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a b s t r a c t

In the absence of selection, the structure of equilibrium allelic diversity is described by the elegant
sampling formula of Ewens. This formula has helped to shape our expectations of empirical patterns
of molecular variation. Along with coalescent theory, it provides statistical techniques for rejecting the
null model of neutrality. However, we still do not fully understand the statistics of the allelic diversity
expected in the presence of natural selection. Earlierwork has described the effects of strongly deleterious
mutations linked tomany neutral sites, and allelic variation inmodels where offspring fitness is unrelated
to parental fitness, but it has proven difficult to understand allelic diversity in the presence of purifying
selection at many linked sites. Here, we study the population genetics of infinitely many perfectly linked
sites, some neutral and some deleterious. Our approach is based on studying the lineage structure within
each class of individuals of similar fitness in the deleterious mutation-selection balance. Consistent with
previous observations, we find that for moderate and weak selection pressures, the patterns of allelic
diversity cannot be described by a neutral model for any choice of the effective population site. We
compute precisely how purifying selection at many linked sites distorts the patterns of allelic diversity,
by developing expressions for the likelihood of any configuration of allelic types in a sample analogous to
the Ewens sampling formula.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

In any evolving population, new clonal lineages are constantly
being created and destroyed. The balance between the creation
of lineages by new mutations and their destruction by natural
selection and genetic drift determines the statistics of the
clonal structure of the population. In the absence of natural
selection, Ewens (1972) computed an elegant sampling formula
describing the clonal structure of a neutral population, and
explained how the allelic (i.e. lineage) configuration in a sample of
individuals from the population provides awindow into this clonal
structure.

Natural selection distorts the clonal structure of a population
away from this neutral expectation. Of particular interest is purify-
ing (negative) selection againstmany linked deleteriousmutations
(‘‘background selection’’). Recent evidence has suggested that this
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may be generally important in a wide range of populations (see
Hahn (2008) for a recent review). In this paper,we explore how this
type of selection alters the clonal (i.e. allelic) structure of a popula-
tion. Our analysis leads to a generalization of the Ewens sampling
formula to situations involving background selection.

Over the past few decades, numerous authors have studied
allelic diversity in infinite-alleles frameworks that incorporate
selection. Li (1977) and Watterson (1978) introduced models in
which alleles may have a few different selective effects. Li (1978)
and others (Li, 1979; Ewens and Li, 1980; Griffiths, 1983) analyzed
the structure of allelic diversity in these models. More recent
work has analyzed a very general model of selection introduced
by Ethier and Kurtz (1987), which allows for diverse types of
selection pressures (Ethier and Kurtz, 1994; Joyce and Tavare,
1995; Grote and Speed, 2002; Joyce, 1995). This work has helped
us understand the general effects of selection in distorting the
frequency spectrum of sampled alleles. However, themodels these
authors have analyzed cannot be directly connected to a concrete
description of mutations and selection occurring at specific sites.
Rather, they assume that each new mutation creates a new allele
whose fitness is completely independent of the fitness of its
parent. In other words, there is no sense of relatedness among
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alleles, or of a correlation in fitness between closely related alleles.
Etheridge and Griffiths (2009) and Etheridge et al. (2010) have
more recently derived a coalescent dual of the Moran process with
an arbitrary number of types, mutation rates between types, and
genic selection coefficients, but it is not clear how this corresponds
to selection acting on some fraction of an infinite number of
specific sites.

In this paper we take a different approach, based on the specific
model of linked sites described by Charlesworth et al. (1993) and
Hudson andKaplan (1994). That is,we imagine that each individual
has a genome comprised of many neutral and many negatively
selected sites. The fitness of each individual is determined by the
number of mutations it carries at the negatively selected sites. We
make the infinite-sites assumption that no two mutations at the
same site ever segregate simultaneously. This is also an infinite-
alleles model, but it is based on a specific model of mutations at
individual sites, and the fitness of each new allele depends on the
fitness of its parent.

Earlier studies have investigated the effects of purifying
selection in models identical or closely related to the one we
consider here. Charlesworth et al. (1993) introduced a model
essentially identical to the one we analyze here, and Kaplan
et al. (1988) and Hudson and Kaplan (1994) developed a simple
algorithm which can be used to recursively compute how
purifying selection alters the structure of genealogies. Hudson
and Kaplan (1995) and Gordo et al. (2002) further developed this
idea, resulting in a simple computational method for sampling
genealogical relationships in the presence of background selection.
Related simulation and analytical work has further characterized
the structure of genealogies and the statistics of genetic diversity
at the level of individual sites in this or closely related models
(McVean and Charlesworth, 2000; Seger et al., 2010; Charlesworth
et al., 1993; Comeron and Kreitman, 2002; Comeron et al., 2008;
Barton and Etheridge, 2004). However, this earlier work does not
provide an analytic description of lineage structure, or sampling
formulas for allelic diversity in the presence of purifying selection
on many linked sites.

In this paper, we explicitly analyze the lineage structure, and
we derive a selected version of the Ewens sampling formula. We
begin by noting that the balance betweenmutations at deleterious
sites and selection against them leads to a steady state mutation-
selection balance (Haigh, 1978). Our approach is to study the
structure of lineages within this steady state, using the Poisson
Random Field (PRF) method developed by Sawyer and Hartl
(1992). We show that this lineage structure can alternatively
be derived using a retrospective approach, by considering the
probabilities of mutation and coalescence events in the ancestry
of each individual; these probabilities are calculated by Hudson
and Kaplan (1994) and Gordo et al. (2002) (and implicitly in a
related context by Barton and Etheridge (2004)). Our description
of lineage structure is thus precisely consistent with the analysis
of genealogical structures in this earlier work. Finally, we use our
description of lineage structure to calculate sampling formulas
for allelic diversity, and compare our predictions to the results of
Monte Carlo simulations.

Provided that selection is strong and deleterious mutation
rates are sufficiently small, our results show that the effect of
background selection on allelic diversity is to reduce the effective
population size without otherwise distorting the lineage structure.
Our results are thus consistent with the effective population size
approximation to background selection proposed by Charlesworth
et al. (1993). For weaker selection, however, or higher mutation
rates, the effective population size approximation breaks down,
and the effects of background selection become more complex.
We show that in this case the allelic diversity cannot be described
by neutral theory with some appropriately chosen effective
population size. This is consistent with earlier observations that
background selection leads to distortions in the structure of
genealogies (McVean and Charlesworth, 2000; Seger et al., 2010;
O’Fallon et al., 2010; Comeron and Kreitman, 2002; Comeron et al.,
2008; Barton and Etheridge, 2004; Gordo et al., 2002; Hermisson
et al., 2002; Williamson and Orive, 2002). Our analysis here allows
us to compute precisely how these distortions due to purifying
selection at many linked sites alter patterns of allelic diversity,
and hence provides an analytical framework for exploring where
statistical power may lie to distinguish purifying selection from
neutrality.

Our approach relies on the assumption that we can describe
the distribution of fitnesses within the population with the
steady state mutation-selection balance. In particular, we neglect
fluctuations within this balance. We note that the PRF and
retrospective approaches depend somewhat differently on this
key approximation, which offers some insight into the role
of fluctuations in our model. We analyze the validity of this
approximation in more detail below, and describe a correction
for some aspects of the effects of fluctuations in the PRF
formalism, which allows us to make a precise correspondence
with the retrospective approach. Related to this approximation,
we also neglect the effects of Muller’s ratchet. We discuss this
approximation in detail in the Discussion. We further test the
validity of our analysis via Monte Carlo simulations; we find that
these approximations are reasonable across a broad parameter
regime spanning weak and strong selective pressures.

Our analysis in this paper is limited to allelic diversity, and
it does not address the degree of relatedness among sampled
alleles. In other words, our analysis only tells us the probability
that individuals are genetically identical, not the distribution of the
number of specific sites atwhich individualsmay differ. Our results
are thus not directly comparable to the work described above,
which makes predictions about expected diversity at the level of
individual sites. However, while our allele-based results provide
an incomplete picture of genetic diversity within the population,
they do provide a useful perspective on how purifying selection
distorts patterns of molecular evolution. Most importantly, we are
able to make precise analytical predictions about how purifying
selection distorts allelic diversity, in ways that cannot be described
by a single reduced effective population size.

2. Model

We imagine a finite haploid population of constant size N .
Each haploid genome has a large number of sites, which begin in
some ancestral state and mutate at a constant rate. Each mutation
is either neutral or confers some fitness disadvantage s (where
by convention s > 0). We assume an infinite-sites framework,
so there is negligible probability that two mutations segregate
simultaneously at the same site.

We assume that there is no epistasis for fitness, and that each
deleterious mutation carries fitness cost s, so that the fitness of an
individual with k deleterious mutations is wk = (1− s)k. Since we
assume that s ≪ 1, we will often approximate wk by 1 − sk. Later
we comment briefly on extensions to our method to consider the
case when the selection coefficient of a deleterious mutations is
drawn from some fixed distribution.

The population dynamics are assumed to follow the diffusion
limit of the standard Wright–Fisher model. That is, we assume
that deleterious mutations occur at a genome-wide rate Ud per
individual per generation (with deleterious mutations assumed
to be decoupled from selection). We define θd/2 ≡ NUd, the
per-genome scaled deleterious mutation rate. Similarly, neutral
mutations occur at a rate Un per individual per generation, and
we analogously define θn/2 ≡ NUn. We assume that each newly
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arising mutation occurs at a site at which there are no other
segregating polymorphisms in the population (the infinite-sites
assumption). Since in this paper we focus only on allelic diversity,
this infinite-sites approximation simply means that each new
mutation creates a unique allele. Throughout the analysis we
assume that Muller’s ratchet can be neglected; we discuss the
validity of this approximation in the Discussion.

We study the case of perfect linkage. In other words, we
imagine that all the sites we are considering are in an asexual
genome or within a short enough distance in a sexual genome that
recombination can be entirely neglected. Although our model is
defined for haploids, this assumption means that our analysis also
applies to diploid populations provided that there is no dominance
(i.e. being homozygous for the deleterious mutation carries twice
the fitness cost as being heterozygous).

We believe that this is the simplest possible model based on a
concrete picture of mutations at individual sites that can describe
the effects of a large number of linked negatively selected sites
on patterns of genetic variation. It is essentially equivalent to the
model described by Charlesworth et al. (1993) and Hudson and
Kaplan (1994), which has formed the basis formuch of the analysis
of background selection (Gordo et al., 2002; Seger et al., 2010).

3. Analysis

The balance between mutations and selection leads to a
steady state distribution of fitnesses within the population; this
is the well-known ‘mutation-selection balance’. However, the
individuals of a given fitness are not all genetically homogeneous,
but rather comprise a number of different alleles. The number and
frequency distribution of these alleles depends on how quickly
new alleles are created by deleterious mutations from more-fit
individuals, and hence on the overall fitness distribution.

We begin by describing the relevant aspects of the mutation-
selection balance that leads to a steady state distribution of
fitnesseswithin the population. Our description of this steady state
fitness distribution is entirely deterministic. Of course, in a finite
population, there will be random fluctuations in the values of hk,
the fraction of the population harboring k deleteriousmutations. In
the most extreme case, these fluctuations lead to Muller’s ratchet.
In our analysis below, we will neglect these fluctuations in hk,
assuming that these frequencies are always at their deterministic
steady state. Consistent with this approximation, we will also
neglect the effects ofMuller’s ratchet.Wewill then return in a later
section to use our results to determinewhen these approximations
are valid.

If we assume for a moment that these approximations are
reasonable, we can already guess the form of our result for the
allelic diversity. New alleles are constantly being generated within
fitness class k due to deleterious mutations from class k − 1
and neutral mutations from class k. Within class k, all alleles
drift neutrally with respect to each other. Therefore, conditional
on mutations and selection keeping the frequency of the class at
hk, the allelic diversity within this class will be the same as in a
neutral population of size Nhk in which new alleles are created by
mutations at the appropriate rate. Thus for example the probability
two individuals are of the same allelic type is the probability that
they are both in the same class k times the appropriate neutral
result for the homozygosity within that class, summed over all
possible classes. Sampling formulas for larger samples can be
calculated in the analogous way.

The remainder of our analysis in this paper is, essentially,
devoted tomaking this simple intuition precise and showingwhen
it is accurate.We start by summarizing earlier results for the steady
state mutation-selection balance hk, and then compute the allelic
diversity in detail, neglecting all fluctuations in hk. This allows us
to see precisely when this approximation is reasonable, and hence
prove when the simple intuition described above holds.
a
b

Fig. 1. Schematic of the allelic diversity in the mutation-selection balance. (a)
Sketch of the mutation-selection balance in the case Ud

s = 5. The steady state
distribution of fitness within the population is maintained by a balance between
mutations moving individuals toward lower fitness and selection favoring those
classes more fit than average at the expense of those less fit than average. (b) The
inset shows the processes maintaining a class of individuals with k deleterious
mutations. Deleterious mutations from class k− 1 found new lineages within class
k at rate Nhk−1Ud . Neutral mutations found new lineages in the class at a rate
NhkUn . Selection favors or disfavors individuals from each lineage at a per capita
rate −(k − k̄)s, and deleterous mutations eliminate individuals from each lineage
at a per capita rate Ud + Un .

3.1. The steady state fitness distribution

In our model, all deleterious mutations have the same fitness
cost s, so we can characterize individuals by their Hamming class,
k, relative to the wildtype (which by definition has k = 0). That
is, individuals in class k have k deleterious mutations more than
the most-fit individuals in the population. Here k refers only to
the number of deleteriousmutations an individual has; individuals
with the same k can have different numbers of neutral mutations.
We normalize fitness such that by definition all individuals in class
k = 0 have fitness 1. Individuals in class k then have fitness 1− ks.

Imagine that at a given time a fraction hk(t) of the population is
in class k. This class is acquiring new individuals due to deleterious
mutations arising in class k − 1, and it is losing individuals due to
deleterious mutations away to class k + 1. It also gains or loses
individuals at a rate −(k − k̄)s due to selection, where k̄ is the
mean k within the population, k̄ ≡


khk. This is illustrated in

Fig. 1. Note that the term involving k̄ simply normalizes the effect
of selection (selection favors a class if it is more fit than the average
individual, and vice versa). This means that on average hk(t) will
evolve according to the equation

dhk(t)
dt

= Udhk−1 − Udhk − (k − k̄)hks. (1)

Note this is a system of k equations for all the hk(t). Of
course random genetic drift will also affect the hk(t), and these
deterministic equations are only true on average.We return to this
point below, but for now we neglect drift and focus on the steady
state distribution.

The steady state fitness distribution (the mutation-selection
balance) is given by the values of hk(t) after a long time. We
can find this mutation-selection balance by setting the right hand
side of Eq. (1) equal to 0 for all values of k. This calculation was
originally carried out by Kimura and Maruyama (1966) and Haigh
(1978); they found that the steady state, ĥk, is given by a Poisson
distribution with mean Ud

s ,

ĥk =
e−Ud/s

k!


Ud

s

k

. (2)

Note that this means that the average fitness in the population is
1 − Ud, and that k̄ =

Ud
s .
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3.2. Allelic diversity within a given fitness class

We now look more closely at individuals within a given fitness
class, as illustrated in Fig. 1b. For the moment we neglect neutral
mutations; we consider their effects further below.

All lineages in class k originally arose from a deleterious
mutation to an individual in class k − 1. Each of these deleterious
mutations founds a new lineage within class k. Such lineages are
founded at a rate θk/2, where we define

θk = 2Nhk−1Ud. (3)

Note this is true whether or not the hk are at their steady-state
values, though for the purposes of our analysis we will always
assume the steady state.

In our infinite-alleles approximation, each new lineage is an
allele that is unique within the population. The fate of this lineage
(allele) is then determined by the forces of random drift, selection,
and additional mutations. Additional mutations that occur within
this lineage go on to found new alleles. Thus from the point of view
of this particular lineage, additional mutations cause individuals to
be lost from the lineage. This means that individuals are removed
from a lineage in class k at a per capita rate

sk ≡ −Ud − s(k − k̄). (4)

We refer to sk as the effective selection coefficient against an allele
in class k, because it is the rate at which any particular lineage
in class k loses individuals (note we have defined signs such that
sk < 0). Note that sk depends implicitly on the hk through the
term involving k̄ (recall k̄ is the average value of k, k̄ ≡


khk).

For convenience we will define the scaled effective selection
coefficient γk by

γk = Nsk. (5)

Note that in steady state, when the fitness distribution hk takes
the mutation-selection balance form ĥk derived above, k̄ = Ud/s
and the effective selection coefficient sk is negative for all fitness
classes with k > 0. This makes intuitive sense: each fitness class
(except k = 0) is constantly receiving new individuals due to
mutations. Thus older individuals must on average die out, if the
fitness class is to stay at a constant steady state size. The only
exception is the k = 0 class, for which sk = 0. This class drifts
effectively neutrally, with its actual selective advantage relative
to the mean exactly balanced by the loss of individuals due to
deleterious mutations. For k = 1 we have s1 = −s, and in general
sk = −ks. On the other hand, θk/hk increases with k, reflecting
the fact that the stronger selection against the larger-k classes is
balanced by a larger influx of new deleteriousmutations into these
classes.

We can now incorporate the effect of neutral mutations. Each
neutral mutation within an individual in class k creates a new
lineage in class k. Thus we may simply redefine the rate at which
new lineages are founded, giving

θk ≡ 2Nhk−1Ud + 2NhkUn. (6)

When the hk’s are in steady state this definition simplifies to θk =

2Nhk(sk + Un). Each neutral mutation also causes an individual to
be lost from the lineage it was in before the mutation, so we also
redefine the effective selection coefficient

sk ≡ −Ud − Un + s(k − k̄). (7)

These neutral mutations are also reflected in Fig. 1b. Note that
for all k, neutral mutations tend to increase θk, and make sk more
negative. In the presence of neutral mutations, even s0 is negative.

We have seen that new lineages are founded within fitness
class k at rate θk/2, and then drift randomly subject to an effective
selective pressure sk. We now make the key assumption that each
lineage is independent of all the others. This assumption is valid
provided that no lineage ever becomes a substantial fraction of
the overall population, which will be true whenever N|sk| ≫ 1
(i.e. all lineages are selected against strongly enough). A sufficient
condition for this to hold in the bulk of the fitness distribution is
simply N(Un + Ud) ≫ 1, and in fact our approximation will also
hold even in some circumstanceswhen this condition breaks down
(we describe this further below).

3.3. Poisson Random Field description of a lineage structure

Using the independence assumption, we have reduced the
problem of describing a lineage within a given fitness class to
exactly the situation addressed by the Poisson RandomFieldmodel
of Sawyer and Hartl (1992). Thus the frequency distribution of
lineages (alleles) in fitness class k is a Poisson Random Field (PRF)
with parameters θk and γk (where as before γk ≡ Nsk). That is, the
number of distinct lineages in class k segregating at a frequency
between a and b in the entire population is Poissondistributedwith
mean b

a
fk(x)dx, (8)

where

fk(x) =
θk

x(1 − x)
1 − e−2γk(1−x)

1 − e−2γk
. (9)

This is equivalent to saying that the probability that there exists a
lineage in class kwith frequency between x and x+dx is fk(x)dx, for
infinitesimal dx. Note that this PRF result implicitly assumes that θk
and γk are constant (which requires constant hk), and hence only
describes the diversity in steady state.

This PRF description offers a convenient and well-established
way to describe the lineage structure. It is similar in spirit
to the diffusion result used by Ewens (1972) in his original
computation of the neutral ESF. However, there is an important
difference: Ewens’ f (x)was derived as the solution to the diffusion
approximation to the K -allele Wright–Fisher process, in the limit
of infinite alleles. This explicitly constrains all lineages to add to
a total frequency of 1. The PRF does not impose this constraint.
This makes it possible to compute a simple analytical expression
for fk(x) in the presence of selection. However, it does involve
an implicit approximation. In the Supplementary Appendix B, we
describe this approximation along with a way to relax it using an
alternative branching process model to describe lineage structure.

3.4. The self-consistency condition

It is clear from our PRF formulation above that the allelic
diversity within each fitness class depends on the θk and γk, which
in turn depend on the hk. Yet the sum of the frequencies of all
the alleles within fitness class k is, by definition, hk. In steady
state, these two quantities must be equal. Verifying under what
conditions these quantities are equal allows us to determine in
what parameter regime the PRF formulation is self-consistent.

More specifically, we have derived the steady state value of hk
in Eq. (2),

hk =
e−Ud/s

k!


Ud

s

k

.

When we plug these hk into our PRF result, the summed allele
frequencies according to the PRF must agree with steady-state
value we used for hk, for consistency. According to our PRF result,
the sum of the frequencies of all the alleles in fitness class k is

hk =

 1

0
xfk(x) dx. (10)
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Because Eq. (2) is equivalent to requiring θk/2 = |γk|hk for all k
(i.e. in steady state the net influx of individuals into a class must
equal the average rate at which individuals within that class are
lost), we can rewrite the self-consistency equation as

θk

2|γk|
=

 1

0
x ·

θk

x(1 − x)
1 − e−2γk(1−x)

1 − e−2γk
dx. (11)

Some algebra reduces this to the condition 1

0

1 − e−2γkx

x
dx =

1 − e−2γk

2|γk|
. (12)

The analysis in Appendix A shows that this condition holds to the
level of approximation considered whenever |γk| ≫ 1. When this
is true, the steady state mutation-selection balance of Eq. (2) is
also the distribution hk that makes our PRF analysis of the allelic
diversity within each fitness class self-consistent.

The condition |γk| ≫ 1 corresponds to saying that the effective
selection coefficient in each class is large compared to 1/N . This
will be true for all k whenever NUn ≫ 1. In practice, even when
this condition fails in some fitness classes, it is still valid for all
classes in which |γk| ≫ 1. Thus our results still give a good
approximation to the population allelic diversity provided |γk| ≫

1 for the classes around k̄ that make up the bulk of the population.
This will hold whenever γk̄ = N(Ud + Un) ≫ 1. When this
condition does not apply, our PRF result for the allelic diversity
within each fitness class is inaccurate. This is because,when |γk| ≫

1, the growth of some mutant lineages is limited by the size of
the population, which is ignored by the PRF approximation. Thus
the PRF approximation overestimates the probability that lineages
become common, and the self-consistency breaks down.

It is important to note that we also require an additional,
stronger condition for other aspects of our analysis to be valid.
The self-consistency condition ensures that the average size of the
fitness class implied by the PRF analysis equals the steady state
hk. However, even when this holds, there could be substantial
fluctuations in hk around its average value. The PRF result for fk(x)
tells us the probability that a set of lineages exists at any given
frequencies. Therefore it contains detailed information about these
fluctuations. However, we have neglected these fluctuations in
substituting the hk into our expressions for θk and sk, and will also
neglect these fluctuations below in calculating sampling formulas.
We return to consider this additional approximation in a later
section.

3.5. An alternative, retrospective approach

It is possible to derive the neutral Ewens sampling formula
in two quite different ways. Ewens (1972) imagined new alleles
being created continuously by new mutations, and considered
the frequency distribution of lineages set up by the balance
between the continual creation of new alleles and the extinction
of older alleles. This leads to expressions analogous to those in
our PRF calculation of the lineage structure. We can calculate
sampling formulas from this lineage structure, as Ewens did in
the neutral case. First, however, we note that in a companion
paper to Ewens (1972), Karlin and McGregor (1972) showed
that the Ewens sampling formula could also be derived using a
retrospective analysis, by considering the ancestral history of a
sample of individuals. This same type of retrospective approach
is also possible in our model; in this section we describe this
alternative derivation of the allelic diversity as relevant to the case
of purifying selection.

In order to calculate the probability of a particular allelic
configuration, we consider the ancestral history of a sampled set
of individuals. In particular, we are interested in the most recent
event to occur in the history of a sample, backwards in time. We
classify these possible events into one of three possible types:
coalescence events (i.e. identity by descent), neutral mutations,
and deleterious mutations.

This method is easiest to understand if we begin by considering
a sample of size two. In order for two individuals to have the
same genotype, they of course must be in the same fitness class
k. Furthermore, if we look at the ancestral history of each of these
two individuals, themost recent event to occur, backwards in time,
must be a coalescent event. In contrast, for them to have a different
genotype, themost recent event to occurmust be amutation event.
Therefore, to calculate the probability of either configuration, we
need only calculate the probability that the most recent event is a
coalescent event.

In order to calculate the probabilities of each possible most
recent event, we must know the distribution of times until each
type of event. In general, neutral mutations are exponentially
distributed with rate Un per generation. Assuming the steady
state values for hk, deleterious mutations are also exponentially
distributedwith rate sk per generation (Hudson and Kaplan, 1994).
Finally, within each class, coalescence occurs as a neutral process
with rate


i
2


per Nhk generations. Therefore, for a sample of size

2, each of which are sampled from class k, we have that:
P(1st Event : Coal.)

=


∞

0
dtP(Coal at t)P(No Neut. Mut by t)

× P(No Del. Mut. by t)

=


∞

0
dte−te−2NhkUnte−2Nhkskt

=
1

1 + 2Nhk(Un + sk)
=

1
1 + θk

, (13)

where we have defined θk ≡ 2Nhk(sk + Un). Of course, this result
agrees with the standard neutral result, replacing θ by θk (see
below).

This same logic can be easily extended to larger sample sizes.
For example, if we consider i individuals within the same class, the
probability that the first event is a coalescence event is

P(1st Event: Coal.) =


∞

0
dtP(Coal at t)

× P(No Neut. Mut by t)P(No Del. Mut. by t)

=


∞

0
dt


i
2


e−


i
2


te−iNhkUnte−iNhkskt

=


i
2




i
2


+ iNhk(Un + sk)

=
i − 1

i − 1 + θk
. (14)

If the first event is a coalescence event, that means two of the
individuals are of the same allelic type. This leaves us with i − 1
individuals in the class which may or may not be identical; we
can now use the identical method to ask whether any of these
remaining individuals are of the same allelic type. Similarly, if the
first event is amutation event, the remaining i−1 individuals could
still coalesce with each other before they also experiencemutation
events.

We note that our analysis in this section is very similar in
spirit to that of Hudson and Kaplan (1994), Barton and Etheridge
(2004), andparticularly toGordo et al. (2002). These earlier authors
considered the relative probabilities of mutations and coalescence
in the ancestry of each individual, leading to expressions that
implicitly contain results analogous to those in this section. They
did not however consider the implications of these results for the
overall patterns of allelic diversity in thepopulation,whichwenow
turn to.
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3.6. Sampling formulas

We can now calculate the probability of sampled configurations
of allelic types. Our goal is to calculate the probability that a
sample of n individuals will have some distribution of allelic types
(e.g. n1 individuals with allele 1, n2 individuals with allele 2,
etc). Specifically, we aim to calculate a negative selection version
of the neutral Ewens sampling formula (ESF). As we will see,
this calculation proceeds exactly analogously whether we use the
lineage structure (PRF) or retrospective analysis.

We begin with the simplest case, a sample of n = 2 individu-
als from the population. What is the chance that these individuals
are the same genotype? In otherwords, what is the allelic homozy-
gosity, Q2, in the population? In order to be the same genotype, the
two individuals must carry the same number of deleterious muta-
tions – i.e. theymust fall in the same Hamming class, k. In addition,
they must also be of the same mutant lineage within class k. This
must equal the probability that themost recent event in the history
of these 2 individuals is a coalescence event; from Eq. (14) this is

1
1+θk

. Alternatively, we could calculate the probability the two in-
dividuals are in the same lineage directly from our PRF result; it is
the expected value of x2, where x is integrated over the distribution
of lineage frequencies in class k: 1

0

x2

h2
k
fk(x)dx =

1
1 + θk

, (15)

where we have evaluate the integral as described in Appendix A
(see also the corrections in the Supplementary Appendix B).

We therefore find that the full probability that two sampled
individuals have the same genotype, which we denote Q2, is given
by

Q2 =

∞
k=0

h2
k


1

1 + θk


. (16)

Note that, in the case Ud = 0, all individuals are in the zero class,
such that hk≠0 → 0 and h0 → 1. Therefore:

Q Neutral
2 →

1
1 + 2NUn

, (17)

in agreement with the neutral Ewens sampling formula.
In order for two individuals to have a different genotype, there

are two possibilities: either the two individuals could be sampled
from different classes (in which case they must have a different
genotype), or they could be sampled from the same class, and be of
different allelic types (cf. the first event in their ancestral history is
a mutation event). Therefore:

Q1,1 =


k,k′≠k

hkhk′ +


k

h2
k


θk

1 + θk



= 1 −


k

h2
k


1

1 + θk


= 1 − Q2. (18)

Note that:

Q Neutral
1,1 →

2NUn

1 + 2NUn
, (19)

in agreement with the neutral Ewens sampling formula.
3.6.1. Relationship with the neutral result
At this point, it is informative to consider the form of this

result. The presence of selection serves to subdivide the population
into classes, as given by the mutation-selection balance result.
Thus, in order for a sample of individuals to have a particular
allelic configuration, they must be sampled from a set of classes
consistent with that configuration. However, within each class,
the population behaves identically to that of a neutral population,
with a different population size (N → Nhk) and mutation rate
(Un → Un + sk). We can see this explicitly by defining:

Q ESF
{Configuration},k ≡ ESF Result for {Configuration} with

θ → 2Nhk(Un + sk). (20)

For example, we have that:

Q ESF
{2},k =

1
1 + θk

, Q ESF
{1,1},k =

θk

1 + θk
. (21)

We can then rewrite our results as:

Q2 =


k

h2
kQ

ESF
{2},k, (22)

Q1,1 =


k

h2
kQ

ESF
{1,1},k +


k,k′≠k

hkhk′ . (23)

Thus we see that, within each class, the probability of a particular
configuration is effectively neutral with parameter θ = 2Nhk(Un +

sk), consistent with our initial intuitive guess for the form of our
result. The overall probability of a given allelic configuration is then
the probability that a specific configuration is achievedwithin each
class, summed over all possible sets of class configurations that are
consistent with the allelic configuration.

3.6.2. Sample size n = 3
This logic can be extended to larger sample sizes. In order for

three randomly-selected individuals to have the same genotype,
all three individualsmust be sampled from the same class and they
must all be from the same lineage (i.e. both of the first two events
must be coalescence). This can be computed by considering the
average of x3 over the PRF,

 1
0 x3fk(x)dx, or by using the results from

Eq. (14). We find:

Q3 =


k

h3
k


2

2 + θk

 
1

1 + θk


. (24)

Note that, for Ud = 0, hk≠0 → 0 and h0 → 1, such that:

Q Neutral
3 →

2
(2 + θ)(1 + θ)

, (25)

in agreement with the neutral Ewens sampling formula.
In order for two individuals to have the same genotype and the

third individual to have a different genotype – a configuration we
term bizygotic – there are two possibilities. First, two individuals
could have been selected from the same class and the third
individual could have been selected from a different class. In this
case, the two individuals in the same class must be from the same
lineage (i.e. coalesce prior to a mutation event). Alternatively, all
three individuals could have been selected from the same class. In
this case, two must be from the same lineage and the third from a
different lineage, which occurs with probability 1

0
3x2(1 − x)fk(x)dx. (26)

Thinking about this retrospectively, this is equivalent to the sum of
two possibilities: either the first event could be a mutation event,
inwhich case the next event among the other two lineagesmust be
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a coalescent event, or the first event could be a coalescent event, in
which case the next event among the third lineage and themerged
lineage must be a mutation event. We find

Q2,1 =


k,k′≠k

3h2
khk′


1

1 + θk



+


k

h3
k


2

2 + θk

 
θk

1 + θk


+


θk

2 + θk

 
1

1 + θk



=


k

3h2
k

1 + θk


1 −

2hk

2 + θk


. (27)

Note that:

Q Neutral
2,1 →

3θ
(1 + θ)(2 + θ)

, (28)

in agreement with the neutral Ewens sampling formula for this
configuration, which we call bizygotic.

Analogous considerations lead to the probability that all three
individuals are of different allelic types,

Q1,1,1 =


k,k′≠k,k′′≠k′,k

hkhk′hk′′ +


k,k′≠k

3h2
khk′


θk

1 + θk



+


k
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1 + θk


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
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3h2
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1

1 + θk



+


k

h3
k


4

(1 + θk)(2 + θk)


= 1 − Q3 − Q2,1, (29)

as expected. Note that

Q Neutral
1,1,1 =

θ2

(1 + θ)(2 + θ)
, (30)

in agreement with the neutral Ewens sampling formula.

3.6.3. Relationship with the neutral result
As before, we define a class-specific version of the neutral

Ewens sampling formula with θ → 2Nhk(Un + sk):

Q ESF
{Configuration},k ≡ ESF Result for {Configuration} with

θ → 2Nhk(Un + sk). (31)

In particular, we have that:

Q ESF
{3},k =

2
(1 + θk)(2 + θk)

, Q ESF
{2,1},k =

3θk
(1 + θk)(2 + θk)

,

Q ESF
{1,1,1},k =

θ2
k

(1 + θk)(2 + θk)
.

Using these formulas, we can rewrite our results:

Q3 =


k

h3
kQ

ESF
{3},k, (32)

Q2,1 =


k

h3
kQ

ESF
{2,1},k +


k,k′≠k

3h2
khk′Q ESF

{2},k, (33)

Q1,1,1 =


k

h3
kQ

ESF
{1,1,1},k +


k,k′≠k

3h2
khk′Q ESF

{1,1},k

+


k,k′≠k,k′′≠k′,k

hkhk′hk′′ . (34)

Therefore, we again see that, within each class, the probabilities of
a particular configuration are effectively neutral with parameter
θ → 2Nhk(Un + sk). The overall probability of a given allelic
configuration is then the probability that a specific configuration
is achieved within each class, summed over all possible class
configurations that are consistent with the allelic configuration.

3.6.4. Sampling formulas for arbitrary sample size
We can extend this method to arbitrary sample size. For

example, in order for a sample of n individuals to each have the
same genotype, all individuals must be sampled from the same
class. They must all be of the same allelic type, which occurs with
probability

 1
0 xnfk(x)dx. Or equivalently, the first event among the

n lineages must be a coalescent event, the next event among the
remaining n − 1 lineages must also be a coalescent event, and so
on. We find

Qn =


k

hn
k


n − 1

n − 1 + θk

 
n − 2

n − 2 + θk


· · ·


1

1 + θk


=


k

hn
k

θk+n−1
θk

 . (35)

Note that

Q Neutral
n →

1
θ+n−1

θ

 , (36)

in agreement with the neutral Ewens sampling formula.
In principle, this method can be extended to calculate the

probability of any allelic configuration. Alternatively, we can use
the relationship between these results and the neutral Ewens
sampling formula to infer the probabilities. We found that, for the
cases n = 2 and n = 3, we can write the probability of a given
allelic configuration as the probability that, within each class, a
particular configuration is achieved, summed over all sets of class
configurations that are consistent with the allelic configuration.
Similarly, we see that for Qn:

Qn =


k

hn
kQ

ESF
{n},k, (37)

where we have defined:

Q ESF
{Configuration},k ≡ ESF Result for {Configuration} with

θ → 2Nhk(Un + sk). (38)

Using this logic, we can infer the probability of additional
configurations. For example, in order to sample n individuals of one
genotype and n − m of another, there are two possibilities: First,
m individuals could be sampled from class k and n−m individuals
could be sampled fromanother class k′. The probability of sampling
in this manner is hm

k h
n−m
k′

 n
m


. Within class k, the probability of the

m individuals having the same genotype is given by the neutral
result Q ESF

{m},k with θ → 2Nhk(sk + Un). Similarly, within class k′,
the probability of the n−m individuals having the same genotype
is Q ESF

{n−m},k′ . Alternatively, all n individuals could be sampled from
the same class k. This occurs with probability hn

k . The probability
of m individuals having the same genotype and n − m individuals
having another is then given byQ ESF

{m,n−m},k. Combining these results
and summing over all sets of k and k′, we have that:

Qm,n−m =


k

hn
kQ

ESF
{m,n−m},k

+


k,k′≠k

hm
k h

n−m
k′

 n
m


Q ESF

{m},kQ
ESF
{n−m},k′ . (39)

Note, however, that if m = n − m we must divide by two in the
second term in the above expression, to avoid double-counting.



M.M. Desai et al. / Theoretical Population Biology 81 (2012) 144–157 151
Extending this logic, we have that:

Qn−m−p,m,p =
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hp
kh

n−p
k′


n
p


Q ESF

{p},kQ
ESF
{n−m−p,m},k′

+


k,k′≠k
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hn−m−p
k hm

k′h
p
k′′

×


n

n − m − p,m, p


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{p},k′′ . (40)

Note, however, thatwemust correct the above expression for over-
counting if two or more classes require identical configurations
(e.g. if n − m − p = m = p we must divide the second through
fourth terms in the above expression by 3 and the last term by 6).
In general, the probability of any allelic configuration can be writ-
ten as the sum over all possible class combinations that are con-
sistent with a given allelic configuration, where the probability of
each configurationwithin a class is given by the neutral result with
θ → 2Nhk(sk + Un). In the Supplement we provide a computer
algorithm that performs this sum symbolically, for any allelic con-
figuration Qi,j,k,....

Note that, in the case Ud = 0, all individuals are sampled from
the zero-class, such that hk≠0 → 0 and h0 → 1. In this case,
only the leading-order term will be non-zero in the above results.
Therefore, the results reduce exactly to the neutral Ewens sampling
formula.

3.7. Fluctuations in the steady state hk

Even when the self-consistency condition holds, the frequen-
cies hk will fluctuate about their steady state frequencies. However,
both our PRF description of the lineage structure and our retrospec-
tive analysis assume that the fitness distribution is always in the
steady state, hk. We have previously studied this approximation in
Walczak et al. (2011). Here we summarize our analysis of the va-
lidity of this approximation, as relevant for the present paper.

Each allele in class k can at most contain 1
sk

individuals;
selection prevents any individual allele from becoming more
common than this. The total number of individuals in the class
is on average Nhk. Thus when Nhk ≫

1
sk
, each fitness class

contains many individual alleles. Thus we expect that the overall
fluctuations in hk should be negligible provided that this condition
holds. This intuition can be made precise: we can calculate the
variance in hk in steady state from our PRF approach, or more
easily from a branching process approximation described in the
Supplementary Appendix B. By computing Var(hk)/hk, we show
that in fact the fluctuations in hk are indeed negligible provided
that

Nhksk ≫ 1. (41)

In practice, this condition will often not hold in the high-fitness
(and low-fitness) tails of the distribution. However, provided it
holds in the center of the fitness distribution from which most
individuals will be sampled (i.e. for those fitness classes near the
mean), our approach will still give a good approximation to the
population allelic diversity.

We note that in addition to assuming hk are in their steady
state values in defining θk and sk for both the PRF and retrospective
approaches, the PRF contains an additional implicit approximation.
In writing the PRF sampling formulas, we assumed that, for
example, the probability two individuals in class k come from a
lineage of frequency x (given that lineage exists) is x2

hk
. This assumes

that hk and x are independent quantities. That is, we assume
that all the lineages in the class always add up to a frequency
hk (i.e., we neglect fluctuations in hk). However, the existence of
a high-frequency lineage naturally implies that hk is likely to be
larger than average, and vice versa.

These correlations between the frequency of an individual
lineage and the hk do not pose a problem to our retrospective
analysis, which never makes reference to lineages, but it does lead
to small errors in the PRF results. We show in the Supplementary
Appendix B that these errors are negligible provided that
fluctuations in hk can be neglected (i.e. provided Nhksk ≫ 1).
However, they do lead to small discrepancies between the PRF
and retrospective results (and between the PRF results and the
neutral ESF in the Ud → 0 limit, since the neutral ESF is derived
assuming a strict constraint on the total population size). Thus in
the Supplementary Appendix B we describe a method to correct
for these effects, making the lineage-based and retrospective
approaches to allelic diversity exactly equivalent. All of the above
sampling formulas include this correction, as do all our figures.

As a result of fluctuations in the values of hk, there will also
be fluctuations in the value of the average class, k̄. But these are
negligible in the same situations that fluctuations in hk are.

There is one additional extreme effect of fluctuations in hk: a
fluctuation in h0 can lead to loss of this most-fit class, a process
referred to asMuller’s ratchet.We expect that, provided the ratchet
does not click many times over the timescale in which individual
lineages exist, this will not significantly affect the allelic diversity.
Thus we have neglected the ratchet in our analysis. We return to
consider this in more detail in the Discussion, and test the validity
of our approximation with numerical simulations.

3.8. A distribution of fitness effects of deleterious mutations

We have analyzed a model in which all deleterious mutations
have the same fitness cost, s. However, in most real populations
it is likely that deleterious mutations have a range of possible
fitness effects. We could model this by assuming that the overall
deleteriousmutation rate is still Ud, but that deleteriousmutations
have a fitness cost between s and s+dswithprobabilityρ(s)ds. That
is,ρ(s) is the distribution of fitness effects of deleteriousmutations.

In this more general situation, there is still a steady state
distribution of fitness within the population. Generalizing our
earlier notation,we canwrite this distribution as h(k), whereNh(k)
is the steady state number of individuals with a fitness between sk
and (s + ds)k, where s is the average fitness cost of a deleterious
mutation and k is no longer constrained to be an integer. For certain
ρ(s) (e.g. an exponential distribution) it is possible to calculate h(k)
analytically, but even when this is not possible there does exist
some steady state h(k).

The basic ideas behind our analysis still apply in this more
general situation. The rate at which new lineages within fitness
‘‘class’’ h(k) are created is now

θ(k)/2 = Nh(k)Un + N
 k

0
h(k′)ρ((k − k′)/s)dk′. (42)

The effective selection pressure against individuals in this class is

s(k) = Un + Ud − (k − k̄)s. (43)
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Fig. 2. A comparison between simulation results (dots) and the predictions of our theory (black lines), for the case where some mutations are deleterious and others are
neutral. For comparison we also show the predictions of NS interpretation of the neutral Ewens Sampling formula (gray lines; the NM interpretation gives a worse fit to the
data). (a) Homozygosity Q2 as a function of Ud/s for N = 5× 104 . (b) Q2,1 as a function of Ud/s for N = 5× 104 . (c) Homozygosity Q2 as a function of N for Ud/s = 6. (d) Q2,1
as a function of N for Ud/s = 6. In all plots Un = 3.2 × 10−4 , s = 10−3 .
Using these modified parameters, we can now apply our analysis
as before; the distribution of lineage frequencies in class k is given
by the PRF formula f (k; x) with appropriate θ(k) and s(k). We can
then find sampling formulas as before—the only difference is that
instead of summing over a discrete set of fitness classes, we must
integrate over a continuous set of possible fitnesses. For example,
we have Q2 =


∞

0

 1
0 x2f (k, x)dxdk.

This extension of our model allows us to calculate the effects
of more general forms of purifying selection on allelic diversity.
However, there is a wide array of possible distributions ρ(s), and
using thismore general formobscures the basic effects of selection.
Thus in analyzing our results and comparing to simulations we
focus on the simpler case in which all deleterious mutations have
the same fitness cost s. This focus has the advantage of simplicity,
and it allows us to explore more clearly how the strength of
selection affects the patterns of allelic diversity.

3.9. Simulations

In order to check the validity of our analysis, we have performed
simulations of a Wright–Fisher population. In our simulations,
we consider a population of constant size N and keep track
of the frequencies of all genotypes over successive, discrete
generations. In each generation, N individuals are sampled with
replacement from the preceding generation, according to the
standardWright–Fisher process (Ewens, 2004) inwhich the chance
of sampling an individual is determined by its fitness relative to the
population mean fitness.

In each generation, a Poisson number of deleterious mutations
are introduced, with mean NUd, and a Poisson number of neutral
mutations are introduce, with mean NUn. The mutations are
distributed randomly and independently among the individuals in
the population (so that a single individual might receive multiple
mutations in a given generation). Each newmutation is ascribed to
a novel site, so that each mutation results in a new genotype.

Starting from a monomorphic population, all simulations were
run for at least 1

s ln(Ud/s) generations (or for at least several
times N generations when Ud/s < 1), to ensure relaxation both
to the steady-state mutation-selection equilibrium and to the
PRF equilibrium of allelic frequencies within each fitness class.
Appropriate relaxation to steady state was checked by extending
the simulations and ensuring our results did not change. The
final state of the population – i.e. the frequencies of all surviving
genotypes – was recorded at the last generation, and Q2 and Q2,1
were calculated from these frequencies. This was repeated and
averaged over 250 replicate simulations to produce the points
shown in the figures.

Our simulations allowed for random fluctuations in the
frequencies of each fitness class, as well as for Muller’s ratchet. The
ratchet did not proceed substantially for the simulations relevant
for Fig. 3, except for the highest Ud point shown in that figure.
However, it did proceed substantially in the simulations shown
in Fig. 2, such that the most-fit individuals at the end of each
simulation contained typically a few (for small Ud/s) to more than
a dozen (for larger Ud/s ∼ 10) deleterious mutations. We can see
that, despite the effects of Muller’s ratchet and fluctuations in the
hk, our simulations are generally in excellent agreement with our
theoretical predictions.
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Fig. 3. Allelic diversity as a function of lnUd , for Un = 10−4 , s = 10−3 , and N =

5×104 . Our predictions are shown as a solid line, compared to the predictions of the
NS-ESF (dotted line) and NM-ESF (dash-dotted line). We also compare our results
to the predictions of a neutral ESF using the effective population size that would be
predicted by background selection (EPS, dashed line), though we emphasize this is
not the situation the BGS approximationwas developed to address. These analytical
predictions can be compared to simulation results (dots). (a) Homozygosity Q2 . (b)
Q2,1 . Note that Q3 ≈ 0 everywhere for these parameters, so for these predictions
Q1,1,1 ≈ 1 − Q2,1 .

4. Results and discussion

Using the approach we have described, we can calculate the
probability of any allelic configuration within a sample of n
individuals from a population experiencing negative selection
at many linked sites. From this, we can calculate the expected
distribution of any statistic describing allelic diversity. To do
so we must first determine which allelic configurations lead to
what values of the statistic. The probability of each possible
value of the statistic is then the sum of the probabilities of all
allelic configurations leading to that value. This is identical to the
calculation we would do in the neutral case—the only difference
is that to calculate the probability of each allelic configuration, we
use our sampling formula rather than the neutral Ewens sampling
formula.

In practice, some statistics are easier to calculate than others.
While we can easily calculate the distribution of statistics
describing diversity in a small sample, and we could in principle
calculate certain statistics in larger samples (e.g. the total number
of alleles in a sample of size n, Kn), further work is needed to
develop efficient methods of calculating arbitrary statistics in
large samples. This is clearly important for applications of our
method to analysis of sequence data, but the combinatoric and
computational issues involved are an extensive topic which is
tangential to the ideas underlying our method. Instead, we focus
here on describing the distributions of simple statistics involving
small samples. Our aim is to highlight the essential differences
between neutral diversity and the diversity in situations involving
linked deleterious mutations.

Aside from likelihoods of configurations, and associated statis-
tics, our approach could also be used to calculate the full distribu-
tion of branch lengths, following the generating function approach
used by Lohse et al. (2011).

4.1. Relationship to the neutral Ewens sampling formula

Although it may seem counterintuitive, our analysis applies
even when Ud = 0 (that is, in the case where all mutations are
neutral). In this case, our model is the same as that studied by
Ewens (1972). If we apply our methods to this Ud = 0 case, all
genotypes are in the fitness class k = 0, and we have h0 = 1,
γ0 = −NUn and θ0 = θ = 2NUn. Provided that |γ0| ≫ 1, the
conditions for our PRF analysis to be valid are met, and all of our
previous results still apply, but are greatly simplified. And from our
analysis of sampling formulas above we can immediately see that,
as expected, setting Ud = 0 always causes our results to exactly
reduce to the neutral Ewens sampling formula. Note that we must
take the limit Ud → 0 rather than s → 0 to recover the neutral
result, because taking s → 0 with finite Ud causes the steady state
mutation-selection balance to break down (i.e. we have hk → 0
and fluctuations in the frequencies of each class become crucial).

For nonzero Ud, we expect that our results will differ from the
predictions of the neutral ESF. To illustrate these differences in
more detail, we study the allelic configurations in samples of size
n = 2 and n = 3. Consider first the homozygosity Q2 in a sample
of size n = 2. In Fig. 2a and c we show how Q2 depends on Ud and
the population size N , both under our theory and in Monte Carlo
simulations. We compare these results with the predictions of the
neutral ESF.Wemake the same comparisons for the heterozygosity
Q2,1 in Fig. 2b and d.We note that the simulation results agree well
with our predictions and differ from those of the ESF.

In making this comparison, there is some ambiguity about how
to interpret the ESF, which depends only on θ , for Ud > 0. In
one interpretation, we neglect selection against the deleterious
mutations and set θ = 2N(Un + Ud); we refer to this as the NS-
ESF case. Alternatively, we could neglect the deleteriousmutations
entirely and set θ = 2NUn; we refer to this as the NM-ESF case.

In Fig. 3 we explore the ambiguity in the interpretation of
the ESF, and compare the predictions of our theory to the two
different interpretations of the ESF. For small Ud, our prediction
is equivalent to both interpretations of the neutral ESF. As Ud
increases, our predicted homozygosity decreases slowly until it
experiences a sharp transition at Ud ≈ s. This transition makes
intuitive sense: when Ud < s, most individuals in the population
have no deleterious mutations, and hence the allelic diversity is
similar to the neutral case. As Ud increases past s, most individuals
have deleterious mutations, so these mutations decrease the
expected homozygosity. These deleterious mutations decrease
homozygosity by less than they would if they were neutral, so
our predicted homozygosity is higher than the NS-ESF (neglecting
selection against deleterious mutations) but lower than the NM-
ESF (neglecting deleterious mutations entirely).

We can gain further insight into this behavior by comparing
our predictions to those of the NS-ESF and the NM-ESF in more
detail (Fig. 3). We see that even when Ud = Un, our predicted
homozygosity is only slightly lower than when Ud = 0, despite
the fact that there are twice as many mutations occurring (and
hence the NS-ESF prediction forQ2 has declined by a factor of two).
Here the NM-ESF prediction is fairly accurate, reflecting the fact
that selection is still strong (with Ud ≪ s) so that most individuals
have no deleteriousmutations at all. However, as Ud increases past
s, most individuals now have one or more deleterious mutations
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and hence these mutations decrease our prediction for the allelic
homozygosity. In this regime, the NM-ESF becomes inaccurate,
because the deleterious mutations are sufficiently weakly selected
(Ud & s) that their presence is important to the diversity. However,
despite this beingweak selection, the fact that selection eliminates
deleterious mutations from the population more rapidly than if
they were neutral means that the allelic homozygosity is higher
than the NS-ESF, even as Ud becomes very large. As Ud increases,
our predictions become more similar to the NS-ESF, and in the
limit of infinite Ud will equal the NS-ESF. In Fig. 3b we show the
bizygosityQ2,1 as a function ofUd. Through this parameter rangeQ3
is small, and so Q1,1,1 ≈ 1−Q2,1. As Fig. 3b shows, the dependence
of bizygosity on Ud is similar to the behavior of heterozygosity, for
essentially the same reasons.

This shift in our results from being approximately equal to the
NM-ESF for small Ud to the NS-ESF for large Ud has an intuitive
explanation from the form of our results for θk. For Ud ≪ s, h0
is close to 1, since most individuals have no deleterious mutations.
In this class, we have θ0 = 2Nh0s0 ≈ 2NUn, the same as the θ for
the NM-ESF. Since diversity within each class is neutral with the
appropriate θ , in thisUd ≪ s regime the diversity is approximately
that predicted by the NM-ESF. On the other hand, in the limit of
very large Ud, hk becomes sharply peaked about k = Ud/s, so
almost all individuals have approximately the same fitness, and
individual deleterious mutations change fitness by a negligible
amount. Thus the diversity is approximately that predicted by the
NS-ESF. This behavior is exactly as reflected in Fig. 3, with the
transition between the two regimes occurring at Ud ∼ s, as this
analysis would predict.

Our analysis above makes it clear that the difference between
weak and strong selection for the purpose of allelic diversity is set
by whether s is small or large compared to Ud. We have potentially
three regimes of selection strength. For Ns < 1, selection is
ineffective relative to drift, and we always have nearly neutral
diversity. For Ns > 1, we can have weak, moderate, or strong
selection. When s ≪ Ud, we have weak selection as described
above; the NS-ESF is accurate. When s . Ud, we have a ‘‘moderate
selection’’ regimewhere the diversity generated by the deleterious
mutations themselves can be important, and hence the NM-ESF
is inaccurate. However selection is not so weak that the NS-ESF
is accurate either; the selection against the deleterious mutations
does reduce the amount of diversity they contribute. In this regime,
neither interpretation of the Ewens neutral sampling formula
provides an accurate prediction for allelic diversity. Finally, for
s ≫ Ud, we have a ‘‘strong selection’’ regime, where deleterious
mutations are eliminated quickly from the population and hence
do not contribute to diversity, and the NM-ESF is accurate. The
NS-ESF is also accurate in this regime when Ud ≪ Un but it will
underestimate homozygosity when Ud & Un. Note that in Fig. 3 we
show a case where s > Un, so there is a regime where s ≫ Ud but
Ud & Un and hence the NM-ESF is accurate but the NS-ESF is not.
Such a regime does not exist in the case s < Un, but otherwise the
same qualitative patterns exist for the same reasons.

4.2. Comparison to the effective population size approximation

The background selection model we have studied has been
the subject of much earlier work, although this has largely been
focused on the structure of genealogies in the presence of purifying
selection, rather than allelic diversity (Hudson and Kaplan, 1994,
1995; Gordo et al., 2002; Seger et al., 2010). A particularly simple
and useful approximation to the effects of background selection
was developedbyCharlesworth et al. (1993); Charlesworth (1994);
Charlesworth et al. (1995). This approximation is widely used to
summarize the effects of background selection (Hartl, 1988). We
refer to it here as the effective population size approximation
(EPS). The EPS analysis makes predictions about the structure
of genealogies and hence about genetic diversity at the level
of individual sites, not just the allelic diversity we consider
here. Further, it focuses on the genetic diversity among neutral
mutations only. Thus it is not directly comparable to our results
in this paper. Despite this, we find it instructive to briefly examine
how EPS compares to our results, if we apply it to predict allelic
diversity. We stress that this is not the interpretation intended
by Charlesworth et al. (1993) and does not provide a fair picture
of its accuracy in general. Since EPS describes the structure of
genealogies, we defer a detailed discussion of the accuracy of the
EPS approximation and its relationship to our results to Walczak
et al. (2011), wherewe calculate the structure of genealogies under
our model.

The EPS approximation assumes that deleterious mutations
are eliminated by selection quickly compared to the coalescence
time between two individuals who do not have any such
mutations. When this is true, almost all neutral mutations we
observe occurred in individuals that did not have any deleterious
mutations, because they have little time to occur in individuals
that do have deleterious mutations before these individuals are
eliminated by selection. Thus, according to the EPS approximation,
the genetic diversity among neutral sites linked to negatively
selected sites is exactly the same as the entirely neutral case, but
with the population size N replaced by the size of the least-loaded
(i.e.most-fit) class. That is,N is replaced by the effective population
size

Ne = Nh0 = Ne−Ud/s. (44)
Given this Ne, EPS predicts that any properties of neutral diversity
are identical to those of coalescent theory with the appropriate
Ne. Applying this to the allelic diversity, this predicts that the
sampling properties of neutral alleles will be given by the classical
Ewens’ sampling formula, using θ = 2NUnh0 = 2NUne−Ud/|s|. Note
this is effectively a NM-EPS case, which seems most natural. An
alternative NS-EPS case can be defined using θ = 2N(Un + Ud)h0;
this leads to similar conclusions.

In the strong selection regime where Ud ≪ s, most individuals
are in the 0-class. Thus our analysis predicts that this class will
dominate allelic diversity, which will be neutral with θ0 =

2Nh0s0 = 2Ne−Ud/sUn. Thus our analysis reduces exactly to the
predictions of the NM-EPS in this regime. This is the regime in
which the EPS approximation is expected to hold (Walczak et al.,
2011), so our analysis reduces to the EPS in the regime in which it
should.

However, for the moderate and weak selection regimes, Ud &
s, the EPS prediction breaks down dramatically, consistent with
the earlier observations of Nordborg et al. (1996) and Kaiser and
Charlesworth (2009). We graph this prediction in Fig. 3 (using
the NS interpretation of the EPS, which provides a slightly better
prediction than the NM interpretation). In this regime the EPS
predicts that the neutral homozygosity increases dramatically,
since the least-loaded class becomes negligible in size. However,
the homozygosity is not so large in reality, as our predictions
demonstrate. Rather, both neutral and deleterious variation among
individuals that harbor one or more deleterious mutations is
important. Our theory accounts for this effect, while EPS fails
because the approximation that the coalescence time between
individuals is dominated by the time in the least-loaded class
breaks down.

We note that, contrary to the intuition one might be tempted
to draw from EPS, having more deleterious mutations can never
decrease allelic diversity. That is, if we fix all other parameters,
simply having more deleterious mutations (i.e. increasing Ud)
does not reduce heterozygosity. Certainly it reduces neutral
heterozygosity, but accounting for all variation a population
with a larger deleterious mutation rate will have more allelic
heterozygosity.
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4.3. Distortions in allelic diversity

The above discussion makes clear that for given population
sizes, mutation rates, and selection strengths, purifying selection
changes the probabilities of particular allelic configurations in a
sample. However, this does not necessarily imply that selection
leads to distortions in the patterns of genetic variation compared to
the neutral case. In the neutral case, the probabilities of all allelic
configurations in a sample are determined by a single parameter θ .
This means that we can infer θ from a statistic which depends on
the probabilities of one set of allelic configurations, and this θ then
predicts the expected distribution of all other statistics describing
genetic variation within the population, provided it is evolving
neutrally.

Our discussion of the EPS approximation abovemakes clear that
for sufficiently strong selection, genetic diversity is not distorted
relative to the neutral case. In this section, we show that for
moderate to weaker selection (relative to mutation rates), there
is no effective population size Ne which can describe genetic
diversity in our model. As we noted in the Introduction, this is
consistent with earlier observations that background selection
leads to distortions in the structure of genealogies (McVean and
Charlesworth, 2000; Seger et al., 2010; O’Fallon et al., 2010;
Comeron and Kreitman, 2002; Comeron et al., 2008; Barton and
Etheridge, 2004; Gordo et al., 2002; Hermisson et al., 2002;
Williamson and Orive, 2002). Here we compute precisely how
these distortions alter particular aspects of the patterns of allelic
diversity. Our analysis in this section demonstrates one place in
which statistical power exists to distinguish purifying selection
from neutral processes at a reduced effective population size.
Our framework can in principle be used to explore where such
statistical power lies more generally, but we leave this more
general question for future work.

In this section, we simply show that there is no effective neutral
population size Ne to describe diversity in our model. To do this, it
is sufficient to show that the effective θ that one would infer from
one statistic predicts the incorrect values of other statistics. The
simplest way to do this is to begin with the Q2 we would predict
given some set of parameters. We calculate the effective θe one
would infer from this Q2 using the neutral ESF (i.e. we choose θe
such that Q2 =

1
1+θe

). We then calculate the neutral prediction for
Q2,1 (or Q3) based on this θe. We compare this with our predictions
for Q2,1 (or Q3) given the real parameters. The difference between
these two predictions is ameasure of the deviation fromneutrality.
We show this deviation from neutrality, expressed as the ratio of
the neutral effective population size prediction to the actual result,
for Q2,1 in Fig. 4a and for Q3 in Fig. 4b.

We see from Fig. 4 that negative selection distorts the allelic
diversity away from high-frequency polymorphisms and toward
lower-frequency polymorphisms, for a given level of overall
heterozygosity. The effects are strongest when Ud is of order (or
slightly larger than) s, and the distortion is stronger for smaller Un
and N .

These two simple statistics measuring deviations from neutral-
ity demonstrate that there is no effective population size describ-
ing allelic diversity. These particular comparisons are presumably
not the most statistically powerful way to detect this type of neg-
ative selection, but they do show that statistical power exists. Us-
ing the framework developed in this paper, it is now possible to
systematically investigate exactly how linked negatively selected
sites generate different patterns of allelic diversity from the neu-
tral case, and to determinewhich statistics provide themost power
detect this type of selection. Note for example that the deviation
from neutrality is much stronger in Fig. 4b than in Fig. 4a. This
reflects the fact that we are inferring θ from Q2, which in our
theory is more closely related to Q2,1 than it is to Q3. Even more
a

b

Fig. 4. The deviation from neutrality. We take Q2 as predicted by our theory, and
use the neutral ESF to find the effective θ that this implies by setting Q2 =

1
1+θe

.
We then use this effective θe in the neutral ESF to predict the values of Q2,1 and Q3 it
corresponds to. We compare this to the Q2,1 and Q3 predicted by our theory. This is
a measure of the deviation from neutrality, the skew in the frequency spectrum of
allelic diversity away from neutral results with somemodified effective population
size. (a) The ratio of Q2,1 from the effective population size description to the Q2,1
from our theory, as a function of ln(Ud), for s = 10−3 and three different values of
Un and N . (b) The ratio of Q3 from the effective population size description to the
Q3 from our theory as a function of ln(Ud), for s = 10−3 and three different values
of Un and N .

powerful tests for selection are presumably possible. While much
earlier work has anticipated that purifying selection distorts the
structure of genealogies (McVean and Charlesworth, 2000; Gordo
et al., 2002; Hahn, 2008; Comeron et al., 2008; Seger et al., 2010;
Betancourt et al., 2009; Comeron and Kreitman, 2002; Williamson
and Orive, 2002), no analytic formalism has previously provided a
way to determine precisely how selection alters patterns of allelic
diversity (and hence, where statistical power may lie).

While we have shown that there is no neutral effective
population size describing allelic diversity, this allelic diversity is
a summary statistic of the full per-site diversity. Thus our result
also implies that genetic diversity at a per-site level also cannot be
described by a neutral effective population size, and that additional
power to distinguish neutrality from negative selection can be
found in data on site-based variation, consistent with the earlier
work described above.

4.4. Muller’s ratchet

Throughout our analysis,wehave assumed thatMuller’s ratchet
can be neglected. This is clearly not true in general. The problem
Muller’s ratchet creates is that hk can change with time, and this
changes the distribution of allele frequencies within each class.
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After a ‘‘click’’ of the ratchet, the distribution of hk shifts, eventually
reaching a new state shifted left by one class (so the class that was
originally at frequency hk is now at frequency hk−1, and so on). The
PRF distribution of lineage frequencies in class k correspondingly
shifts from fk to fk−1, and so on, which changes the allelic diversity.

Fortunately, since fk(x) is similar to fk+1 and fk−1, this effect is
unlikely to cause major inaccuracies, provided the ratchet does
not click many times over the timescale on which the lineage
frequency spectrum turns over. We expect that this is generally
true within the bulk of the fitness distribution. At the tails of the
distribution, where hk is small, the allele frequency distribution
can sometimes be substantially different than expected due to the
ratchet. However, by definition these classes represent a small
fraction of the overall population and hencewe do not expect them
to contribute substantially to allelic diversity.

We tested the accuracy of our approximation neglecting
Muller’s ratchet using the simulations described above, all of
which included the possibility of the ratchet. Our predictions
remain very accurate, even in simulations inwhich the ratchet was
observed to operate. Note, however, that the ratchet is potentially
more problematic in considering the genetic diversity at the level
of individual sites, because the high-fitness tail of the fitness
distribution can be important for the structure of genealogies even
if it does not contribute substantially to allelic diversity at any time.

4.5. Conclusion

We have introduced a formalism to calculate the statistics of
allelic diversity in the presence of purifying selection at many
linked selected sites. We have done so by calculating the structure
of the individual lineages that maintain the deleterious mutation-
selection balance. This analysis is based on the PRF framework
of Sawyer and Hartl (1992), which was originally developed to
describe the frequency of mutations at completely unlinked sites.
We have adapted this framework to our problem with a shift
in perspective: rather than treating new mutations at individual
sites as the basic and independently fluctuating quantities, we
consider the lineages founded by new mutations as the basic
independent quantities. This allows us to describe aspects of the
genetic diversity despite the fact that selection is acting on many
linked non-independent sites. We showed that this approach is
exactly equivalent to a retrospective perspective, which studied
the probability individuals are in the same lineage by considering
the probability that coalescence events preceded mutations.

Of course, each lineage we describe contains many different
mutations, and the fluctuations in lineage frequency described by
the PRF framework represent correlated fluctuations in all of these
individual mutations. If we could also describe how lineages are
related to each other, and hence the statistics of which mutations
they share, we could combine this with the results in this paper
to describe the full per-site patterns of genetic diversity despite
the correlations between sites introduced by linkage and selection.
In this paper, however, we have focused on describing allelic
diversity, leading to a negatively selected version of the neutral
Ewens sampling formula. This analytical framework allows us to
compute precisely how patterns of allelic diversity are distorted
by negative selection at many linked sites, and hence understand
exactly where statistical power may lie to distinguish purifying
selection from neutrality.
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Appendix A. Integrals involving fk(x)

Our expressions for the probabilities of various allelic configu-
rations involve integrals of the form

I =

 1

0
A(x)f (x), (45)

where A(x) is a polynomial function of the form A(x) = xn(1− x)m
(with n and m integers). Here f (x) is the expression from Eq. (9),

f (x) =
ah

ea − 1
1

x(1 − x)


ea(1−x)

− 1

, (46)

where we have suppressed the subscripts and used the notation
a ≡ −2γ .

Whenever n and m are both ≥ 1, these integrals are easy to
evaluate analytically. When either n orm equals zero, the integrals
can be separated into an exactly solvable analytical part and a part
that involves the integral

I ′ =

 1

0

eay − 1
y

dy. (47)

This integral I ′ is a known special function Ein(−a); see p. 228 of
Abramowitz and Stegun (1965).

Consider for example the integral

I2 =

 1

0
x2f (x)dx. (48)

Substituting in for f (x) and substituting y = 1 − x in the integral
gives

I2 =
ah

ea − 1

 1

0

1 − y
y


eay − 1


dy. (49)

We now simply write 1−y
y =

1
y − 1 and evaluate the analytically

solvable parts of this integral to get

I2 =
ah

ea − 1
I ′ − h +

ah
ea − 1

. (50)

Fortunately, we can calculate a simple analytic approximation
for I ′ in the limit a ≫ 1 (i.e. |γ | ≫ 1), which is the limit we are
always working in. This is a standard asymptotic expansion of the
Ein function; we have

I ′ ≈
1
a
ea


1 +

1
a


. (51)

We can now plug our approximation for I ′ into our result for I2 to
get

I2 =
h
a
. (52)
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Formore complex integrals,we need to keep higher order terms
in the asymptotic expansion of I ′. In general, we find

In =

 1

0
xnf (x) =

(n − 1)!h
an−1

. (53)

Similar calculations can be used to find an analogous approxima-
tion for Im =

 1
0 (1 − x)mf (x)dx, but this integral is not necessary

for our purposes in this paper.
These calculations allow us to give simple analytic expressions

for any integrals of the form

xn(1 − x)mf (x)dx. Wheneverm and

n are both ≥ 1, the integrals can be evaluated exactly in terms
of elementary functions, and when either m or n are 0 we can
use the above results to provide simple analytic approximations
to whatever precision we require.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.tpb.2011.12.002.
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