfunctions far from the oasis decay exponentially,

fn;v¼0 
 e�knjxj: (16)

Thus for v40;

fR
n 
 evx=2D�knjxj: (17)

When vo2Dkn; the eigenfunctions vanish at infinity, as
they should. However, for v42Dkn; this function blows
up at infinity, which is unreasonable. The correct
eigenfunctions have a different character when
v42Dkn � v�n:

Hatano and Nelson (1998) show that the transition at
v�n is a delocalization of the corresponding eigenfunction.
For vov�n; the eigenfunctions are localized around the
oasis, but for v4v�n they are delocalized. This makes
intuitive sense. For small velocities, the population will
tend to cluster around the oasis, but for larger wind
velocities it gets blown off the oasis and must live by
drifting across the desert. The behavior of the eigenva-
lues Gn near this delocalization transition is striking. Up
to v�n; the eigenvalue G

v
n is simply equal to Gv¼0

n � v2

4D
; but

beyond this point this relation no longer holds. Instead,
Gn jumps off the real axis at v�n; becoming complex, and
the eigenfunctions become broad delocalized states
extending through the desert (Hatano and Nelson,
1997, 1998; Nelson and Shnerb, 1998). We denote the
value of Gn at which this occurs by G�

n: As we continue to
increase v above v�n; the real part of Gn stays
approximately constant, although the imaginary part
does change. From the gauge transformation relation-

ship, we have G�
n ¼ Gv¼0

n �
ðv�nÞ

2

4D
: However, as we will see,

the structure of the n-dependence of vn and Gn is such
that there are only two different values of G�

n: This is a
crucial point. In our problem, the states will divide into
those dominated by genotype 1 and those dominated by
genotype 2. As we will show, states dominated by
genotype 1 delocalize at G�

1 ¼ hr1i; the spatial average

growth rate of the first genotype, which up to finite size
effects is just b1: G�

2 ¼ hr2i � b2 plays the same role for

states dominated by the second genotype. By our
assumptions about the parameters, G�

24G�
1: An example

of eigenvalue spectra for several values of v is given in
Fig. 2.

Each localized state has some particular Gv¼0
n ; and for

non-zero v its eigenvalue becomes Gn ¼ Gv¼0
n � v2

4D
: As v

increases, G decreases until the state delocalizes, at G�
1

for those states dominated by type 1 and at G�
2 for those

states dominated by type 2. We will see that the ground
state for v ¼ 0 is dominated by genotype 1. As v

increases there comes a critical point when this ground
state eigenvalue Ggs crosses G�
2: Beyond this point it is no

longer the ground state. Rather, the delocalized
genotype-2 dominated state with eigenvalue G�

2 has the
highest G; and this state determines the population
dynamics. We call this critical velocity the ‘‘switching
velocity,’’ where the dominance switches from genotypes
1 to 2. This switch is a type of quasispecies transition,
caused not by exceeding a mutation rate error threshold,
but by exceeding a critical velocity. This reasoning is
illustrated in Fig. 3.

If the growth rate for genotype 2 in the desert is
negative, then G�

2o0: The switching behavior will then
be difficult to observe experimentally, as both genotypes
will be going extinct when it happens. In this case, the
biologically interesting transition occurs at the ‘‘extinc-
tion’’ velocity where the growth rate of the ground state
passes through 0. Beyond this velocity, all the states
have negative growth rate, so neither genotype can
survive. When the growth rate for genotype 2 in the
desert (b2) is positive, the switching velocity becomes
biologically relevant. In this case, there is no extinction
velocity. This is because the delocalized states do not
shift to lower G as v increases, and at least one genotype-
2 dominated delocalized state has eigenvalue G�

2 �

b240: Intuitively, this makes sense because the
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Fig. 3. A single eigenvalue spectrum, with the genotype-1 and

genotype-2 dominated states distinguished. This is just the v̄ ¼ 0:9
spectrum from Fig. 2 above. Note the state with the largest ReðGÞ (i.e.
the ground state) is a genotype-1 dominated state. This v̄ is just below

the extinction velocity, so Ggs is just above the extinction threshold,

indicated by the dashed vertical line at G ¼ 0: As v̄ increases, all of the

localized (real) states move to the left until they enter either the left

parabola of delocalized states (for genotype-1 dominated states) or the

right parabola of delocalized states (for genotype-2 dominated states).

Thus as v̄ increases Ggs will soon pass through 0 at the ‘‘extinction

velocity’’. However, the delocalized states do not shift to the left as v̄

increases. Thus as v̄ increases further, Ggs will eventually pass through

G�
2 ; indicated by the center vertical line. Once this happens, the largest

ReðGÞ no longer belongs to the original genotype-1 dominated state,

but rather to a genotype-2 dominated delocalized state. The critical

velocity at which this occurs is the ‘‘switching velocity.’’ In this

example, since G�
2o0; the switching velocity is higher than the

extinction velocity, and is therefore biological uninteresting. However,

if we had G�
240; the spectrum would look identical, except it would be

shifted to the right. We would then have G�
240; and hence there would

always be states above ReðGÞ ¼ 0: Thus there would be no extinction

velocity, and the switching velocity would be biologically relevant.
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population, dominated by genotype 2, can survive in the
desert at arbitrarily large velocities.

3.1. Solution for the eigenvalues and eigenfunctions

In order to carry out the analysis sketched above, we
must solve for the v ¼ 0 eigenvalues and eigenfunctions,
and determine the values of G�

1 and G�
2: It is possible to

do this exactly, and an outline of this calculation is
presented in Appendix A. However, it is more straight-
forward and instructive to first examine the solutions for
m1 ¼ m2 ¼ 0; and then use perturbation theory to find
the results for small m1 and m2:

3.1.1. The m1 ¼ m2 ¼ 0 solution

We first examine the system for m1 ¼ m2 ¼ 0: In this
case, the two types of individuals are completely
independent. The problem reduces to that studied by
Dahmen et al. (2002). We use the imaginary gauge
transformation to eliminate the velocity, and focus on
the v ¼ 0 eigenvalues and eigenstates. We then have to
solve the eigenvalue equation

Lv¼0f
i;v¼0
n ¼ Gi;v¼0

n fi;v¼0
n : (18)

This problem is formally equivalent to the square well
problem in quantum mechanics (Landau and Lifshitz,
1991). The v ¼ 0 right eigenstates are of the form

/1;v¼0
n ¼

c1
n

0

 !
; /2;v¼0

n ¼
0

c2
n

 !
; (19)

where

ci
n ¼

Ai
nek

i
nx for xo� W=2;

Bi
neiki

nx þ Ci
ne�iki

nx for � W=2oxoW=2;

Gi
ne�ki

nx for x4W=2:

8>><
>>:

(20)

Note that the index i indicates the genotype that
dominates the state. Substituting this ansatz into the
eigenvalue equation leads to

Gi;v¼0
n ¼ Dðki

nÞ
2
þ bi ¼ �Dðki

nÞ
2
þ ai: (21)

We proceed by requiring that / and its first derivative
be continuous at x ¼ �W=2; which determines the
constants A;B;C; and G up to an overall normalization
and yields a transcendental equation to determine G:
This analysis is carried out in detail by Dahmen et al.
(2002). The essential result is that provided the oasis is
wide enough that a typical individual gives birth many
times while diffusing across it, the ground state
eigenvalue can be approximated as Gv¼0;m¼0

gs � a1; with
a corresponding eigenfunction that is entirely genotype 1
and localized largely within the oasis. We will use this
approximation throughout the rest of this paper. We
can also calculate the position of the delocalization
transitions Gi�

n : These are defined as the amount by
which the v ¼ 0 eigenvalue Gi;v¼0

n is shifted by the
delocalization velocity vi�

n : We thus have Gi�
n ¼ Gi;v¼0

n �

ðvi�
n Þ2

4D
¼ Gi;v¼0

n � Dðki
nÞ

2: Using Eq. (21), we find Gi�
n ¼ bi:

Note that, as claimed above, this Gi�
n is independent of n

and depends only on i. Thus there are two and only two
delocalization thresholds, one corresponding to each
genotype.

3.1.2. Perturbation theory in m1 and m2
We can now examine the results for non-zero

mutation rates m1; m240 by using a non-Hermitian
version of time-independent perturbation theory from
quantum mechanics (Landau and Lifshitz, 1991). We
require that m1 and m2 be small, specifically that
miai

a1�a2
; miai

b2�b1
51: The details of the calculation are

described in Appendix B. The eigenstates now all
involve both genotypes, although those that began as
genotype 1 states remain dominated by this type, and
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vice versa. More precisely, we have

/1;v¼0;R
n ¼

c1
n

m1a1
a1�a2

c2
n

0
@

1
A (22)

for a genotype-1 dominated localized state, and

/2;v¼0;R
n ¼

m2a2
b2�b1

c1
n

c2
n

0
@

1
A (23)

for a genotype-2 dominated delocalized state, where c1
n

and c2
n are given in Section 3.1.1. Note that we focus on

genotype-1 dominated localized states and genotype-2
dominated delocalized states because no other state can
dominate the dynamics in any regime. The eigenvalues
are also shifted. The eigenvalues for genotype-1
dominated localized states become

G1;v¼0
n ¼ Gi;v¼0;m¼0

n � m1a1 þ
m1a1m2a2
a1 � a2

; (24)

while the genotype-2 dominated delocalized states have
eigenvalues

G2;v¼0
n ¼ G2;v¼0;m¼0

n � m2a2 þ
m1a1m2a2
b2 � b1

; (25)

plus higher-order terms in m1 and m2:

3.2. Critical velocities

We can now calculate the critical velocities at which
the dynamics changes qualitatively. There are two
relevant cases. For b2o0 neither delocalization transi-
tion occurs at positive G because neither genotype can
survive in the desert. Thus the switching velocity,
though it exists formally, is biologically irrelevant. The
extinction velocity ve is the velocity where the ground
state eigenvalue passes through zero. Below ve a
genotype-1 dominated population can multiply but
above this velocity the population must go extinct. This
velocity is defined by Gve

gs ¼ Gv¼0
gs �

v2e
4D

¼ 0; which using
Eq. (24) gives

ve ¼ 2
ffiffiffiffiffiffiffiffiffi
Da1

p
1�

m1a1
2a1

� �
; (26)

valid to first order in m1 and m2: Note that for m1 ¼ 0;
we have ve ¼ vF � 2

ffiffiffiffiffiffiffiffiffi
Da1

p
; the Fisher velocity for

genotype 1.
For b240 there is no extinction velocity, as genotype

2 can survive at any velocity. However, there is a
switching velocity vs where the population shifts from
being mostly genotype 1 to mostly genotype 2. This
occurs when the growth rate of the genotype-1
dominated ground state passes through G�

2 ¼

b2 � m2a2 þ
ðm2a2Þ

2

b2�b1
: By a similar calculation we find

vs ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða1 � b2Þ

p
1�

1

2

m1a1
a1 � b2

þ
1

2

m2a2
a1 � b2

� �
; (27)
also valid to first order in m1 and m2: As mentioned
above, this switching velocity is a sort of quasispecies
transition. As the velocity increases past this critical
threshold, the population can no longer maintain the
‘‘ideal’’ sequence, even if it is below the mutational error
threshold. This switching velocity is also well defined for
b2o0; but will be difficult to observe because vs4ve: We
can easily calculate the second-order corrections to both
ve and vs (see Appendix B).
4. Simulations

We use two different computational methods to test
our analytic results. First, we use a lattice discretization
of the Liouville operator L to calculate the eigenvalue
and eigenfunction spectrum for particular sets of
parameter values. This numerical work provides an aid
to intuition and one check of the validity of our
approximations. Second, we simulate the underlying
discrete process, namely individuals multiplying and
mutating at appropriate rates. This tests not just the
results of our analysis, but also the overall applicability
of continuous time differential equations to the real
discrete populations we model.

4.1. Lattice approximation to the Liouville operator

We made several approximations in arriving at our
analytical results, including an approximation for Ggs

and for the shifts in eigenvalues with m1 and m2: To test
these approximations, we calculate the eigenvalue
spectrum numerically. We discretize space, find the
resulting discretized Liouville operator, and numerically
diagonalize it for a particular set of parameters. The
details of this method are described in Appendix C.

This approach allows us to determine the shifts in the
growth rates as m or v is varied, and hence the critical
velocities ve and vs: We can compare these results to our
analytical predictions, and therefore confirm our calcula-
tion of the critical velocities. This comparison for one
particular set of parameters is shown in Fig. 4.
Comparisons for other parameter values have been carried
out, and give similar results. The eigenvalue spectra shown
in Figs. 2 and 3 were also obtained in this way.

4.2. Simulations of the discrete system

We can also simulate the underlying discrete process
which inspired our formulation of the differential
equations we analyze in this paper. We discretize space,
placing individuals on a one-dimensional lattice which
represents our environment. These individuals move
around, proliferate, die, and mutate. We also impose a
saturation term so that at long times the population
distribution settles down to a steady state.
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Fig. 4. A comparison of the critical velocities v̄e and v̄s between the

simulations and the analytical result, as a function of m1 ¼ 10m2: The
analytical result is shown as a dashed line for v̄s and a dotted line for v̄e:
Here we have ā1 ¼ ā1 ¼ 1; ā2 ¼ ā2 ¼ 0:6; b̄1 ¼ �1; b̄2 ¼ �0:6; and

D̄ ¼ 0:25; where the overbars indicate the dimensionless units

described in Appendix C. This result is typical of such comparisons

for other parameter values. For these parameters, we expect the

perturbation calculation of the analytical result to be valid for m150:4:
The slight overestimates of v̄e and v̄s by the analytic theory for small m1
are due to finite size effects. The underestimate as m1 grows beyond the

range of our perturbation expansion is due to the importance of

higher-order terms.
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By comparing the steady-state population profiles for
different values of v; we determine ve or vs: These results
can then be compared to the analytical results. This
comparison, for one particular set of parameters, is
shown in Fig. 4. Note that this comparison is only for ve;
as for these parameter values vs is not biologically
relevant and is thus impossible to observe with this type
of simulation. The details of this method are described
in Appendix D.
Delocalized type −2
ulation dominates.

Localized type −1
population dominant in oasis.
Delocalized type−2 population
present in desert.

Localized type −1
population only.

Delocalized type−2
population only.Extinction

�

�e

�s

0 a1 + �1α1 b2

Fig. 5. A phase diagram showing the transitions as a function of v and

b2: This figure accounts for the qualitative effects of a nonlinear

saturation term.
5. Discussion

To interpret our results, it is helpful to first consider
the behavior of a non-spatial quasispecies model. We
imagine a population living in a uniform environment
whose conditions match those of the oasis. Genotype 1
grows more quickly, but there is a mutational pressure
away from this ‘‘ideal’’ genotype. Mutation away from
this sequence is typically expected to be much more
frequent than mutation back, so it is common in such
models to set m2 ¼ 0: It is then straightforward to
calculate the composition of the population. We find
that the equilibrium ratio of genotypes 1 to 2 individuals
q (q � c1=c2) is given by

q ¼
a1 � a2 � m1a1

m1a1
: (28)
Thus, the ratio of species 1 to 2 decreases with increasing
m1 until m1 reaches the critical ‘‘error threshold’’ for this
quasispecies model. At this threshold, mc

1 ¼
a1�a2
a1

; the
‘‘ideal’’ genotype can no longer survive and the
population becomes completely dominated by genotype
2. This is the most famous result of Eigen’s quasispecies
model (Eigen, 1971; Eigen et al., 1989; McCaskill, 1984).

Our analysis finds that, in analogy to the quasispecies
error threshold, in the spatial model there is a velocity

threshold above which genotype 1 is outcompeted by
genotype 2. This velocity, which we call the switching
velocity vs; is given by Eq. (27). If the growth rate of
genotype 2 in the desert is positive, we can expect to see
this behavior in a real system. Our model naturally also
has the traditional error threshold; for m14

a1�a2
a1

and
m2 ¼ 0; genotype 1 is outcompeted by genotype 2
regardless of v: It would be interesting to explore the
interactions between the mutation-driven and velocity-
driven quasispecies transitions. However, our analysis is
based on the assumption of small mutation rates and
thus focuses on the velocity-driven transition under the
assumption that we are well away from the mutation-
driven transition (although it would be possible in
principle to use the exact solution discussed in Appendix
A to explore the velocity-driven transition near the
mutational threshold). A qualitative phase diagram of
the different velocity-driven transitions is given in Fig. 5.

Our model describes a number of important biologi-
cal situations. The oasis could be a particularly
favorable patch of the environment or a zone of
favorable climatic conditions which is moving at a
typical speed v due to seasonal weather patterns or shifts
in climate. A population can take advantage of this oasis
by adapting to these conditions, but then will fare worse
in the rest of the space. Our analysis explores how fast
the oasis can move before the population can no longer
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maintain an adaptation to the favorable patch. Beyond
this speed individuals may occasionally find themselves
in the oasis but cannot adapt quickly enough to benefit.

Throughout our analysis, we assume that the envir-
onment has no explicit time dependence. Non-spatial
populations in time-dependent environments have also
been the subject of much recent work (Burger and
Lynch, 1995; Nilsson and Snoad, 2002; Wilke and
Ronnewinkel, 2001; Wilke et al., 2001). In such a
system, if the mutation rate is too low compared to the
rate of change of the environment, the population
cannot ‘‘track’’ the changing optimal genotype (Kamp
and Bornholdt, 2002; Nilsson and Snoad, 2000). This is
another quasispecies transition, analogous to the velo-
city-driven threshold that we analyze. Below the
mutational threshold the population cannot maintain
an adaptation to the moving fitness peak in genotype
space, while above the velocity threshold the population
cannot adapt to the moving oasis in real space. The
dynamics in genome space and real space can be quite
different, but the interactions between the two in a time-
dependent spatial environment is an interesting area for
future work.

Besides showing the existence of the velocity-driven
quasispecies transition, our results make 5 interesting
biological predictions. We discuss each of these in turn.

(1) The overall population growth rate decreases as v2

up to the critical velocity: The imaginary gauge
transformation tells us that for b2o0; the exponential

growth rate of the population decreases as v2

4D
until it

goes extinct at ve ¼ 2
ffiffiffiffiffiffiffiffiffi
a1D

p
1� m1a1

2a1

� �
: For b240 the

exponential growth rate of the population decreases
again by v2

4D
until it reaches vs ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b2ÞD

p
1� m1a1

a1�b2
þ

m2a2
a1�b2

� �
: Increasing the velocity

further does not change the overall growth rate because
a delocalized genotype 2 population then dominates.

(2) Below the critical velocity, the genotype-1 domi-

nated population will extend somewhat into the desert:
The type-1 population will extend a typical distance x ¼

1
kgs�

v
2D

into the desert. From the relationship between k

and G we find that this typical distance is

x ¼
2D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða1 � b1Þ

p
� v

; (29)

independent of the mutation rates. Note that this

diverges as ðvc � vÞ�1 as v ! vc from below, where vc �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða1 � b1Þ

p
is the velocity at which the type-1

dominated ground state eigenvalue Ggs reaches its

delocalization threshold G�
1: This divergence will be

difficult to observe in real biological systems because
vsovc: Note for v ! 0; x reduces to the classical result
for the width of a cline (Slatkin, 1973), as we would
expect.
(3) The ratio of the two genotypes is proportional to m:
Below the switching velocity, the ratio of the number of
type 2 individuals to type 1 in the oasis approaches m1a1

a1�a2
at long times. Above the switching velocity, the ratio of
type 1 to 2 is m2a2

b2�b1
at long times. This result, however, is

only true within the linear model. If we add a saturation
term to the dynamics, this term will affect the long-time
population ratios.

(4) The ratio of genotype 1 to 2 is independent of v

except when crossing vs: We might naively expect that as
we increase v; the population gets driven more towards
the desert, and thus the population shifts away from
genotype 1 towards genotype 2. The gauge transforma-
tion ensures that this does not happen. Until we cross vs;
the ratio of genotypes in the ground state eigenfunction,
and thus the population, remains constant. At vs there is
a sharp transition and the ratio of the genotypes shifts
radically in favor of genotype 2. As we continue to
increase the velocity, the ratio again remains constant.
This result, however, is also only true within the linear
model. A nonlinear saturation term ‘‘softens’’ the
transition at vs; as described in Section 5.1.

(5) The ‘‘right’’ ratio of genotypes dominates exponen-

tially: If the initial state of the population below the
switching velocity is all type 2, then type 1 will take over
exponentially with a rate equal to the difference between
Ggs and the dominant type 2 eigenvalue. This rate is just
a1 � a2 � m1a1 þ m2a2; and is independent of v: Simi-
larly, if we begin with a type-1 dominated population
above the switching velocity, the population will become
dominated by genotype 2 exponentially with rate b2 �

b1 � m2a2 þ m1a1; again independent of v:

5.1. Effects of a nonlinearity

Thus far we have concentrated on purely linear
systems, without much discussion of nonlinear terms
which cause the population to saturate. This approx-
imation is justified because the presence of a nonlinear
saturation term will not affect the critical velocities.
However, since all populations can be expected to
saturate at some point, it is important to consider the
general implications of such a nonlinearity.

In the discussion to this point, we have assumed that
the eigenfunction with the largest growth rate will
dominate the population, so that at long times we can
neglect all but this dominant state. In the nonlinear case
this is still roughly true. We can account for the effects
of the nonlinearity by using mode couplings as in
(Nelson and Shnerb, 1998), and anticipate that the
fastest growing eigenfunction will suppress the others
and dominate the population. There is, however, one
important exception to this idea. For the problem
considered here, the fastest-growing localized eigenfunc-
tion vanishes exponentially outside of the oasis,
and hence will not suppress the growth of the
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fastest-growing delocalized eigenfunction. Thus below
the switching velocity vs; the population is not in fact
completely dominated by genotype 1. Rather, there is a
genotype-1 dominated population inside the oasis and a
genotype-2 dominated delocalized population in the
desert. As we increase v we decrease the growth rate of
the localized type 1 dominated state without changing
the growth rate of the delocalized genotype-2 dominated
state. Since the overall population sizes are set by the
growth rates and the nonlinear terms, this will lead to a
shift in the overall population density from type 1 to 2.
Thus there will be some v-dependence in the genotype
ratio even below vs: Just above vs; the fastest-growing
delocalized eigenfunction will not completely suppress
the fastest-growing localized eigenfunction, so similarly
there will be some v-dependence above vs: The transition
at vs is thus softened by the presence of the nonlinearity.
While the dominance will still shift at this critical
velocity, the transition will have some width dependent
on the saturation term.

The nonlinearity will also impose a maximum
carrying capacity on the system. As the system
/R
¼

Ae�k1x þ Be�k2x

Ce�k1x þ Ee�k2x

 !
for W

2
ox;

F cosðk1xÞ þ G sinðk1xÞ þ H cosðk2xÞ þ I sinðk2xÞ

J cosðk1xÞ þ K sinðk1xÞ þ L cosðk2xÞ þ M sinðk2xÞ

 !
for � W

2
oxoW

2
;

Nek1x þ Oek2x

Pek1x þ Qek2x

 !
for xo� W

2
;

8>>>>>>>>>>><
>>>>>>>>>>>:

(30)
approaches this carrying capacity, the growth rates will
slow down. Thus, if we start with an initial condition
involving a population already near its carrying capacity,
our analysis of the rate at which the ‘‘right’’ genotype
composition is established will be an overestimate. While
the results regarding the switching and extinction
velocities and genotype composition still hold, the
dynamics of reaching the resulting steady states will be
slower. Our results for the rates are based on the
linearization of the nonlinear model around c1 ¼ c2 ¼ 0;
and so are valid as long as the ratio of the population to
the carrying capacity is small compared to 1.
5.2. Other geometries

Many alternative geometries are clearly possible. One
obvious choice is a circular oasis in an infinite desert, as
considered by Dahmen et al. (2002). The primary effect of
a non-trivial two-dimensional geometry is to change the
eigenvalue spectrum. In particular, Ggs and, if the desert is
not infinite, G�

2 will shift. The resulting change in the
switching and extinction velocities will depend on the
growth rates ai and bi and the linear size of the oasis W,
but not on m: However, the qualitative behavior is
unaffected. Furthermore, if W is large compared toffiffiffiffiffiffiffiffiffi

D=a
p

; the typical length an individual diffuses before
giving birth (the precise requirement will vary with the
specific geometry), this shift in critical velocities will vanish
and the results will reduce to those calculated above.
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Appendix A. Exact solution for the v ¼ 0 system

It is straightforward, though tedious, to find the exact
solution for the v ¼ 0 eigenfunctions and eigenvalues.
We start with the ansatz
where the 16 parameters A;B;C;E;F ;G;H; I ; J;
K ;L;M ;N;O;S;P; and Q are constant coefficients.
Demanding that this ansatz satisfy the eigenvalue
equation yields a system of 12 equations relating these
constant coefficients, k; k; and the eigenvalue G: We use
8 of these equations to eliminate 8 of the 16 coefficients,
and the remaining 4 to determine k1; k2; k1; and k2 in
terms of the eigenvalue G: For small m1 and m2
m1m2a1a2
ða1�a2Þ

2 51; m1m2a1a2
ðb1�b2Þ

2 51
� �

; we find

Dk21 ¼ G� b2 þ m2a2 þ
m1a1m2a2
b2 � b1

; ð31Þ

Dk22 ¼ G� b1 þ m1a1 �
m1a1m2a2
b2 � b1

; ð32Þ

Dk2
1 ¼ � Gþ a1 � m1a1 þ

m1a1m2a2
a1 � a2

; ð33Þ

Dk2
2 ¼ � Gþ a2 � m2a2 �

m1a1m2a2
a1 � a2

; ð34Þ

which serves to confirm our perturbation theory
calculation. The expressions when m1 and m2 are not
small are straightforward to calculate but unwieldy to
write down.
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We now demand that / and d/
dx

be continuous at x ¼

� W
2
; yielding 8 equations for the remaining 9 unknowns

(8 constant coefficients and G). These results lead to a
transcendental equation for G; the solutions to which are
the eigenvalues of the system. Choosing a particular
eigenvalue from among these possible solutions, we can
easily determine the remaining unknowns (up to an
overall normalization) from the rest of the equations. By
requiringZ

/L
ðxÞ � /R

ðxÞ dx ¼ 1; (35)

we determine the normalization, and thus the exact
solution.

In practice, the transcendental equation for G is quite
complicated and we can only solve it numerically.
However, this exact approach does provide a useful
check to the discretized numerical solution described in
Section 4. The most important result is the m ¼ 0 ground
state eigenvalue Gm¼v¼0

gs : Provided that the oasis is much
wider than the distance a typical individual diffuses
before giving birth, we have Gm¼v¼0

gs � a1 (Dahmen et al.,
2002).
Appendix B. Perturbation theory in m1 and m2

We can use standard perturbation theory from
quantum mechanics to determine the results for
m1;m240 from the m1 ¼ m2 ¼ 0 solution. We first rewrite
the Liouville operator as Lv¼0 ¼ L0 þ L1; where L1

is proportional to the (small) mutation rates m1 and m2;
and

L0 ¼
D@2x þ r1ðxÞ 0

0 D@2x þ r2ðxÞ

0
@

1
A;

L1 ¼
�m1a1 m2a2

m1a1 �m2a2

 !
; ð36Þ

where riðxÞ ¼ ðai þ miaiÞyðW=2� jxjÞ þ ðbi þ miaiÞyðjxj�
W=2Þ: We know the eigenvalues and eigenfunctions of
L0 from Section 3. For our purposes, all that is
necessary is that the eigenfunctions are an orthonormal
set of left and right functions /L

n and /R
n :

From non-degenerate time-independent perturbation
theory we find that the m40 eigenvalues are related to
the m ¼ 0 eigenvalues by the formula

Gn ¼ Gm¼0
n þ

Z
/L

n ðxÞL1/
R
n ðxÞ dx þ

X
man

�

R
/L

mðxÞL1/
R
n ðxÞ dx

� � R
/L

n ðxÞL1/
R
mðxÞ dx

� �
Gm¼0

n � Gm¼0
m

;

ð37Þ

plus terms of third and higher order in L1 (Landau and
Lifshitz, 1991). Note that this result differs slightly from
standard theory because L1 is non-Hermitian. The first-
order term in L is straightforward to calculate. It is
simply �miai for states dominated by genotype i. The
second-order term is more complicated, because the m ¼

0 eigenfunctions are of the form

/R
n ¼

c1
n

0

 !
or /R

n ¼
0

c2
n

 !
; (38)

where the fc1
ng and fc2

mg each form an orthonormal set
of eigenfunctions of the one-genotype problem. The c1

n

and c2
m are almost, but not quite, orthonormal to each

other.
In the approximation that these two sets of eigenfunc-

tions are indeed orthonormal, the second order term for
Gn is easy to calculate. For genotype-1 dominated
localized states, it is m1a1m2a2

a1�a2
: For genotype-2 dominated

delocalized states, it is m1a1m2a2
b2�b1

: In the same approxima-
tion, the corrections to the eigenfunctions are given by

/1;v¼0;R
n ¼

c1
n

m1a1
a1�a2

c2
n

0
@

1
A (39)

for a genotype-1 dominated localized state, and

/2;v¼0;R
n ¼

m2a2
b2�b1

c1
n

c2
n

0
@

1
A (40)

for a genotype-2 dominated delocalized state.
These results, and the observation that Gm¼v¼0

gs ¼ a1

and G�;m¼v¼0
2 ¼ b2; allow us to calculate the critical

velocities. To second order in m1 and m2; the extinction
velocity is given by

ve ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ðDa1Þ

p
1�

m1a1
2a1

�
m21a

2
1

8a2
1

�

þ
m1m2a1a2

2a1ða1 � a2Þ

�
ð41Þ

and the switching velocity is

vs ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða1 � b2Þ

p
� 1�

m1a1 � m2a2
2ða1 � b2Þ

�
ðm1a1 � m2a2Þ

2

8ða1 � b2Þ
2

�

þ
m1a1m2a2

2ða1 � a2Þða1 � b2Þ

�
m1a1m2a2

2ðb2 � b1Þða1 � b2Þ

�
: ð42Þ

The first order part of this result is quoted in Section 3
above.

This perturbation expansion relies on the assumption
that m1 and m2 are small. Specifically, we require

miai

a2 � a1
51;

miai

b2 � b1
51 (43)

for i ¼ 1; 2 for all of these results to be valid.
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Appendix C. Lattice approximation

Here we describe the details of the lattice approxima-
tion to the Liouville operator. We begin by discretizing
space, replacing it by a regular lattice with lattice
constant ‘0: We define cax to be the population of
genotype a at the lattice point x. We then have to solve
the eigenvalue equation

dcaxðtÞ

dt
¼
X
x0;a0

Lðx; a; x0; a0Þca
0

x0 ðtÞ

¼ GcaxðtÞ: ð44Þ

The discretized version of the Liouville operator is

L ¼
D

‘20

X
x

X2
a¼1

e�
v‘0
2D jxiaahx þ ‘0j

�

þ e
v‘0
2D jx þ ‘0i

aahxj � 2 cosh
v‘0
2D

� �
jxiaahxj

�
þ
X

x

½U1ðxÞjxi
11hxj þ U2ðxÞjxi

22hxj

þ m1a1jxi
12hxj þ m2a2jxi

21hxj�; ð45Þ

where we have used the notation jxiabhyj to mean the
tensor product of localized states corresponding to cax
and cby : We define U1ðxÞ ¼ ða1 � m1a1ÞyðW=2� jxjÞ þ

ðb1 � m1a1Þyðjxj � W=2Þ; and U2ðxÞ ¼ ða2 � m2a2Þ
yðW=2� jxjÞ þ ðb2 � m2a2Þyðjxj � W=2Þ: We impose a
finite size on the system L (with periodic boundary
conditions) and a finite width of the oasis W, with
W5L:

In order for the lattice approximation to be valid, the
lattice must be fine enough that variations in the
eigenfunction f between lattice points is small. This

means we must require
‘0j@xf

R;a
n ðxÞj

fR;a
n ðxÞ

51: For small v this

reduces to kn
a‘051; kn

a‘051; and for large v we need
v‘0
2D

51 (Dahmen et al., 2002). These conditions are

satisfied for all of the calculations discussed here.
It is now straightforward to numerically solve for the

eigenvalues and eigenstates of the lattice version of the
Liouville operator L: The results quoted here all use a
system size L ¼ 512‘0; with an oasis width W ¼ 10‘0
and periodic boundary conditions.

In comparing results, it is useful to shift to dimension-
less units. We define a dimensionless velocity

v̄ ¼
v

2
ffiffiffiffiffiffiffiffiffi
a1D

p : (46)

Note that for m1 ¼ m2 ¼ 0; the extinction velocity v̄e ¼ 1:
We then scale all the growth rates to a1 by defining

ā1 ¼
a1

a1
¼ 1; b̄1 ¼

b1

a1
; ā2 ¼

a2

a1
;

b̄2 ¼
b2

a1
; ā1 ¼

a1
a1

ā2 ¼
a2
a1

; Ḡ ¼
G
a1

: ð47Þ
This implies that the dimensionless diffusion coefficient
is

D̄ ¼
1

4
: (48)

The mutation rates are already dimensionless. We use
these redefined units in Figs. 2–4.
Appendix D. Discrete simulation

Here we describe the details of the discrete, indivi-
dual-based simulations. We begin with a discretized
spatial lattice containing a uniform distribution of
individuals of both types. We also discretize time,
dividing it into small intervals of size Dt: At each time,
we select a lattice point at random. The individuals at
this point can give birth, move due to diffusion or
drift, or mutate with appropriate probabilities. The
probabilities used are simply the coefficients of the off-
diagonal elements of the discretized Liouville operator
described in Appendix C, times Dt: We set Dt to be
sufficiently small that the probability of two or more
events per step is negligible. We impose a saturation
effect (analogous to a nonlinear term in Eq. (4)) by
setting a maximum number of individuals per spatial
point.

For the simulations described in Fig. 4, we use the
parameters ā1 ¼ ā1 ¼ 1; ā2 ¼ ā2 ¼ 0:6; b̄1 ¼ �1; b̄2 ¼

�0:6; and D̄ ¼ 0:25; where the overbars denote the
dimensionless parameters defined in Appendix C. We
use a lattice with 512 points, with an oasis of width 10
points and periodic boundary conditions, and a max-
imum of 200 individuals per point.

For these parameter values, vs is impossible to
determine because the populations are extinct at such
high velocities. However, we can determine ve as a
function of m1 and m2: For each value of m1 and m2
that we test, we plot the total number of individuals
in the steady state distribution as a function of v: This
exhibits a transition from some maximum number
of individuals for small v to approximately 0 indivi-
duals for large v: Because of the imposed saturation
effect, the transition is not perfectly sharp but rather
has some small width. We define the transition to
occur at the point at which the number of individuals
has dropped to 1

10
th number for v ¼ 0: Making a

different definition would shift the extinction velocities
slightly.

We have also run simulations for parameter values
where vs is biologically relevant. From the v-dependence
of the ratio of the number of individuals of type 1 to
type 2, we can determine the value of vs in these cases.
Although the presence of saturation broadens the
transition as in the case of ve; the results match our
analytical predictions.
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