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ABSTRACT

The distribution of genetic polymorphisms in a population contains information about evolutionary
processes. The Poisson random field (PRF) model uses the polymorphism frequency spectrum to infer the
mutation rate and the strength of directional selection. The PRF model relies on an infinite-sites
approximation that is reasonable for most eukaryotic populations, but that becomes problematic when u is
large (u * 0.05). Here, we show that at large mutation rates characteristic of microbes and viruses the infinite-
sites approximation of the PRF model induces systematic biases that lead it to underestimate negative
selection pressures and mutation rates and erroneously infer positive selection. We introduce two new
methods that extend our ability to infer selection pressures and mutation rates at large u: a finite-site
modification of the PRF model and a new technique based on diffusion theory. Our methods can be used to
infer not only a ‘‘weighted average’’ of selection pressures acting on a gene sequence, but also the distribution
of selection pressures across sites. We evaluate the accuracy of our methods, as well that of the original PRF
approach, by comparison with Wright–Fisher simulations.

MUTATION rates and selective pressures are of
central importance to evolution. The number

and frequency distribution of genetic polymorphisms
within a population carry information about these
fundamental processes. Polymorphisms at higher fre-
quencies reflect weaker selective pressures (or positive
selection), and vice versa. Similarly, a larger number of
polymorphisms indicates a higher mutation rate. Thus
we can use the polymorphism frequency spectrum
observed in genetic sequences sampled from a popula-
tion to infer the mutation rate and the selection pressure
acting on the sequence.

This intuition can be formalized into a rigorous
method for estimating selection pressures and mutation
rates by calculating the likelihood of sampled poly-
morphism data as a function of these parameters. The
Poisson random field (PRF) model provides an impor-
tant and widely used method of doing so. The PRF
model assumes a panmictic population of constant size,
free recombination, infinite sites, no dominance or
epistasis, and equal selection pressures at all sites.
Under these assumptions, Sawyer and Hartl (1992)
showed that the distribution of frequencies of mutant
lineages in a population forms a Poisson random field
whose properties depend on the selection pressure and
the mutation rate. Hartl et al. (1994) and Bustamante

et al. (2001) developed a maximum-likelihood method
of estimating these parameters from data on the poly-
morphism frequency spectrum. This method has been
widely used to study, for example, purifying selection on
synonymous (Hartl et al. 1994; Akashi and Schaeffer

1997; Akashi 1999) and nonsynonymous (Hartl et al.
1994; Akashi 1999) variation, and the evolution of base
composition (Lercher et al. 2002; Galtier et al. 2006).

Closely related to these analyses of polymorphism
data are methods that calculate, on the basis of the PRF
model, the ratio of the expected number of polymor-
phisms within species to divergence between species for
synonymous and nonsynonymous sites [using the idea
behind the McDonald–Kreitman test (McDonald and
Kreitman 1991)]. These methods discard some of the
available data, as they depend only on the number of
polymorphisms and not on their full frequency spec-
trum. However, they are also less sensitive to assump-
tions (Sawyer and Hartl 1992; Loewe et al. 2006).
Such methods have been applied to estimate selection
pressures on synonymous variation (Akashi 1995), on
nonsynonymous mutations in mitochondrial genomes
(Nachman 1998; Rand and Kann 1998; Weinreich and
Rand 2000), and on nonsynonymous variation in a
variety of nuclear genomes (Bustamante et al. 2002;
Sawyer et al. 2003; Bartolome et al. 2005), including
humans (Bustamante et al. 2005).

Recent theoretical work has focused on relaxing
various assumptions of the original PRF method. These
include allowing for dominance (Williamson et al.
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2004), population subdivision (Wakeley 2003), chang-
ing population size (Williamson et al. 2005), and
linkage between sites (Zhu and Bustamante 2005).
Several methods for studying the properties of the dis-
tribution of selection pressures across sites based on the
PRF model have also been developed, using the poly-
morphism frequency spectrum (Nielsen et al. 2005),
the ratio of polymorphism to divergence (Sawyer et al.
2003; Loewe et al. 2006), or several of these methods in
conjunction (Bustamante et al. 2003; Piganeau and
Eyre-Walker 2003; Boyko et al. 2008).

A fundamental assumption of the PRF approach is
that mutation is irreversible—the infinite-sites assump-
tion. Thus any particular site can be only transiently
polymorphic, and there is no steady-state solution to the
evolutionary dynamics at any given site. However, since
the constant creation of new polymorphic sites is bal-
anced by older polymorphisms fixing or going extinct,
the frequency distribution of polymorphisms across sites
currently polymorphic does reach an equilibrium. This
approach has important advantages. Since it describes
the frequency spectrum of new mutations (‘‘derived
alleles’’)—the frequency spectrum relative to the last
ancestral state—it provides a natural framework for
analyzing polymorphism data when the ancestral state
is known. This ancestral state can often be inferred from
an appropriate outgroup.

Despite its advantages, the infinite-sites approxima-
tion can present problems. The approximation is
reasonable for most data currently available from typical
eukaryotic populations. However, in many biologically
reasonable parameter regimes, particularly those rele-
vant to bacterial and viral populations, more than one
mutational event may contribute to polymorphism at a
given site. In this article, we show that under these
parameter regimes the infinite-sites assumption causes
the PRF method to underestimate negative selection
pressures and mutation rates by as much as an order of
magnitude. In addition, the PRF method often infers
that a gene is under strong positive selection when in fact
the gene is experiencing weak negative selection. This
problem arises both for inferences based on the poly-
morphism frequency spectrum and for inferences based
on the ratio of within-species polymorphism to between-
species divergence, but here we focus exclusively on the
former.

In this article, we present two methods that relax the
infinite-sites assumption of the PRF method, each with
its own advantages and drawbacks. Rather than studying
mutant lineages across a sequence, our methods focus
on explicit models of the evolutionary dynamics at
individual sites. We first present a modification of the
PRF method that retains the essential framework, but
calculates the frequency distribution of mutant lineages
at each site rather than across the whole sequence. We
next present an alternative method based on well-
known diffusion equations in place of the PRF frame-

work. This alternative framework avoids all of the finite-
site biases of the PRF, but it cannot make use of
knowledge about the ancestral state. Rather than de-
scribing a steady-state frequency distribution of derived
nucleotides relative to this ancestral state, it describes
the frequency distribution of all four nucleotides
possible at each site—a fundamentally different steady
state. Both of our methods allow us to estimate the
selection pressure and the mutation rate from data on
the polymorphism frequency spectrum. In addition,
these methods also allow us to infer the distribution of
selection pressures across sites.

To assess the accuracy of these methods, we generate
polymorphism data from simulated Wright–Fisher pop-
ulations with known selection pressures and mutation
rates. By comparing inferences drawn from these simu-
lated data sets, we demonstrate that our methods extend
and improve upon the original PRF approach. Through-
out this article, we focus on accurately inferring the sign
and strength of negative selection, since the most trou-
bling bias in the original PRF method is erroneous
inference of positive selection when mutation rates are
large. We focus primarily on situations when the
ancestral state at each site cannot be reliably inferred,
which is the typical situation when the mutation rate is
large.

We emphasize that the effects of finite sites are of
practical relevance only when the mutation rate is
relatively large (u per site $0.05). As a result, the
methods of inference developed here are not necessary
for analyzing human or Drosophila population-genetic
data. However, as we shall demonstrate, finite-site effects
have significant practical implications when studying
the population genetics of viruses, microbes, and some
higher eukaryotes, such as sea squirts and starfish, that
experience large mutation rates (Drake et al. 1998;
Lynch and Conery 2003).

THEORY

The Poisson random field model of polymorphisms:
We begin by outlining the PRF model of the site-
frequency spectrum developed by Sawyer and Hartl
(Sawyer and Hartl 1992; Hartl et al. 1994). This
model assumes that mutations occur in a population of
effective size N at a Poisson rate Nu, where u is the per-
sequence mutation rate, and are all subject to selection of
strength s. The fate of each mutant lineage is modeled by
a diffusion approximation to the processes of selection
and drift. When a new mutant lineage enters the popu-
lation, it is assumed to arise at a site that has not
previously experienced any mutations (the infinite-sites
assumption). Each mutant lineage is assumed to be
independent of all others (the free-recombination
assumption).

Extending earlier work by Wright (1938) and
Moran (1959), Sawyer and Hartl (1992) calculated
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a steady-state distribution of mutant lineage frequen-
cies. They found that the number of lineages with
frequency between x and x 1 dx is Poisson distributed
with mean f(x)dx, where

f ðxÞ ¼ ul
1� e�2gð1�xÞ

1� e�2g

1

xð1� xÞ : ð1Þ

Here g [ Ns is a measure of the strength of selection on
the mutant lineages and ul [ 2Nu is twice the population
per-sequence mutation rate. The function f(x) is re-
ferred to as a Poisson random field. In other words, the
number of mutant lineages with frequency between x1

and x2 is a Poisson random variable with meanÐ x2

x1
f ðxÞdx. In addition, the number of mutant lineages

with frequency in [x1, x2] is independent (as a random
variable) from the number of mutant lineages with
frequency in [y1, y2], provided these intervals do not
intersect. Note that f(x) is not integrable at x ¼ 0. This
divergence occurs because the steady state arises from a
balance between new mutations constantly occurring
and older lineages fixing or going extinct. Thus there is
no finite, steady-state expression for the number of
lineages that have fixed or gone extinct.

Hartl et al. (1994) and Bustamante et al. (2001)
used Equation 1 as the basis for maximum-likelihood
(ML) estimation of the mutation rate ul and selection
pressure g from polymorphism data. They imagined
sampling n individuals from a population with this
steady-state distribution of segregating mutant lineages.
They made the infinite-sites assumption that all mutant
lineages occur at different sites, consistent with the
earlier assumption that each lineage is independent.
Since the number of mutant lineages at frequency x in
the population is Poisson distributed with mean f(x)dx,
the number of sampled sites containing i mutant
nucleotides (we refer to these as i-fold mutant sites) is
Poisson distributed with mean

F ðiÞ ¼ ul

ð1

0

1� e�2gð1�xÞ

1� e�2g

1

xð1� xÞ
n
i

� �
xið1� xÞn�idx:

ð2Þ
This equation leads immediately to a maximum-like-

lihood procedure for estimating g and ul (Bustamante

et al. 2001). A set of sequences from n sampled
individuals within a population will contain some
number, yi, of i-fold mutant sites for 0 , i , n. The set
of values y1, y2, . . . , yn�1 is called the site-frequency
spectrum of the observed data. The probability of a
spectrum {yi}, given g and ul, is

Luðul ; gÞ ¼
Yn�1

i¼1

e�F ði;g;ul Þ F ði; g; ulÞ½ �yi

yi !
: ð3Þ

For an observed spectrum {yi} in a particular data set,
one maximizes this likelihood over ul and g to estimate
the mutation rate and selection pressure.

The likelihood expression above assumes we know
which nucleotide is ancestral and which nucleotide is
the mutant (‘‘derived’’) at each polymorphic site. We
refer to this situation as the unfolded case. When we do
not have this information, we cannot distinguish be-
tween an i-fold mutant site and an (n � i)-fold mutant
site. In this case, a data set will contain some number, yi,
i-fold and/or (n � i)-fold mutant sites, where i runs
between 1 and the largest integer #n/2. We refer to this
as the folded case. In this situation, the likelihood of a
particular data set Lfðul ; gÞ is given by the same
expression as for Lu, but with the product running from
1 to n/2 and with F(i) replaced by F(i) 1 F(n� i) (except
if i ¼ n/2).

The infinite-sites approximation: The PRF model
makes two key assumptions: that each site is indepen-
dent of all the others and that two mutant lineages never
segregate at the same site. The former assumption is
equivalent to assuming free recombination between all
segregrating sites, and it has been investigated elsewhere
(Akashi and Schaeffer 1997; Bustamante et al. 2001);
we return to it in the discussion. The main focus of this
article, however, is on the second assumption of the PRF,
that there are an infinite number of sites, which has not
been discussed much in the literature. This assumption
can lead to problems that are most apparent when
considering how the PRF method treats ‘‘multiply poly-
morphic’’ sites—those that exhibit more than two types
of segregating nucleotides. Polymorphisms of this type
are indeed observed in data analyzed by the PRF method
(Hartl et al. 1994). We refer to the configuration of a
particular site as (a, b, c, d), where a, b, c, and d are the
numbers of sampled sequences that exhibit each of
the four nucleotides. When we have unfolded data, a is
the frequency of the ancestral nucleotide and b, c, and d
are the frequencies of the three possible mutant nucle-
otides, in order of decreasing frequency. For folded
data, a, b, c, and d are the frequencies of all four possible
nucleotides, again in order of decreasing frequency. In
the original PRF analysis, a site with a (12, 1, 1, 0)
configuration, for example, is treated identically to a site
with a (12, 2, 0, 0) configuration. Such a treatment is
incorrect: the former configuration can arise only from
two mutant lineages, whereas the latter configuration
could be caused by a single mutant lineage (presumably
at relatively high frequency in the population). Yet the
PRF analysis excludes the first possibility and treats both
configurations as if they were (12, 2, 0, 0) sites (Hartl

et al. 1994; Bustamante et al. 2001). Similarly, the PRF
method treats (10, 2, 2, 0), (10, 3, 1, 0), and (10, 2, 1, 1)
sites as if they were in a (10, 4, 0, 0) configuration, etc.

The infinite-sites approximation also affects sites that
exhibit only two types of segregrating nucleotides.
When multiple lineages are segregating at the same
site, an i-fold and a k-fold mutant lineage sampled at the
same site can lead to an apparently (i 1 k)-fold mutant
site, if the two lineages happen to be mutations to the
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same nucleotide. In other words, a (12, 2, 0, 0) site could
reflect two low-frequency mutant lineages or one
higher-frequency lineage, but the PRF method incor-
rectly assumes that only the latter is possible. This leads
to systematic biases in the estimates of selection and
mutation obtained by the PRF method: by disregarding
the possibility that an apparently high-frequency mu-
tant lineage is actually several lower-frequency mutant
lineages, the PRF method underestimates the mutation
rate u and the strength of negative selection jsj.

Since a mutant lineage will survive on average
Oðln½1=jsj�Þ generations before fixing or going extinct
(Desai and Fisher 2007), and mutations arise at rate
Nm per site, the infinite-sites approximation will be valid
only when N m ln½1=jsj�>1 (although for sufficiently
small samples the condition is weaker, since we may
never sample multiple lineages even though they are
segregating at the same site). This condition is some-
times violated in real populations, particularly of viruses
and microbes (e.g., Hartl et al. 1994).

We stress that in parameter regimes relevant to most
eukaryotes, including humans and Drosophila, finite-
sites biases are negligible. But in parameter regimes
relevant to bacteria and viruses, sites with multiple
segregrating mutations have a disproportionate weight
in estimates of selection and mutation, and thus they
can lead to errors of an order of magnitude or more
(Figure 1). In such circumstances, the PRF method also
erroneously infers positive selection in many situations
where selection is actually negative (Figure 1).

A per-site Poisson random field model of poly-
morphisms: In this section, we describe a method that
extends the PRF framework to the case of finite sites and
takes full advantage of the information provided by the
frequencies of all possible configurations at a site. The
basic idea behind this modified approach is to recast the
PRF framework on a per-site basis. We describe the steady-
state frequency distribution of mutant lineages at a given
site. From this, we can calculate the probability that a
sample of n individuals will contain any configuration of
mutants at that site. As in the original PRF method, we
retain the assumption of free recombination, so that the
DNA sequence is a collection of independent sites. Thus
our per-site analysis leads directly to ML estimation of
mutation rate and selection strength.

We begin by recasting the PRF expression for the
steady-state distribution of mutant lineages to describe
the frequencies of mutant lineages at a single site. At a
given site, we have

f ðxÞ ¼ us
1� e�2gð1�xÞ

1� e�2g

1

xð1� xÞ ; ð4Þ

where us is the per-site value, us¼ 2Nm, where m is the per-
site mutation rate. Using this formula to describe
multiple lineages at a single site is somewhat peculiar,
because this result assumes that all mutant lineages

behave independently of one another. Clearly this is not
strictly true, since the mutant lineages are segregating at
the same site. However, provided two mutant lineages
rarely achieve simultaneous high frequencies in the
population, then the assumption of independent mu-
tant lineages is a good approximation. This assumption
of noninteracting mutant lineages will often hold even
when the other aspects of the infinite-sites approxima-
tion are violated.

Analogous to the original PRF method, at a single site
the number of mutant lineages that are observed i times
in a sample of n sequences (‘‘i-fold mutant lineages’’) is
Poisson distributed with mean

F ðiÞ ¼ us

ð1

0

1� e�2gð1�xÞ

1� e�2g

1

xð1� xÞ
n
i

� �
xið1� xÞn�idx:

ð5Þ

On the basis of this, we can calculate the probability of
any particular polymorphism configuration at a site.

We begin by describing this calculation in the un-
folded case. The probability that a site is monomorphic
is just the probability that no i-fold mutant lineages are
found at that site, for all i between 1 and n � 1. This is

Pmono ¼ Pðn;0;0;0Þ ¼ e�F ð1Þe�F ð2Þ . . . e�F ðn�1Þ: ð6Þ

We define M [ Pmono to denote this monomorphism
probability. The probability that a site exhibits a (n � 1,
1, 0, 0) configuration is the probability that a single 1-
fold mutant lineage is sampled, and no 2-fold or higher
lineages are found,

Pðn�1;1;0;0Þ ¼ F ð1ÞM ; ð7Þ

where M denotes the probability of monomorphism as
above. The probability that a site exhibits an (n� 2, 2, 0,
0) configuration is more complex. This configuration
could arise from a single 2-fold sampled lineage (as
assumed under the standard PRF method) or it could
arise from two 1-fold sampled mutant lineages that
happen to involve mutations to the same nucleotide.
Hence its probability is

Pðn�2;2;0;0Þ ¼
F ð1Þ2

2!
M

1

3
1 F ð2ÞM ; ð8Þ

where the factor of 1
3 is the probability that two

mutations result in the same nucleotide. This expres-
sion assumes that mutations between all possible nu-
cleotides are equally likely—the obvious generalization
applies when there are mutational biases, which we do
not discuss further. Similarly the probability of an (n� 2,
1, 1, 0) configuration is

Pðn�2;1;1;0Þ ¼
F ð1Þ2

2!
M

2

3
: ð9Þ

The probabilities of more complex configurations
can be calculated in a similar way. The probability of
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an (n � 4, 4, 0, 0) configuration, for example, is the
probability of four 1-fold lineages to the same nucleo-
tide plus the probability of two 1-fold lineages and a 2-
fold lineage, plus the probability of two 2-fold lineages,
plus the probability of one 1-fold lineage and one 3-fold
lineage, plus the probability of a single 4-fold lineage.
We have

Pðn�4;4;0;0Þ ¼ M
F ð1Þ4

4!

1

33 1
F ð1Þ2F ð2Þ

2!

1

32 1
F ð2Þ2

2!

1

3

�

1 F ð1ÞF ð3Þ1
3

1 F ð4Þ
�
: ð10Þ

In general, the probability of a particular configuration
is given by the sum of the probabilities of all possible
partitions of n that lead to that configuration.

In the folded case, these calculations become fairly
complex. The probability of a (12, 2, 0, 0) folded
configuration, for example, includes the probability of
a single 12-fold sampled lineage, as well as two 6-fold
sampled lineages, and so on. Thousands of terms may
arise in the expression for the probability of a particular
configuration, even for moderate values of n. We do not
quote any of these expressions here, but rather we have
developed a computer program to output symbolic ex-
pressions for the probabilities of all possible folded as
well as unfolded configurations, for a given sample size
n. The algorithm used in this program is described in the
appendix, and the program is freely available on
request.

These probabilities of site configurations form the
basis of maximum-likelihood parameter estimation.
The probability of a data set with L total sites, including
ya,b,c,d sites in configuration (a, b, c, d), is given by

L!Q
ya;b;c;d !

Y
P

ya;b;c;d

a;b;c;d ; ð11Þ

where the products are over all possible configurations.
Given a particular data set, we maximize this probability
over us and g to find the ML estimate of these
parameters. In the original PRF method, this maximi-
zation is particularly simple, because the ML estimate
for u can be expressed analytically in terms of the ML
estimate for g, leaving a one-dimensional numerical
maximization procedure to estimate g. In our per-site
PRF method, however, a full two-dimensional numerical
maximization is required to find the ML estimates of us

and g. We have implemented a computer program to
perform this maximization; it is freely available on
request.

Our per-site PRF method relaxes most of the con-
sequences of the infinite-sites approximation inherent
in the original PRF estimation procedure. We allow for
the possibility that multiple mutant lineages contribute
to the polymorphism observed at a single site. Thus we
avoid the systematic underestimation of u and g, and
incorrect inference of positive selection, that affect the

traditional PRF when mutation rates are large (Figure
1). This new method also uses all of the data available in
the sample, including the differences between (n� 2, 2,
0, 0) and (n � 2, 1, 1, 0) sites and the number of
monomorphic sites (note the infinite-sites approxima-
tion means that the original PRF cannot predict the
number of monomorphic sites and hence makes no use
of these data). It does still retain one aspect of the
infinite-sites approximation: it assumes that mutant
lineages segregating at the same site do not interfere
with each other. This is never strictly true, but it is a good
approximation unless multiple mutant lineages reach
high frequency at a given site at the same time. Note that
because of this assumption, the probabilities of all
possible configurations (a, b, c, d) described above do
not precisely sum to unity, because our approach allows
a typically small but nonzero probability of multiple
mutant processes adding to more than n sampled
individuals. The no-interference assumption is substan-
tially weaker than the infinite-sites assumption, and thus
our revised sampling method extends the applicability
of the PRF framework.

A per-site diffusion model of polymorphisms: In this
section, we describe a method that shifts fundamentally
from the PRF framework and avoids all of the problems
associated with the infinite-sites assumption. Rather
than studying the distribution of the frequencies of mu-
tant lineages, we focus on the evolutionary dynamics at
each individual site, without keeping track of individual
mutant lineages. We develop this into a maximum-like-
lihood estimation of g and u from polymorphism data,
which requires neither the infinite-sites nor the no-
interference approximation described above. As in the
original PRF method, we assume free recombination
between sites.

At an individual site, we imagine that one nucleotide is
preferred and the other three have the same fitness
disadvantage s (s , 0). We assume that mutations occur
at rate m and hence at rate m/3 between any two specific
nucleotides (i.e., no mutational biases). These assump-
tions simplify the discussion, but are not essential. In
fact, one advantage of this approach is that these as-
sumptions can be easily relaxed with obvious general-
izations (noted below).

We can analyze the process of mutation, selection, and
drift at a single site with a three-dimensional diffusion
approximation and calculate the joint steady-state prob-
ability distribution of the frequencies of the four
possible nucleotides at the site. This then leads naturally
to the likelihood of any configuration of polymorphism
data at the site as a function of g and us and hence to ML
estimation of these parameters from data. Before ex-
ploring this fully, we first analyze a simplification of this
model, in which we treat all three disfavored nucleotides
as a single class. Such a treatment reduces to a standard
one-dimensional diffusion process whose steady-state
probability distribution describes the frequency of the
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preferred nucleotide vs. the sum of the frequencies of
the disfavored ones; this treatment is essentially a steady-
state version of Williamson et al. (2005). This simplified
model is not likely to be particularly useful, because it
requires us to know a priori the identity of the preferred
nucleotide, which in practice is part of what we wish to
infer. This simplification also discards some of the
information in the data [e.g., not making use of the
difference between (12, 1, 1, 0) and (12, 2, 0, 0) sites].
However, first studying this analytically and computa-
tionally simpler model makes the analysis of the full
model more clear. We therefore begin by describing the
one-dimensional method and then turn to the three-
dimensional method.

The one-dimensional diffusion model: We begin by
describing a simplified diffusion approach that calcu-
lates the frequency distribution of favored vs. disfavored
nucleotides, similar in spirit to that introduced by
Mustonen and Lassig (2007). As noted above, we for
simplicity assume that one nucleotide is preferred and
the other three nucleotides are disfavored. We denote
the sum of the frequencies of the three disfavored
alleles by x; the frequency of the preferred nucleotide is
1 � x.

We assume that mutation, selection, and random drift
occur at each site according to standard Wright–Fisher
dynamics. Thus the probability distribution of x can be
described by the diffusion equation

@

@t
f ðx; tÞ ¼ 1

2

@2

@x2 vðxÞf ðx; tÞ½ � � @

@x
mðxÞf ðx; tÞ½ �; ð12Þ

where f(x, t) is the probability that the disfavored
nucleotides have frequency x at time t and m(x) and
v(x) are given by

mðxÞ ¼ sxð1� xÞ1 mð1� xÞ � m

3
x ð13Þ

vðxÞ ¼ xð1� xÞ
N

; ð14Þ

where s is the selection coefficient against the disfavored
nucleotides (s , 0) and m is the per-site mutation rate
per individual per generation. This diffusion equation is
well known (Ewens 2004) and has the steady-state
solution derived by a zero-flux boundary condition:

f ðxÞ ¼ Cxus�1ð1� xÞus=3�1e2gx : ð15Þ

Here C is a (us- and g-dependent) normalization factor,
and as before us [ 2Nm and g [ Ns.

If the frequency of disfavored nucleotides at a site
equals x, the probability that we find i such nucleotides
in a sample of n individuals is ð n

i Þxið1� xÞn�i . Averaging
over x, the overall probability that we sample i disfavored
nucleotides at a given site is

F ðiÞ ¼ n
i

� �ð1

0
Cxus1i�1ð1� xÞus=31n�i�1e2gxdx: ð16Þ

This integral, including the calculation of the normal-
ization factor C, can be solved analytically. We find

F ðiÞ

¼
n

i

� �
Gðn�i 1 us=3ÞGði 1 usÞ1F1ði 1 us; n 1 4us=3; 2gÞ

Gðus=3ÞGðusÞ1F1ðus; 4us=3; 2gÞ ;

ð17Þ
where G is Euler’s Gamma function and 1F1 is a hyper-
geometric function.

The expression above leads immediately to a maxi-
mum-likelihood method for estimating g and us in the
unfolded case. Note, however, that in contrast to the
original PRF method, this model describes a steady state
of the frequency distribution of preferred relative to
unpreferred nucleotides, rather than derived vs. ances-
tral nucleotides. This is a very different sort of steady
state, a point to which we return in more detail below.
Since this model refers only to the preferred and
unpreferred states at each site, it makes sense to apply
to unfolded data only if we assume that the ancestral
state is preferred. In a sample of n sequences each of
length L, we count the number of sites at which i
disfavored nucleotides are sampled, yi, for 0 # i # n.
Since all sites are assumed independent, each with the
polymorphism frequency distribution described above,
the likelihood of the data given the parameters is

Luðus; gÞ ¼ L!Q
n
i¼0 yi !

Yn
i¼0

F ðiÞyi : ð18Þ

For any set of polymorphism data, it is straightforward to
maximize this function numerically, producing ML
estimates of us and g. As with the per-site PRF method,
this procedure involves a two-dimensional maximiza-
tion routine. Simulated data and fits confirm that this
method produces accurate and unbiased estimates of
mutation rate and selection strength (data not shown).

When we do not know which nucleotide is preferred
at each site, which will be typical in most microbial
applications, we must use the ‘‘folded’’ version of the
data. This presents difficulties. Imagine a site with an (a,
b, c, d) polymorphism configuration. We might naively
suppose that since any of the four nucleotides could be
the preferred one, the probability of these data is simply
F(b 1 c 1 d) 1 F(a 1 c 1 d) 1 F(a 1 b 1 d) 1 F(a 1 b 1 c).
However, this is not the case. For example, if a is indeed
the preferred nucleotide, then F(b 1 c 1 d) does not
equal the probability that the three disfavored nucleo-
tides will form a (b, c, d) configuration. Rather, it equals
the sum of the probabilities that the three disfavored
nucleotides will form a configuration (i, j, k), summed
over all i, j, k triplets that sum to b 1 c 1 d. This is a serious
problem, because the difference between F(b 1 c 1 d)
and the probability of the data depends on b 1 c 1 d,
and hence it is not identical for all four possible pre-
ferred nucleotides. Simply assuming that the most common
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nucleotide is the preferred one (Hartl et al. 1994) is a
reasonable approach. But this approach will be in-
accurate for sites where the most common nucleotide
is not overwhelmingly so; when this situation describes a
substantial fraction of sites, the method will fail. As a
result, the one-dimensional diffusion framework does
not allow for a rigorous ML estimate of parameters with
folded data.

To perform rigorous ML fits to folded frequency data
we must turn to a three-dimensional diffusion method.

The three-dimensional diffusion model: Rather than
considering all disfavored nucleotides as a single class,
we can instead keep track of the evolutionary dynamics
of all four possible nucleotides at a site. To do so, we
assume the standard four-allele Wright–Fisher dynam-
ics, with mutation at rate m=3 between any two particular
nucleotides, and selection acting with strength s against
the three disfavored nucleotides. The dynamics can
then be described by a three-dimensional diffusion
equation for the joint distribution of the frequencies
of the three disfavored alleles x1, x2, and x3, f(x1, x2, x3, t)
(where the preferred allele has frequency x0 ¼ 1 � x1 �
x2 � x3). We have

@

@t
f ðx1; x2; x3; tÞ

¼ 1

2

X3

i¼1

X3

j¼1

@2

@xi@xj
Vij 3 f
� �

�
X3

i¼1

@

@xi
Mi 3 f½ �; ð19Þ

where

Mi ¼ ð1 1 sÞxi 1�
X3

j¼1

xj

 !
1

mð1� 4xiÞ
3

ð20Þ

Vii ¼
xið1� xiÞ

N
ð21Þ

Vij ¼ �
xixj

N
; ði 6¼ jÞ: ð22Þ

This is a somewhat less well-known diffusion equation
(Wright 1949; Watterson 1977); the steady-state
solution is

f ðx1; x2; x3Þ ¼ C ½x1x2x3ð1� x1 � x2 � x3Þ�ze2gðx11x21x3Þ;

ð23Þ

where C is a normalization factor, and we have defined
z ¼ us/3 � 1.

Given the frequencies x0, x1, x2, and x3 of nucleotides
in the population, the probability of sampling a site in
an unordered configuration (n0, n1, n2, n3) in a sample of
n individuals (adopting the convention that the first
nucleotide listed is the preferred one) is just the
multinomial probability

n!

n0!n1!n2!n3!
ð1� x1 � x2 � x3Þn0 xn1

1 xn2
2 xn3

3 : ð24Þ

Averaging over f, we therefore find that the probability
of sampling a site in an unordered (n0, n1, n2, n3)
configuration is

Pn0;n1;n2;n3 ¼ C
n!

n0!n1!n2!n3!

ð1

0

ð1�x1

0

ð1�x1�x2

0
ð25Þ

3 e2gðx11x21x3Þxz1n1
1 xz1n2

2 xz1n3
3 ½1� x1 � x2 � x3�z1n0

3 dx3dx2dx1:

ð26Þ

If we have unfolded data and wish to assume that the
ancestral state is preferred, we can use unfolded ML
inference. In this case, the probability of finding a site in
an ordered unfolded configuration (a, b, c, d) (where by
convention a is the number of individuals that have the
preferred nucleotide and b $ c $ d) is

Pu
a;b;c;d ¼

X
fn0;n1;n2;n3g

Pn0;n1;n2;n3 ; ð27Þ

where the sum is over all unordered configurations (n0,
n1, n2, n3) that give rise to the ordered unfolded
configuration (a, b, c, d).

If on the other hand we do not have a reliable
outgroup (or choose to ignore the information from
an outgroup on the ancestral state), we can use folded
ML inference. Here, the probability of sampling a site in
the ordered configuration (a, b, c, d) is just the sum of
the probabilities assuming that each of the four possible
nucleotides is preferred. As before, we adopt the
convention that ordered folded configurations are
written as (a, b, c, d) with a $ b $ c $ d. The probability
of a folded configuration P f

a;b;c;d is then

P f
a;b;c;d ¼

X
fn0;n1;n2;n3g

Pn0;n1;n2;n3 ; ð28Þ

where in this case the sum is over all unordered
configurations that give rise to the ordered folded
configuration (a, b, c, d).

For either folded or unfolded data, given n samples
of a sequence L sites long, with ya,b,c,d sites in an (a, b, c, d)
polymorphism configuration, the likelihood of the
data is

Lðus; gÞ ¼ L!Q
ya;b;c;d !

Y
½Pa;b;c;d �ya;b;c;d ; ð29Þ

where the products are taken over all possible config-
urations (a, b, c, d) and Pa,b,c,d is the folded or unfolded
probability defined above. We can numerically maxi-
mize this function to find the ML estimates of us and g.
We have implemented a computer program to perform
this maximization; it is freely available on request.

Variable selection pressures across sites: Both the
original PRF method and the per-site methods we have
proposed in this article assume that all sites experience
the same selective pressure. In reality, we expect that
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there is some distribution of selective pressures across
sites. Hartl et al. (1994) suggest that in this case the ML
estimate of g from their PRF method reflects a weighted
average selection pressure across the sites, but the
nature of this weighting is not well understood. Almost
no weight is given to sites at which jgj?1, because these
sites will likely be monomorphic and hence ignored by
the original PRF method. It is unclear how sites with
different values of g of order 1 will be weighted or how
the presence of some effectively neutral sites (jgj>1)
will change the ML estimate. Piganeau and Eyre-
Walker (2003), Nielsen et al. (2005), and (Boyko

et al. 2008) have addressed these questions by introduc-
ing procedures that allow for inference of some aspects
of the distribution of selective coefficients across sites
within the PRF framework. In this section we describe a
similar generalization in our models.

The issue of variable g across sites is of particular
concern for the methods we have proposed, because
these methods make use of the monomorphism data. If
some number Ll of sites are effectively lethal (i.e., have
jgj?1), these sites will all be monomorphic, which will
tend to depress our ML estimate of us and increase our
estimate of jgj. Fortunately, our methods are able to use
the monomorphism data to investigate the number of
lethal sites, Ll, or more generally the full distribution of
selection pressures across sites.

Since all of the methods we have proposed are
defined at a per-site level, it is straightforward to assume
that there are multiple different classes of sites with
different values of g. We can posit that there are k classes
of sites. Each class is represented by Lj of L total sites and
has its own value of g, which we call gj. The probability
that a site is in an (a, b, c, d) configuration is then

Pa;b;c;d ¼
Xk

j¼1

Lj

L
P

j
a;b;c;dðgj ; usÞ; ð30Þ

where P
j

a;b;c;d (gj, us) is the probability that a site with
parameters gj and us is in the configuration (a, b, c, d).
This expression is correct for both the per-site PRF and
the diffusion approaches.

Given our new definition of Pa,b,c,d, we can construct
the folded or unfolded likelihood of the overall poly-
morphism data set in exactly the same way as before.
This likelihood function now depends on 2k 1 1
parameters: us, the gj, and the Lj. We can find ML
estimates of all of these parameters, using a multidi-
mensional numerical maximization of the likelihood
function. By choosing k, we determine the resolution at
which we measure the distribution of values of g across
sites. Naturally, the larger the k we choose, and hence the
greater the resolution on g, the more data we require to
obtain accurate estimates of the individual Lj and gj.

Rather than estimating both the Lj and the gj, we
could instead posit that there are several classes of
mutations with different prespecified gj and estimate only

the values of Lj. In other words, we ask what fraction of
sites have different values of selective constraints. We
describe here one particularly important example of a
hybrid between these two procedures, with two classes of
sites (k ¼ 2). Rather than fitting an ML estimate of g to
both classes, we assume that one class of sites is unable to
evolve: mutations at these sites are lethal (more pre-
cisely, they have jgj?1). We wish to calculate the
number of lethal sites and the average selective pressure
on the remaining, nonlethal sites. Thus we have three
parameters: the mutation rate us, the number of lethal
sites L2, and the strength of selection g acting at the
other L1 ¼ L � L2 sites. The probability that a site is
monomorphic is given by

Pmono ¼
L2

L
1

L1

L
P 1

mono: ð31Þ

Here P 1
mono is the probability that a site with strength of

selection g and mutation rate us will be monomorphic,
as defined by either the per-site PRF or the per-site
diffusion approach (whichever method we are using).
The probability that a site is in a nonmonomorphic (a, b,
c, d) configuration is

Pa;b;c;d ¼
L1

L
P 1

a;b;c;d : ð32Þ

Now we can write the likelihood of the data in the usual
way. This results in a three-dimensional ML problem.
However, we can simplify the problem by first maximiz-
ing L2 given g and u. We find that the ML estimate of L2

is

L̂2 ¼
Lmono � LP 1

mono

1� P 1
mono

; ð33Þ

where Lmono is the number of monomorphic sites in the
data and P 1

mono is the probability a nonlethal (i.e., an L1)
site is monomorphic. Substituting this value for L2, we
are left with a two-dimensional maximization problem
in g and us, similar to the original situation.

It is worth exploring how this procedure for estimat-
ing the number of lethal sites utilizes the data. It turns
out that this procedure is equivalent to ignoring the
monomorphism data when finding the maximum-likeli-
hood estimates of g and us for the nonlethal sites. The
likelihood of the data ignoring monomorphic sites is

Lðus; gÞ ¼ yp !Q
ya;b;c;d

Y P 1
a;b;c;d

1� P 1
mono

" #ya;b;c;d

; ð34Þ

where yp is the total number of nonmonomorphic sites
and the products are over all configurations of non-
monomorphic sites. After finding ML estimates of g and
u from this monomorphism-ignoring likelihood func-
tion, the procedure then calculates the number of
monomorphic sites that would be expected given g

and us. This is L1P 1
mono ¼ ðL � L2ÞP 1

mono. We then
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estimate the number of lethal sites L2 as the difference
between the observed number of monomorphic sites
Lmono and the number that would be predicted if all
sites were of the L1 variety, L̂2 ¼ Lmono � ðL � L̂2ÞP 1

mono.
Rearranging this expression, we see that it is identical to
Equation 33 above. And indeed, plugging Equations
31–33 into Equation 30 yields Equation 34.

Thus, this procedure ignores the monomorphism
data when calculating g and us (at the nonlethal sites),
and it instead uses the monomorphism data to infer one
aspect of the distribution of g across sites—specifically,
the number of lethal sites. Since the original PRF
method also ignores monomorphism data, we obtain
this information on the distribution of g for ‘‘free,’’
relative to the power of the original method, simply by
shifting to the per-site model. If desired, we can also
posit that there are a number of sites L3 that are
effectively neutral (i.e., with jgj>1) and estimate L3.
This would devote some part of the data describing
polymorphisms at intermediate frequencies to estimat-
ing L3. From this procedure we could estimate the
number of effectively lethal sites, the number of
effectively neutral ones, and the ‘‘weighted average’’
selection pressure acting on the remaining sites. If more
resolution is desired, and enough data are available, we
can increase the number of classes of sites and obtain
ML estimates of the numbers of sites in each class and
the selection pressure acting on each class.

METHODS

Simulations and fits: We used Wright–Fisher simu-
lations to test the inferential accuracy of the PRF
method as well as the accuracy of our two alternative
methods. The Wright–Fisher model (or, more precisely,
its diffusion limit) forms the basis of the PRF method,
and it is therefore the appropriate simulation frame-
work for testing the method.

All simulations assumed a constant population of N¼
1000 haploid individuals. Each of L ¼ 1000 sites, sim-
ulated independently, could assume one of four states: a,
c, t, or g. One state is assigned fitness 1, and the other
three states fitness 1 1 s (where s , 0). Mutations oc-
curred at rate m per site. The allele frequencies evolved
according to the standard Wright–Fisher Markov chain
(Ewens 2004). Each simulation was run for at least 10/m

generations, to ensure relaxation to steady state. At the
end of the simulation, n ¼ 14 individuals were sampled
from the population and the polymorphism frequency
spectrum was recorded. We chose to consider samples of
size n ¼ 14 to facilitate comparison with Hartl et al.
(1994). This choice does affect the relative accuracy of
the techniques; the finite-sites biases in the PRF method
increase with n (see results). We have focused our fits
on the case of folded frequency spectra, which will
typically be the only reliable type of polymorphism data
available when us is large.

We performed simulations over a wide range of
parameter values relevant to viruses and microbes. We
considered five different values of us: 0.05, 0.1, 0.5, 1.0,
5.0. For each value of us, we performed one simulation at
each of 17 different values of g, ranging from g¼�10.0
to g ¼ �0.1. For each set of simulation parameters (g,
us), once the simulated folded polymorphism data had
been generated, ML parameter estimates ðĝ; ûsÞ were
obtained by numerical maximization of the likelihood
function, as specified by the original PRF model, the
per-site PRF model, or the three-dimensional diffusion
model. This maximization can be difficult in the diffu-
sion case (see below). A 95% confidence interval for g

was constructed according to Bustamante et al. (2001):
the interval includes those values of g within 0:5x2

1;0:95

log-likelihood units from ĝ (note these confidence in-
tervals rely on the assumption of no linkage; see
discussion). The estimated parameters shown in Fig-
ure 1 are somewhat ‘‘jagged,’’ because the inference
methods have been applied to a single draw of n ¼ 14
sequences for each set of simulation parameters, as
opposed to averaging over many such draws. Figure 1
also shows fits obtained from inference techniques
applied to data generated under the infinite-sites model
at us ¼ 0.01 (i.e., deviates drawn from a Poisson
distribution with mean given by Equation 1).

As discussed above, the original PRF model disallows
multiple mutant lineages at a site. Therefore, when a site
sampled from the simulated data exhibited more than
two types of segregating nucleotides, the frequencies of
all unpreferred nucleotides were summed to represent
the frequency of the ‘‘mutant’’ type for the purposes of
fitting using the original PRF model, as suggested by
Hartl et al. (1994). When fitting folded data using the
PRF method, the most common nucleotide was as-
sumed to be the ancestral type, as suggested by Hartl

et al. (1994). This approach is not entirely accurate, as
discussed above, but it is probably the best option
available within the original PRF framework.

Numerical maximization procedure: In practice, the
ML estimation procedure for the diffusion model is
difficult to implement, because of the triple integral in
the definition of Pn0;n1;n2;n3

(as well as that implicit in the
definition of the normalization constant C). This in-
tegral cannot be solved exactly, and it is difficult to
evaluate numerically because the integrand may diverge
(though the integral itself converges) near the bound-
ary of the simplex over which it is integrated. We
adopt a hybrid method to simplify the evaluation of this
triple integral. Near the boundary of the simplex, we
Taylor expand the integrand and integrate it analyti-
cally. Away from the boundary, the integrand is well
behaved and standard numerical integration has no
difficulties.

This approach is most easily achieved by making the
substitutions y ¼ x3/(1 � x1 � x2) and z ¼ x2/(1 � x1).
On doing so, we can rewrite the integral as
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Pn0;n1;n2;n3 ¼ C
n!

n0!n1!n2!n3!

ð1

0

ð1

0

ð1

0

3 exp½2gðx 1 y 1 z � xy � zy � xz 1 xyzÞ�
3 xn11zzn21zyn31z

3 ð1�xÞn01n21n313z12ð1�zÞn01n312z11ð1�yÞn01z:

ð35Þ

This expression is much easier to handle than our
original expression, because the three integrals can be
done in arbitrary order. We divide each of the three
integrals into three pieces: one from 0 to d, one from d

to 1� d, and one from 1� d to 1. Thus the triple integral
is split into 27 total terms. For each of the integrals from
0 to d or 1 � d to 1, we Taylor expand the integrand in
the integration variable, and we solve the integral
analytically. All of the remaining integrals, from d to
1 � d, are done numerically. We must choose d large
enough that we can perform the numerical integrals
quickly, but not so large that the Taylor expansions used
for the analytical parts become invalid. For these Taylor
expansions, we need d>1=2g, d>1, d>1=ð3z 1 2Þ,
d>1=ð2z 1 1Þ, and d>1=z. For the computational
analysis described in this article, we choose whichever
of these conditions is most restrictive and set d to be one-
tenth of the most restrictive requirement. We find that
this choice of d is sufficiently small to provide accuracy
in the analytical parts of the integrals, but large enough
to enable quick numerical integration on the interior of
the simplex.

We have written a computer program implementing
this numerical integration and the resulting ML estima-
tion for the diffusion model. This program and the
simpler programs for ML estimation using the one-
dimensional diffusion model and the per-site PRF are
freely available on request.

RESULTS

Using data from the Wright–Fisher simulations de-
scribed above, we tested the inferential accuracy of the
original PRF method, our per-site PRF method, and the
three-dimensional diffusion method. Figure 1 com-
pares the accuracy of selection pressures estimated from
folded data using each of these three methods. For large
us, the original PRF method systematically underesti-
mates the strength of negative selection, by as much as a
factor of 10. In addition, the PRF method often
erroneously infers strong positive selection when in fact
mutants are under negative selection. These problems
are more severe when the mutation rate is large. The
smallest mutation rate at which such problems occur
(us ¼ 0.05) is four times smaller than the mutation rate
estimated for bacterial genes (Hartl et al. 1994). The
per-site version of the PRF method that we have de-
veloped improves upon the standard PRF method, but it

too exhibits systematic biases, especially when selection
is weak and the mutation rate large (Figure 1). The one-
dimensional diffusion method provides accurate and
unbiased estimates of g over the full range of selective
pressures and mutation rates (not shown). Like its one-
dimensional counterpart, the three-dimensional diffu-
sion method also provides accurate and unbiased
estimates over the full range of simulated parameters
(Figure 1). When selection is weak (i.e., jgj , 1),
however, the confidence intervals on diffusion-based
estimates of g are appreciably larger. This behavior
makes perfect sense: when selection is nearly neutral
and the ancestral state is unknown, the frequency
distribution does not exhibit sufficient skew to deduce
the preferred nucleotide. As a result, the diffusion-
based estimator cannot distinguish between weak pos-
itive and weak negative selection in the absence of
information on the preferred nucleotide. Thus, the
confidence intervals obtained under the folded diffu-
sion technique properly reflect our inability to estimate
the selection pressure precisely when selection is weak.

As shown in Figure 1, when selection is weakly
negative, the original PRF method erroneously infers
positive selection. This problem occurs in the parameter
regimes that have been estimated from biological data
from bacterial and viral populations. For example, on
the basis of n ¼ 14 sampled sequences each 367 sites
long, Hartl et al. (1994) estimated g ¼ �1.34 and us ¼
0.183 for silent sites in a bacterial gene. If we simulate
367 Wright–Fisher sites under these parameters and
sample n ¼ 14 sequences, we find that the most likely
parameters fitted using the original PRF method are
ðĝ; ûsÞ ¼ ð118:45; 0:067Þ. That is, in this example using
estimated microbial parameter values, the PRF method
is strongly biased.

Figure 2 shows the accuracy of estimated mutation
rates using the original PRF method, the per-site PRF
method, and the three-dimensional diffusion method.
The original PRF method systematically underestimates
the mutation rate. Estimates obtained using the per-site
PRF method are an improvement, but still exhibit some
biases. The diffusion-based method provides accurate
and unbiased estimates of the mutation rate, across the
full range of mutation rates and selection pressures
(Figure 2).

In addition to the simulations described above, we
also fitted data that had been generated under the
infinite-sites model at a small mutation rate, us ¼ 0.01
(Figure 1). In this case, we generated a sampled poly-
morphism frequency spectrum using Poisson deviates
with mean given by Equation 1, for n ¼ 14 samples of
L ¼ 10,000 sites. When applied to such data, inferences
based on the original PRF method must be unbiased.
Figure 1 shows that inferences based on the modified
per-site PRF method and the diffusion method are also
accurate and unbiased when applied to such data. Thus,
the new methods we have developed here perform as
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well as the original PRF method under the assumption
of infinite sites and at small mutation rates.

The methods we have developed in this article also
allow us to estimate the distribution of selection pres-
sures across sites. In one simple case discussed above, we
have presented a procedure for estimating the number
of lethal sites and the selective pressure operating on the
remaining, nonlethal sites in a gene. This procedure
involves estimating g and us on the basis of polymorphic
sites alone and thereafter estimating the proportion of
observed monomorphic sites that are lethal. To assess

the power and accuracy of this approach, Table 1 shows
the error in the predicted number of monomorphic
sites in each of our simulations, compared to the
number of monomorphic sites actually observed. Across
a large range of selective pressures and mutation rates,
this approach typically estimates the number of (non-
lethal) monomorphic sites within a few percent. As a
result, for a gene of length L ¼ 2000 sites, at one-half of
which mutations are strongly deleterious (jsj?1=N ),
our procedure will accurately predict the number of
lethal sites within a few percent, and it will accurately

Figure 1.—Maximum-likelihood estimates of selection pressures obtained under the PRF method, the modified (per-site) PRF
method, and the three-dimensional diffusion method. Selection pressures were estimated from the folded polymorphism fre-
quencies among n ¼ 14 sequences sampled from a simulated Wright–Fisher population. In each panel, the simulated selection
pressure g is shown on the x-axis and the estimated selection pressure ĝ on the y-axis. Dashed lines indicate 95% confidence
intervals around the ML estimates obtained from the x2-distribution (see methods). The line ĝ ¼ g is shown in red, and the line
ĝ ¼ 0 is shown in gray. The diffusion method and, to a lesser extent, the modified PRF method correct the biases inherent in the
original PRF method. When selection is weakly negative, the diffusion method cannot reject positive selection on the basis of
folded data, as indicated by the lack of the upper confidence interval for some of the fits. The simulated data in the top panels,
u ¼ 0.01, were generated according to the infinite-sites model (see methods).
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predict the selection pressure on the remaining, non-
strongly deleterious sites.

All of the simulation results that we have presented
thus far have been for the case n¼ 14. This choice affects
the relative accuracy of the methods. As n increases, the
probability of seeing a high-frequency polymorphism
within the sample depends more strongly on the
probability that a site has a high-frequency polymor-
phism in the population, f(x) for large x. This is precisely
the part of frequency distribution that is artificially
suppressed by the infinite-sites assumption of the PRF
method. Thus, as the sample size increases the biases in
the PRF method should become more severe. We have
tested this expectation by sampling n ¼ 100 simulated
Wright–Fisher sequences. In the case of us ¼ 0.1, for
example, when fitting unfolded polymorphism fre-
quency spectra measured relative to the (known)
ancestral state at each site, the PRF method always
rejects the true value of g in favor of a weaker or even
positive selection coefficient, throughout the range g 2
[�10, �0.5]. Inferential biases associated with large
sample sizes and mutation rates will become increas-
ingly important as the availability of sequence data
improves—in metagenomic surveys of microbial pop-
ulations, for example.

DISCUSSION

The Poisson random field model (Sawyer and
Hartl 1992) and the associated likelihood procedure

for estimating parameters (Hartl et al. 1994) are
perfectly valid when the assumptions underlying the
method are met—namely, infinite sites, free recombi-
nation, and constant selective pressure across sites.
Moreover, the assumption of infinite sites is perfectly
reasonable for most eukaryotic populations. It will hold
whenever N m ln½1=jsj�>1; as we have seen, a rough rule
of thumb is that this tends to be true when us , 0.05. We
have shown, however, that when the mutation rate is
relatively large the PRF method can lead to incorrect
inferences. In practice, such concerns arise when
studying populations of viruses, microbes, and those
eukaryotes that experience large mutation rates (us .

0.05). We have developed two new methods that relax or
remove the infinite-sites assumption. These new meth-
ods also extend the types of inferences that can be
drawn from polymorphism data to include inferences
on the distribution of selective pressures across sites.

It may seem surprising that the infinite-sites approx-
imation can lead to substantial errors in the mutation
rates and selective strengths inferred by the PRF
method. After all, sites at which multiple mutant
lineages are sampled are presumably very rare (e.g.,
Hartl et al. 1994). Yet despite their rarity, these sites
have a large impact on maximum-likelihood estimation
of g. Because g enters the likelihood function in the
factor e 2gx, changing g has a much larger impact on the
likelihood of sites with many mutant nucleotides than
those with few. In other words, a single site with a high
frequency of mutant nucleotides is very strong evidence
for positive selection or low jgj, whereas a site with a low
frequency of mutant nucleotides is not very strong
evidence for the opposite. Thus even a few sites at

Figure 2.—Maximum-likelihood estimates of the mutation
rate, us ¼ 2Nm, obtained under the PRF method (blue), the
modified (per-site) PRF method (green), and the diffusion
methods (red). Mutation rates were estimated from the
folded polymorphism frequencies among n ¼ 14 sequences
sampled from a simulated Wright–Fisher population. The
simulated mutation rate us is shown on the x-axis and the es-
timated mutation rate ûs on the y-axis. The line ûs¼ us is
shown in black. For each value of us, simulations and fits
are shown for 17 different values of g, ranging from g ¼
�10.0 to g ¼ �0.1. The PRF method systematically underes-
timates the mutation rate, especially when selection is weak.
The diffusion method provides accurate and unbiased esti-
mates of the mutation rate across the full range of parameters.

TABLE 1

Accuracy of the estimated number of monomorphic sites

Actual us Average error (%) Median error (%)

0.05 7.6 7.8
0.1 3.3 1.8
0.5 2.3 1.1
1.0 1.4 0.5
5.0 0.1 0.1

Accuracy of estimates for the expected number of mono-
morphic sites. We calculated maximum-likelihood estimates
of g and us using the one-dimensional diffusion method ap-
plied to unfolded simulated data excluding monomorphic
sites. From these values, we calculated the expected number
of monomorphic sites. Shown are the differences between the
observed and the expected number of monomorphic sites (in
a simulated gene of length L ¼ 1000 sites). For each value of
us, we show both the average and the median differences in
numbers of monomorphic sites, across simulations with g
ranging from �0.1 to �10. These results imply that we can
accurately estimate the number of sites that are monomor-
phic due to drift. Thus, if a gene contains a similar or larger
number of lethal sites, we can also estimate the number of
such lethal sites to within the above accuracy.
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which multiple mutant lineages are sampled can cause
large inaccuracies in the inferred g when they are
incorrectly assumed by the original PRF method to be
the result of a single high-frequency mutant lineage.
These inaccuracies in g then force corresponding
inaccuracies in the inferred us.

Previous simulation studies have not observed these
problems with the PRF method (Bustamante et al.
2001). However, such simulations themselves implicitly
assumed infinite sites, and hence they cannot be used to
test this aspect of the PRF method (to be fair, these
simulations were done with typical eukaryotic popula-
tions in mind, where these problems are much less
severe). In this article, by contrast, we have simulated a
finite number of sites that evolve according to the
Wright–Fisher model.

The role of linkage: While our focus has been on the
infinite-sites approximation, both the original PRF and
all of our methods make another key assumption: that
each site is independent of all the others (i.e., free
recombination). This is essentially an assumption of
linkage equilibrium between all polymorphic sites. This
potentially crucial assumption is likely to be violated in
many real populations, particularly when the method is
applied to estimate selective pressure on short stretches
of DNA (e.g., a single gene) that are linked over long
timescales. This is problematic for both the original PRF
and our methods, but it may be particularly relevant in
populations in which finite-sites issues are important,
because recombination is presumably less common in
bacteria than in eukaryotes and because higher us

implies a higher density of polymorphic sites, and hence
tighter linkage. Ideally, we would address this assump-
tion using theory that allows us to infer the strength of
selection acting on a large number of sites with an
arbitrary degree of linkage. However, this is a formida-
ble challenge, and no such theory yet exists.

Despite this, models that assume free recombination
are still useful for several reasons. First, when selection
pressures are weak, sites segregate over long timescales,
so recombination may be frequent enough even among
intragenic sites (or in bacterial genomes) that segregat-
ing sites are unlinked over these timescales. Since both
PRF and diffusion-type methods are primarily useful
at estimating selection pressures when they are of order
1/N, the selection pressures our methods can resolve
get smaller as us increases. Thus while populations with
large us may tend to have lower recombination rates
among polymorphic sites, the polymorphic sites we are
sensitive to segregate over longer timescales, and re-
combination has longer to act. Whether this means that
linkage can be neglected in any particular population is
an empirical question, but fortunately it is usually
straightforward to estimate linkage disequilibria directly
from the data. Thus in any particular case we can
estimate whether or not the assumption of free re-
combination is valid for the purposes of the original PRF

or our modified methods, before applying either
approach. When there is no linkage disequilibrium in
the data, we can use our methods with confidence.
When on the other hand it appears from the data that
free recombination is not a reasonable assumption, a
model that assumes no linkage may still be useful as a
null model and a limiting case, and it can be compared
with more complicated possibilities.

Finally, it is important to note that linkage between
segregating sites will not bias estimates of the selection
pressure g, provided g is equal across sites (Akashi and
Schaeffer 1997; Bustamante et al. 2001). Rather, the
primary effect of linkage is to increase the variance in
such estimates above the predictions of our method
(Bustamante et al. 2001). Thus while the predictions of
our models (or the original PRF) will tend to have smaller
confidence intervals than they should, the estimated
values of g and us should not be systematically biased. It is
important to note, however, that when linkage is im-
portant we must be cautious about testing hypotheses
using these methods; underestimates of the confidence
intervals could, for example, lead us to erroneously re-
ject a neutral null. Further, when selection pressures vary
significantly across sites, the mean parameter estimates
themselves could be biased; this more complex situation
remains an important topic for future exploration.

Comparison between the PRF and diffusion meth-
ods: Our per-site version of the PRF model relaxes some
aspects of the infinite-sites approximation, but it still as-
sumes the mutant lineages do not interact. The diffusion
approach removes the infinite-sites approximation alto-
gether. Thus, the diffusion approach contains none of
the biases associated with infinite-sites approximation
associated with the traditional PRF and, to a lesser
degree, the per-site PRF.

The diffusion method is also easily extendable to
more complex evolutionary situations. For example, we
can explore different selective costs for different nucleo-
tides, or more than one preferred nucleotide. These
possibilities lead to obvious modifications of the diffu-
sion equations and their solutions and hence to the
maximum-likelihood estimation. Mutational biases are
more difficult to explore, as no simple steady-state solu-
tion to the three-dimensional diffusion equation exists
for biased mutation rates, but computational results can
still be obtained. It is also straightforward to investigate
balancing selection or the effects of dominance: these
lead to well-understood modifications to the diffusion
equations and their steady-state solutions (Ewens 2004).
In the PRF framework, by contrast, such generalizations
are much more complex. In particular, balancing selec-
tion is impossible to analyze within the PRF framework,
because it leads to mutant lineages reaching stable
intermediate frequencies in the population. As a result,
the generation of new mutations is not balanced by the
extinction or fixation of older ones, and hence no
steady-state distribution of lineage frequencies exists.
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The methods we have developed also allow us to relax
the assumption of constant g across sites and instead
infer aspects of the distribution of selection pressures
(Piganeau and Eyre-Walker 2003, Nielsen et al. 2005,
and Boyko et al. 2008 have recently analyzed similar
extensions of the original PRF method). It is not yet
clear how much data is required to provide adequate
power for inferring this distribution to a given resolu-
tion. However, we can hope to gain a great deal of
insight with only a few additional parameters—say, the
number of sites that are neutral, lethal, and negatively
selected and the weighted average selection pressure on
the latter class. As we have shown, we can estimate the
number of lethal sites with no reduction in power
relative to the original PRF method, so this proposal
would involve only one additional parameter. Addi-
tional classes of sites would involve more parameters.
Eyre-Walker and Keightley (2007) have recently
stressed that the distribution of fitness effects of
deleterious mutations is likely to be complex and
multimodal. Using our approach, we can choose how
to focus the power in the data to investigate the aspects
of this complex distribution that are most interesting in
a given situation. The appropriate choice of resolution
will depend on the context and quality of the data.

However, the diffusion approach is not without draw-
backs. The one-dimensional version does not make use
of all of the data available in the observed polymor-
phism spectrum and is likely to be of little use in practice
because we typically do not know whether or not
the ancestral nucleotide was preferred. The three-
dimensional version uses all the data in the folded case,
but cannot make use of outgroup data (the unfolded
case). In practice, when we do not have an outgroup, the
three-dimensional diffusion method provides the most
accurate estimates of selection pressures across the full
range of parameters. When an outgroup is available, the
three-dimensional diffusion approach is still sometimes
more accurate than the PRF, despite wasting informa-
tion on the ancestral state, but only in parameter
regimes typical of bacteria or viruses. In other cases
the per-site PRF method is best.

The diffusion method also cannot naturally handle
positive selection. The steady-state evolutionary dynam-
ics at a site are always dominated by the preferred
nucleotide (or nucleotides), with negative selection
acting against polymorphisms for the disfavored nucleo-
tides. At the level of an individual site, positive selection
is a process that is intrinsically out of steady state: the
spread of a favorable nucleotide before it becomes
fixed. The PRF method handles positive selection by
implicitly positing rather strange dynamics at individual
sites. All mutant lineages are assumed to be positively
selected—so if a mutant nucleotide fixes at a given site,
mutations back to the ancestral nucleotide are again
assumed to be positively selected (the analogous strange
dynamics also apply to negative selection). While this

assumption makes little sense at a per-site level, it allows
the PRF model to obtain a steady state across sites,
provided positive selection is ongoing and not satu-
rated. We could modify our diffusion methods to mimic
the PRF treatment of positive selection by changing the
boundary conditions in our diffusion equations. Specif-
ically, we would assume that probability flowing into x¼
1 (i.e., fixation of a mutant nucleotide) is absorbed and
moved to x ¼ 0 (i.e., ‘‘reset’’ so that new mutations will
again be favored). This diffusion equation can be solved
exactly, and the solution used as a basis for inferring
positive selection using the the per-site diffusion meth-
ods we have developed.

Ideally, however, we want to infer positive selection in
the context of a realistic and well-defined model of the
dynamics at individual sites. Such an approach would
necessarily involve full time-dependent solutions to the
diffusion equations; Mustonen and Lassig (2007)
suggest a method along these lines. We do not pursue
this approach here, but see Chen et al. (2007) for a step in
this direction. Regardless of the methodology, it will
always be difficult to discriminate positive selection from
negative selection on the basis of the polymorphism
frequency spectrum alone, particularly when only folded
data are available. Whether selection is positive or
negative, mutant lineages drift nearly neutrally when
their frequency is between 0 and 1/jgj. Positively selected
lineages then fix relatively quickly once their frequency
becomes substantially larger than 1/jgj, while negatively
selected lineages rarely ever reach frequencies larger
than 1/jgj. Thus from the point of view of the poly-
morphism frequency spectrum, positive selection is
similar to random drift on [0, 1/jgj], with the upper
bound a roughly absorbing boundary condition. Nega-
tive selection, on the otherhand, is also similar to random
drift on [0, 1/jgj], but with the upper bound a roughly
reflecting boundary condition. Although this is relatively
crude—selection does in fact have some impact on low-
frequency lineages, and the boundary conditions are not
exactly absorbing or reflecting—it indicates that the
polymorphism frequency spectrum is roughly similar
for negative and positive selection at the same jgj. Thus
power to distinguish positive from negative selection
based on the polymorphism frequency spectrum, espe-
cially with folded data, will always be relatively limited,
regardless of the method used.

Different steady states: The PRF framework and the
diffusion methods are based on fundamentally different
steady states. The PRF assumes an ancestral state; the
steady-state frequency distribution is that of derived
nucleotides relative to this ancestral state. By contrast,
the diffusion methods assume mutation back and forth
between all possible nucleotides at each site. The steady-
state frequency distribution is a full mutation-selection-
drift balance of all four nucleotides at the site. It has
‘‘forgotten’’ the ancestral state, and it is obtained over a
longer timescale than the PRF steady state.
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The differences in the nature of the two steady states
are most readily apparent when considering their
behavior for small us. This is easiest to see by comparing
the PRF steady state to the one-dimensional diffusion
result (assuming as usual that one nucleotide is pre-
ferred and the other three are unpreferred). For small
us, the population will typically be fixed for one of the
four nucleotides. Occasionally mutations will occur,
making the site temporarily polymorphic within the
population. Usually these mutant lineages will drift at
low frequency for a short while before going extinct, but
occasionally they will fix and the population will be fixed
for this new nucleotide. The PRF steady state describes
the (transient) frequency spectrum of these occasional
mutant lineages before they fix or go extinct. This
spectrum is always measured relative to the ancestral
nucleotide, which is the last mutation that fixed. On
the other hand, the diffusion method describes the
longer-term steady-state frequency distribution of the
nucleotides. This includes some weight near x ¼ 0
(the preferred nucleotide is fixed, or nearly so), as well
as some weight near x ¼ 1 (one of the unpreferred
nucleotides is fixed, or nearly so). Because of the
selective bias, the population will be fixed or nearly
fixed for the preferred nucleotide a fraction 1=ð1 1 3e2gÞ
of the time (Ewens 2004), so 1=ð1 1 3e2gÞ of the total
weight is in the part of the distribution near x ¼ 0. The
remainder of the time, the population will be fixed or
nearly fixed for one of the unpreferred nucleotides; this
is the weight in the distribution near x ¼ 1.

The discussion above helps to elucidate the relation-
ship between the steady states in the PRF model vs. those
in the diffusion model. A fraction 1=ð1 1 3e2gÞ of the
time the most recent fixation will have been for the
preferred state. This is the ancestral state for the PRF
method, and the frequency spectrum of the occasional
unpreferred negatively selected mutants is given by the
PRF steady state. The remainder of the time the most
recent fixation will have been for one of the unpre-
ferred states. Now this is the ancestral state for the PRF
method, and the frequency spectrum of occasional
mutants for the preferred nucleotide, which are under
positive selection, is again given by the PRF steady state,
but with the opposite sign of g. Thus we expect that the
diffusion method steady state is just the sum of these two
PRF steady states, weighted by the frequency with which
each type of nucleotide is the ancestral state, namely

f diffðg; xÞ � pðgÞf PRFðg; xÞ1 ½1� pðgÞ�f PRFð�g; 1� xÞ;

where p(g) denotes the chance that the most recent
fixation was for the preferred state. This relationship
between the two steady states is illustrated in Figure 3. It
holds in the limit of small us. For larger us, the
population is not always nearly fixed for one state.
Mutant lineages occur more frequently and can segre-
gate simultaneously (i.e., finite-sites effects). Since the
diffusion approach accounts for this while the PRF does

not, the relationship between the steady states breaks
down.

The difference between the diffusion and PRF steady
states points to one additional bias in the PRF method
that we have not yet discussed. Imagine a stretch of
sequence that has been under constant purifying
selection for an extremely long time. As we have just
seen, we expect that at a fraction 3e2g=ð1 1 3e2gÞ of the
sites in this sequence, the most recent ancestor will be
an unpreferred state. The PRF frequency spectrum at
these sites will be characteristic of positive selection
(mutations to the preferred nucleotides are beneficial).
Although this will typically represent a minority of the
sites, the PRF method weights sites under positive
selection more strongly than those under negative
selection when inferring a weighted average g. Thus,
the PRF method will be biased toward inferring positive
selection—despite the fact the sequence has experi-
enced negative selection for an arbitrarily long time.
This effect is present even for small us, and it is most
severe when selection is weak but nonzero.

Whether this effect represents a bias in the PRF
method is a matter of taste. In some sense, the PRF is

Figure 3.—Relationship between the PRF and diffusion
frequency spectra for small us. Shown at the top is the one-di-
mensional diffusion frequency spectrum for us ¼ 10�3, g ¼
�0.5. Most of the time the population is fixed or nearly fixed
for the preferred nucleotide (this is the weight near x ¼ 0),
while sometimes the population is fixed or nearly fixed for
an unpreferred nucleotide (the weight near x ¼ 1). When
the population is nearly fixed for the preferred (unpreferred)
nucleotide, mutations produce a PRF site frequency spectrum
(SFS) as shown on the left (right) of the bottom graph. For
this small value of us, the diffusion frequency spectrum is
roughly equal to the sum of these PRF frequency spectra.
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correctly identifying sites under positive selection: after
all, the mutations to the preferred nucleotides are in
fact beneficial. In another sense, however, the sequence
has experienced constant purifying selection through-
out its past. The fact that occasionally an unpreferred
nucleotide fixes before reverting to the preferred state
does not reflect any change in selection pressures. Thus,
if we define positive selection as a pressure to innovate,
or a shift in the selective landscape, then such a
reversion does not reflect positive selection. We have
explored this effect through simulation and found that
in microbial parameter regimes it is a detectable but
minor effect and is much less important in practice than
the other biases we have studied. However, it would be
straightforward to modify either the original or the per-
site PRF method to correct for this (the diffusion
methods already account for this effect). We simply
change the expected spectrum to reflect the fact that a
fraction 1=ð1 1 3e2gÞ of sites will exhibit the spectrum
characteristic of negative selection while a fraction
3e2g=ð1 1 3e2gÞ will exhibit that characteristic of positive
selection (with equal but opposite g). This leads to a
simple modification of the PRF spectrum, with no
added parameters, which we can use for ML estimation
as before.

Different timescales: Because the PRF frequency
spectrum is measured relative to the last fixed state, it
reaches steady state in at most of order N generations,
the coalescent timescale. The diffusion method takes
longer to reach steady state—in the neutral case,
mutations fix every 1/m generations, so it takes of order
1=m generations to reach steady state. When selection is
operating, the diffusion steady state can arise either
more quickly or more slowly, depending on the initial
state of the population. Note that the ratio of the PRF to
the diffusion timescale is of order us. Thus for the small
us relevant for most eukaryotic populations, there is a
big gap between the two timescales, while for the larger
us relevant to bacteria and viruses the two timescales will
be more similar.

These two timescales determine whether the pres-
ence of information from an outgroup is likely to
improve our inferential power. Imagine we sample
polymorphism from some population A and one se-
quence from an outgroup species. If the outgroup
diverged from the population A less than N generations
ago, population A has not reached the PRF steady state
in the time since the divergence. Thus the frequency
spectrum of population A is not independent from the
frequency spectrum in the outgroup. The outgroup
does not provide much more information than simply
sampling another individual from population A
(though it does provide some additional information).
This situation has recently been analyzed in the neutral
case by Chen et al. (2007) and applied to human
polymorphism data using a Neanderthal outgroup.

If instead the outgroup diverged from population
A more than N but less than 1/m generations ago, it can
be used to infer the most recent ancestral state. Since
the time of this ancestor, the PRF frequency spectrum
will have reached equilibrium, and it can be used to
estimate parameters accounting for this knowledge
(though finite-sites issues can still matter when us is
large, and diffusion methods may be more accurate
despite the information from the outgroup). But the
closer the time since the outgroup diverged is to 1/m

generations, the more unreliable the inference of the
ancestral state becomes, and ancestral state misidentifi-
cation becomes more of a problem. This problem and
possible ways to account for it have recently been
examined by Hernandez et al. (2007).

If the outgroup diverged more than 1/m generations
ago, the population will have forgotten the ancestral
state since divergence, and the outgroup will not be
useful. Of course, in this case we would probably not
even be able to align the outgroup sequence to the
sequences from population A. In this case, only the
folded frequency data are available, and the diffusion
methods are most appropriate.
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APPENDIX: ALGORITHM TO COMPUTE THE
LIKELIHOOD EXPRESSIONS UNDER

THE PER-SITE PRF

To implement an inference procedure based on our
per-site version of the PRF model we need to compute
likelihood expressions for any possible unfolded con-
figuration of nucleotides, an example of which is shown
in Equation 10.

Our algorithm starts by initializing the expressions
associated with each configuration to zero. We loop over
all partitions of the sample size n written as the sum of
nonzero integers, n ¼ n1 1 n2 1 . . . 1 nz 1 nw. In this
partition, numbers n1 through nz represent the number
of samples of distinct mutant lineages, and nw repre-
sents the number of samples with the ancestral state.
The sum of all such sample numbers equals the total
sample size, n. Such a sample will correspond to a
particular folded configuration (a, b, c, d) that depends
upon the identity of the mutant nucleotides associated
with the z mutant lineages. There are 3z distinct possible
assignments of mutant nucleotide types to the mutant
lineages. We loop over each of these possible assign-
ments, and for each we add a term of the form

ð1=3Þz F ð1Þn1

n1!
3

F ð2Þn2

n2!
� � � F ðnzÞnz

nz!

to the likelihood expression for the folded configura-
tion (a, b, c, d) that arises from the assignment of
nucleotide types. After looping over all possible num-
bers of mutant lineages and over all possible assign-
ments of mutant nucleotide types to such lineages, we
obtain complete expressions for the likelihoods of all
unfolded configurations.

To compute likelihood expressions for folded con-
figurations, we perform the exact same algorithm as
above with a small modification. In this case, once we
have assigned nucleotide types to each of the z mutant
lineages, we determine the associated folded configu-
ration by simply sorting the number of lineages (in-
cluding the wild type) of each mutant nucleotide type in
descending order.

A computer implementation of this algorithm, for
either folded or unfolded likelihood expressions, is
freely available upon request.
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