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ABSTRACT Positive selection distorts the structure of genealogies and hence alters patterns of genetic variation within a population.
Most analyses of these distortions focus on the signatures of hitchhiking due to hard or soft selective sweeps at a single genetic locus.
However, in linked regions of rapidly adapting genomes, multiple beneficial mutations at different loci can segregate simultaneously
within the population, an effect known as clonal interference. This leads to a subtle interplay between hitchhiking and interference
effects, which leads to a unique signature of rapid adaptation on genetic variation both at the selected sites and at linked neutral loci.
Here, we introduce an effective coalescent theory (a “fitness-class coalescent”) that describes how positive selection at many perfectly
linked sites alters the structure of genealogies. We use this theory to calculate several simple statistics describing genetic variation
within a rapidly adapting population and to implement efficient backward-time coalescent simulations, which can be used to predict
how clonal interference alters the expected patterns of molecular evolution.

BENEFICIAL mutations drive long-term evolutionary adap-
tation, and despite their rarity they can dramatically alter

the patterns of genetic diversity at linked sites. Extensive work
has been devoted to characterizing these signatures in patterns
of molecular evolution and using them to infer which muta-
tions have driven past adaptation.

When beneficial mutations are rare and selection is strong,
adaptation progresses via a series of selective sweeps. A single
new beneficial mutation occurs in a single genetic back-
ground and increases rapidly in frequency toward fixation.
This is known as a “hard” selective sweep, and it purges
genetic variation at linked sites and shortens coalescence
times near the selected locus (Maynard-Smith and Haigh
1974). Most statistical methods used to detect signals of
adaptation in genomic scans are based on looking for sig-
natures of these hard sweeps (Sabeti et al. 2006; Nielsen
et al. 2007; Akey 2009; Novembre and Di Rienzo 2009;
Pritchard et al. 2010).

Hard selective sweeps are the primary mode of adaptation
in small- to moderate-sized populations in which beneficial
mutations are sufficiently rare. However, in larger populations
where beneficial mutations occur more frequently, many
different mutant lineages can segregate simultaneously in
the population. If the loci involved are sufficiently distant
that recombination occurs frequently enough between them,
their fates are independent and adaptation will proceed via
independent hard sweeps at each locus. However, in largely
asexual organisms such as microbes and viruses, and on shorter
distance scales within sexual genomes, selective sweeps at
linked loci can overlap and interfere with one another. This is
referred to as clonal interference, or Hill–Robertson interfer-
ence in sexual organisms (Hill and Robertson 1966; Gerrish
and Lenski 1998). These interference effects can dramatically
change both the evolutionary dynamics of adaptation and the
signatures of positive selection in patterns of molecular evo-
lution. We illustrate them schematically in Figure 1.

We and others have characterized the evolutionary dy-
namics by which a population accumulates beneficial muta-
tions in the presence of clonal interference (Gerrish and Lenski
1998; Ridgway et al. 1998; Rouzine et al. 2003; Desai and
Fisher 2007; Hallatschek 2011; Good et al. 2012). Many
recent experiments in a variety of different systems have
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confirmed that these interference effects are important in a
wide range of laboratory populations of microbes and viruses
(de Visser et al. 1999; Miralles et al. 1999; Bollback and Huel-
senbeck 2007; Desai et al. 2007; Kao and Sherlock 2008).
These theoretical and experimental developments have re-
cently been reviewed by Park et al. (2010) and Sniegowski
and Gerrish (2010).

Although this earlier theoretical work has provided a de-
tailed characterization of evolutionary dynamics in the pres-
ence of clonal interference, it does not make any predictions
about the patterns of genetic variation within an adapting
population. In this article, we address this question of how
clonal interference alters the structure of genealogies, and how
this affects patterns of molecular evolution both at the sites
underlying adaptation and at linked neutral sites. Our work is
related to earlier analysis of the same situation by Kim and
Stephan (2003), who described the effects of multiple over-
lapping selective sweeps on fixation rates of beneficial muta-
tions and some aspects of the variation at linked neutral sites,
building on earlier models of recurrent hitchhiking (Kaplan
et al. 1989; Wiehe and Stephan 1993). We consider here
a more general description of how clonal interference alters
the structure of genealogies, which can be used to predict the
distribution of any statistic describing genetic variation both at
positively selected and linked neutral sites. This has become
particularly relevant in light of recent advances that now make
it possible to sequence individuals and pooled population sam-
ples from microbial adaptation experiments (Gresham et al.
2008; Kao and Sherlock 2008; Barrick and Lenski 2009; Bar-
rick et al. 2009).

We note that much recent work in molecular evolution
and statistical genetics has analyzed related scenarios where
adaptation involves multiple mutations, motivated by recent
theoretical work (Orr and Betancourt 2001; Ralph and Coop
2010) and empirical data from Drosophila (Sella et al. 2009)

and humans (Coop et al. 2009; Hernandez et al. 2011) that
suggests that simple hard sweeps may be rare. This includes
most notably analysis of the effects of “soft sweeps,” where
recurrent beneficial mutations occur at a single locus, or selec-
tion acts on standing variation at this locus (Hermisson and
Pennings 2005; Pennings and Hermisson 2006a,b). Soft
sweeps drive multiple genetic backgrounds to moderate fre-
quencies, leaving several deeper coalescence events and hence
a weaker signature of reduced variation in the neighborhood of
the selected locus than a hard sweep (Przeworski et al. 2005).

In contrast to the situation we analyze here, both hard and
soft sweeps refer to the action of selection at a single locus.
We consider instead a case more analogous to models in
quantitative genetics, where selection acts on a large number
of loci that all affect fitness. In other words, our analysis of
clonal interference can be thought of as a description of
polygenic adaptation, where selection favors the individuals
who have beneficial alleles at multiple loci. Recent work has
argued for the potential importance of polygenic adaptation
from standing genetic variation (Pritchard and Di Rienzo
2010; Pritchard et al. 2010), loosely analogous to the case
where soft sweeps act at many loci simultaneously (Chevin
and Hospital 2008; Hancock et al. 2010). Our analysis in this
article, by contrast, describes polygenic adaptation via multi-
ple new mutations of similar effect at many loci, where each
locus has a low enough mutation rate that it would undergo
a hard sweep in the absence of the other loci.

As with hard and soft sweeps, the signatures of this form of
adaptation on nearby genomic regions are determined by
how it alters the structure and timing of coalescence events.
In this article, we therefore focus on computing how clonal
interference alters the structure of genealogies. This involves
two basic effects. On the one hand, mutations at the many
loci occur and segregate simultaneously, interfering with each
others’ fixation. This preserves some deeper coalescence
events, as in a soft sweep. On the other hand, since the muta-
tions occur at different sites, multiple beneficial mutations
can also occur in the same genetic background and hitchhike
together. This tends to shorten coalescence times, making the
signature of adaptation somewhat more like a “hard sweep.”
Together, these effects lead to unique patterns of genetic di-
versity characteristic of clonal interference.

Our analysis of these effects is based on the fitness-class
coalescent we previously used to describe the effects of
purifying selection on the structure of genealogies (Walczak
et al. 2012). This in turn is closely related to the structured
coalescent model of Hudson and Kaplan (1994). We begin in
the next section by describing our model and summarize our
earlier analysis of the rate and dynamics of adaptation in the
presence of clonal interference, which describes the distribu-
tion of fitnesses within the population (Desai and Fisher 2007).
We then show how one can trace the ancestry of individuals
as they “move” between different fitness classes via mutations
(our fitness-class coalescent approach). We compute the prob-
ability that any set of individuals coalesce when they are
within the same fitness class. This leads to a description of

Figure 1 Schematic of the evolutionary dynamics of adaptation. (A) A
small population adapts via a sequence of selective sweeps. (B) In a large
rapidly adapting population, multiple beneficial mutations segregate con-
currently. Some of these mutant lineages interfere with each others’ fixa-
tion, while others hitchhike together. Figure is adapted from Desai and
Fisher (2007).
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the probability of any possible genealogical relationship be-
tween a sample of individuals from the population. Finally,
we show how the distortions in genealogical structure caused
by clonal interference alter the distributions of simple statis-
tics describing genetic variation at the selected loci as well as
linked neutral loci. We also use our approach to implement
coalescent simulations analogous to those previously used to
describe the action of purifying selection (Gordo et al. 2002;
Seger et al. 2010), based on the structured coalescent method
of Hudson and Kaplan (1994). These coalescent simulations
can be used to analyze in detail how this form of selection
alters the structure of genealogies.

Our results provide a theoretical framework for understand-
ing the patterns of genetic diversity within rapidly evolving
experimental microbial populations. Our analysis may also have
relevance for understanding how pervasive positive selection
alters patterns of molecular evolution more generally, but we
emphasize that our work here focuses entirely on asexual
populations or on diversity within a short genomic region that
remains perfectly linked over the relevant time scales. In the
opposite case of strong recombination, adaptation will prog-
ress via independent hard selective sweeps at each selected
locus. Further work is required to understand the effects of
intermediate levels of recombination, where the approach
recently introduced by Neher et al. (2010)may provide a useful
starting point.

Model and Evolutionary Dynamics

Model

We consider a finite haploid asexual population of constant
size N, in which a large number of beneficial mutations are
available, each of which increases fitness by the same
amount s. We define Ub as the total mutation rate to these
mutations. We neglect deleterious mutations and beneficial
mutations with other selective advantages. We have previ-
ously shown that the dynamics in rapidly adapting popula-
tions are dominated by beneficial mutations of a specific
fitness effect (Desai and Fisher 2007; Fogle et al. 2008;
Good et al. 2012), so this model is a useful starting point,
but we return to discuss these assumptions further in the
Discussion. We also assume that there is no epistasis for
fitness, so the fitness of an individual with k beneficial muta-
tions is wk=(1+s)k � 1 + sk. This is the same model of
adaptation we have previously considered (Desai and Fisher
2007) and is largely equivalent to models used in most re-
lated theoretical work on clonal interference (Rouzine et al.
2008, 2003; Park et al. 2010). We later also consider linked
neutral sites with total mutation rate Un, but for now we
focus on the structure of genealogies and neglect neutral
mutations.

To analyze expected patterns of genetic variation, we
must also make specific assumptions about how mutations
occur at particular sites. We consider a perfectly linked
genomic region that has a total of B loci at which beneficial
mutations can occur. We assume that these mutations occur

at rate m per locus, for a total beneficial mutation rate Ub =
mB. We later take the infinite-sites limit, B/N, while keep-
ing the overall beneficial mutation rate Ub constant. Each
mutation is assumed to confer the same fitness advantage s,
where s � 1. We also assume throughout that selection is
strong compared to mutations, s � Ub, which allows us to
use our earlier results in Desai and Fisher (2007) as a basis
for our analysis. Analysis of the opposite case where s , Ub

remains an important topic for future work, which could be
based on alternative models of the dynamics such as the
approach of Hallatschek (2011). Although our model is de-
fined for haploids, our analysis also applies to diploid pop-
ulations provided that there is no dominance (i.e., being
homozygous for the beneficial mutation carries twice the
fitness benefit as being heterozygous).

This model is the simplest framework that captures the
effects of positive selection on a large number of independent
loci of similar effect. However, the dynamics of adaptation in
this model can be complex. Beginning from a population with
no mutations at the selected loci, there is first a transient
phase while variation at these loci initially increases. There
is then a steady-state phase during which the population
continuously adapts toward higher fitness. Finally, adaptation
will eventually slow down as the population approaches
a well-adapted state. In this article, we focus on the second
phase of rapid and continuous adaptation, which has been
the primary focus of previous work by us and others (Desai
and Fisher 2007; Rouzine et al. 2008; Park et al. 2010; Hal-
latschek 2011). Our goal is to understand how this continu-
ous rapid adaptation alters the structure of genealogies and
hence patterns of genetic variation. We begin in the next
subsection by summarizing the relevant aspects of our earlier
results for the distribution of fitness within the population.

The distribution of fitness within the population

In our model in which all beneficial mutations confer the
same advantage, s, the distribution of fitnesses within the
population can be characterized by the fraction of the pop-
ulation, uk, that has k beneficial mutations more or less than
the population average. We refer to this as “fitness-class k.”

When N and Ub are small, it is unlikely that a second ben-
eficial mutation will occur while another is segregating. Hence
adaptation proceeds by a succession of selective sweeps. In
this regime, beneficial mutations destined to survive drift arise
at rate NUbs and then fix in 1

sln½Ns� generations. Thus adapta-
tion will occur by successive sweeps provided that

NUb � 1
ln½Ns�: (1)

When this condition is met, the population is almost always
clonal or nearly clonal except during brief periods while
a selective sweep is occurring. Thus we will have u0 = 1 and
uk = 0 for k 6¼ 0.

In larger populations, however, new mutations continu-
ously arise before the older mutants fix. Thus the population
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maintains some variation in fitness even while it adapts. The
distribution of fitnesses within the population is determined
by the balance between two effects. On the one hand, new
mutations arise at the high-fitness “nose” of this distribution,
generating new mutants more fit than any other individuals
in the population. This increases the variation in fitness in
the population. (While new mutations occur throughout the
fitness distribution, the mutations essential to maintaining
variation are those that arise at the nose and generate new
most-fit individuals.) On the other hand, selection destroys
less-fit variants, increasing the mean fitness and decreasing
the variation in fitness within the population. This is illus-
trated in Figure 2.

We showed in previous work that this balance between
mutation and selection leads to a constant steady-state
distribution of fitnesses within the population, measured
relative to the current (and constantly increasing) mean
fitness (Desai and Fisher 2007). In this steady-state distri-
bution, the fraction of individuals with k beneficial muta-
tions relative to the current mean in the population is
approximately

fk ¼ f−k ¼ Ce2
Pk

i¼1
is�t
; (2)

where �t is defined below and C is an overall normalization
constant that will not matter for our purposes. Note that the
distribution uk is approximately Gaussian.

This distribution uk is cut off above some finite maximum
k, which corresponds to the nose of the distribution, the
most-fit class of individuals. We define the lead of the fitness
distribution, qs, as the difference between the mean fitness
and the fitness of these most-fit individuals (so q is the
maximum value of k; the most-fit individuals have q more
beneficial mutations than the average individual). In Desai
and Fisher (2007), we showed that

q ¼ 2 ln½Ns�
ln½s=Ub�

: (3)

This is illustrated in Figure 2.
Above we have implicitly defined �t to be the “establish-

ment time,” the average time it takes for new mutations to
establish a new class at the nose of the distribution,

�t ¼ ln2½s=Ub�
2s ln½Ns� : (4)

As we see below, the characteristic time scale for coalescent
properties turns out to be the time for the fitness class at the
nose to become the dominant population—i.e., for the mean
fitness to increase by the lead of the fitness distribution. This
takes q establishment times, so that the this “nose-to-mean”
time is

tnm � q�t � lnðs=UbÞ
s

; (5)

which is roughly independent of the population size for
sufficiently large N. We note that no single mutant sweeps to
fixation in this time: rather, a whole set of mutants compris-
ing a new fitness class at the nose comes to dominate the
population a time tnm later.

The Fitness-Class Coalescent Approach

We now wish to understand the patterns of genetic variation
within a rapidly adapting population in the clonal interfer-
ence regime. To do so, we use a fitness-class coalescent method
in which we trace how sampled individuals descended from
individuals in less-fit classes, moving between classes by
mutation events. In each fitness class there is some proba-
bility of coalescence events. To calculate these coalescence

Figure 2 Schematic of the evolution of large asexual pop-
ulations, from Desai and Fisher (2007). The fitness distri-
bution within a population is shown on a logarithmic
scale. (A) The population is initially clonal. Beneficial muta-
tions of effect s create a subpopulation at fitness s, which
drifts randomly until it reaches a size of order 1

s, after
which it behaves deterministically. (B) This subpopulation
generates mutations at fitness 2s. Meanwhile, the mean
fitness of the population increases, so the initial clone
begins to decline. (C) A steady state is established. In the
time it takes for new mutations to arise, the less fit clones
die out and the population moves rightward while main-
taining an approximately constant lead from peak to nose,
qs (here q = 5). The inset shows the leading nose of the
population. Figure is reproduced from Desai and Fisher
(2007).
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probabilities, we must first understand the clonal structure
within each fitness class: this we now consider.

Clonal structure

Each fitness class is first created when a new beneficial
mutation occurs in the current most-fit class, creating a new
most-fit class at the nose of the fitness distribution (see inset
of Figure 2). This new clonal mutant lineage fluctuates in size
due to the effects of genetic drift and selection before it even-
tually either goes extinct or establishes (i.e., reaches a large
enough size that drift becomes negligible). After establishing,
the lineage begins to grow almost deterministically. Concur-
rently additional mutations occur at the nose of the distribu-
tion, also founding new mutant lineages within this most-fit
class. This process is illustrated in Figure 3A.

We wish to understand the frequency distribution of these
new clonal lineages, each founded by a different beneficial
mutation. In our infinite-sites model, each such lineage is
genetically unique. We can gain an intuitive understanding of
this frequency distribution with a simple heuristic argument.
After it establishes, the size of the current most-fit class,
nq21(t), grows approximately deterministically according to
the formula

nq21ðtÞ ¼ 1
qs

eðq21Þst; (6)

as we described in Desai and Fisher (2007). New mutations
occur in individuals in this class at rate Ubnq21(t), creating
even more-fit individuals. Each new mutation has a proba-
bility qs of escaping genetic drift to form a new established
mutant lineage. Thus the ℓth established mutant lineage at
the nose on average occurs at roughly the time tℓ that satisfiesðtℓ

0
qsUbnq21ðtÞdt ¼ ℓ: (7)

Solving this for tℓ and then noting that the size, nℓ, of the ℓth
established lineage will be proportional to eqsðt2tℓÞ, we im-
mediately find

nℓ
n1

� 1
ℓ1þ1=ðq21Þ: (8)

This provides a rough qualitative estimate of the typical
frequency distribution of clonal lineages within this fitness
class at the nose, each lineage founded by a single new
mutation.

The analysis above describes the clonal structure created
as a new fitness class is formed, advancing the nose. After
approximately �t generations, the mean fitness of the popu-
lation will have increased by s, and the growth rates of all
the fitness classes we have described will decrease corre-
spondingly. Thus we can strictly use only the calculations
above up to some finite number of mutations, ℓmax, after
which all growth rates will have decreased due to the ad-
vance of the mean fitness of the population. Mutations will

continue to occur after this time, but their frequency distri-
bution will be slightly different. Fortunately, in the strong
selection regime we consider (s � Ub), the total contribu-
tion of all mutations after this point to the total size of the
class is small compared to the contributions of the mutations
that occur while this class is at the nose (Desai and Fisher
2007; Brunet et al. 2008b). These studies have also shown
that these later-occurring mutations almost never fix. Thus
the ancestries of most samples of individuals will not include
any such mutations, and they will not strongly affect gene-
alogical structure or accumulate in the long term. We there-
fore neglect this cutoff to the number of mutations that
occur at the nose, as well as the contribution of later muta-
tions. This approximation will break down for very large
samples. However, the errors it introduces can be shown
to be relatively small even when considering quantities such
as the time to the most recent common ancestor of the
whole population. We note, however, that whenever Ub is
greater than or of order s, we expect this approximation to
break down and beneficial mutations that occur slightly
away from the nose to become important.

Another important aspect of the dynamics that simplifies
the behavior is that despite the changing growth rate of the
fitness class as a whole, the frequencies of the established

Figure 3 Schematic of the establishment and fate of clonal lineages in
a given fitness class, shown for a case where q = 3. (A) Three new clonal
lineages (denoted in different colors) are established at the nose of the
fitness distributions by three independent new mutations. These lineages
have relative frequencies determined by the timing of these mutations. (B)
After the population evolves for some time, the class that was at the nose
of the distribution in A is now at the mean fitness. The class is still
dominated by the three clonal lineages established while the class was
at the nose (subsequent mutations represent only a small correction).
These three clonal lineages have the same relative frequencies as when
they were established at the nose; these relative frequencies remain “fro-
zen” even as the population adapts.
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lineages within the class remain fixed. In other words, the
clonal structure within the class remains “frozen” after it
is initially created, rather than fluctuating with time (see
Figure 3B). As we show, this and the neglect of late-arising
mutations are good approximations in the regimes we con-
sider here.

While our heuristic analysis provides a good picture of the
typical frequency distribution of clonal lineages within each
fitness class, it misses a crucial effect. Occasionally a new
mutation at the nose will, by chance, occur anomalously early.
This single mutant lineage can then dominate its fitness class.
These events are quite rare, but when they do occur this single
lineage can purge a substantial fraction of the total genetic
diversity within the population. As we see, these events to-
gether with less-rare but still early mutations are essential to
understanding the structure of genealogies within the popu-
lation, as they lead to a substantial probability of “multiple
merger” coalescent events.

To capture these effects, we must carry out a more careful
stochastic analysis of the clonal structure within each fitness
class. As before, we focus on the clonal structure created
when that class was at the nose of the fitness distribution,
since it remains “frozen” thereafter. To do so, we note that the
population size at the nose can be written as

n ¼ �nðtÞ
X
i
niðtÞ; (9)

where �nðtÞ reflects the average growth of all clones due to
selection, and ni(t) reflects the stochastic effects of a clone
generated from mutations at site i (of B total possible sites).
At late enough times, the distribution of ni becomes time
independent, as shown previously (Desai and Fisher 2007).
This time-independent ni summarizes the combined effect of
all the stochastic dynamics of mutations at this site that are
relevant for the long-term dynamics. We showed that the
generating function of ni is

GiðzÞ ¼ he2znii ¼ exp
�
2

1
B
z121=q

�
¼ e2za=B ¼

�
12

za

B

�
;

(10)

where angle brackets denote expectation values, the last
equality follows for large B, and we have defined

a[12
1
q
: (11)

The total size of this fitness class is proportional to

s[
XB
i¼1

ni: (12)

This generating function Gi(z) for the size of the clonal lin-
eage founded at each possible site contains all of the rele-
vant information about the lineage frequency distribution,
including the stochastic effects described above. Below we

use it to calculate coalescence probabilities within our fitness-
class coalescent approach, which we now turn to.

Tracing genealogies

To calculate the structure of genealogies, we take a fitness-
class approach analogous to the one we used to analyze the
case of purifying selection (Walczak et al. 2012). We first
consider sampling several individuals from the population.
These individuals come from some set of fitness classes with
probabilities given by the frequencies of those fitness classes,
uk. We note that in the purifying selection case, fluctuations
in the uk due to genetic drift were a potential complication in
determining these sampling probabilities. Here, these fluctu-
ations are much less important provided that Ub/s � 1. We
note, however, that fluctuations in different uk are correlated
due to the stochasticity at the nose. Furthermore, averages of
uk are far larger than their median values due to rare fluctu-
ations. Such fluctuations, which we discuss in detail else-
where (Fisher 2013), may lead to some slight corrections to
our results. But for most purposes, the “typical” values of the
uk (i.e., the average uk excluding these rare fluctuations) are
what matters: thus we make the simple approximation that
the probability of sampling one individual from class k1 and
a second from class k2 is simply uk1uk2, with uk as given in
Equation 2. Analogous formulas apply for larger samples.

Each sampled individual comes from a specific fitness
class k and belongs to a specific clonal lineage within that
class. This clonal lineage was created when this fitness class
was at the nose of the distribution, approximately ðq2 kÞ�t
generations ago. It was created by a single new mutation in
an individual from what is now fitness class k21. That in-
dividual in turn belonged to some clonal lineage within class
k21, which in turn was created when that class was at the
nose by a new mutation in an individual from what is now
fitness class k22, and so on.

We now describe the probability of a genealogy relating
a sample of several individuals. Imagine, for simplicity, that
we sampled two individuals that both happened to be in the
same fitness class, k. If these individuals were from the same
clonal lineage within that class, then they are genetically iden-
tical at all the B positively selected sites. We say they coa-
lesced in class k. If these individuals were not from the same
clonal lineage within the class, then they both descended from
individuals, in what is now fitness class k21, that got distinct
beneficial mutations. If the individuals in which these muta-
tions occurred are from the same clonal lineage within class
k21, we say the sampled individuals coalesced in class k21.
If so, they differ at two of the B positively selected sites. If not,
they descended from individuals, in what is now fitness class
k22, that got distinct beneficial mutations, and so on. We can
apply similar logic to larger samples or when the individuals
were sampled from different fitness classes. We illustrate this
fitness-class coalescent process in Figure 4.

Given that a sample of individuals coalesced in some
lineage in fitness class k, it remains to determine when this
coalescence event (or events) occurred. To do so, we note
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that each lineage in class k was originally founded by a single
mutant individual approximately ðq2 kÞ�t generations ago. This
lineage then increased in frequency exponentially, so coales-
cence events between individuals within this lineage are char-
acteristic of a neutral coalescent in a rapidly expanding
population. Thus provided that the size of the sample is small
compared to the size of the population, all coalescence events
within the class are likely to occur very close to the time at
which the lineage was founded. Here, we make the simple
approximation that they occur precisely at the time when this
lineage was at the nose of the fitness distribution, ðq2 kÞ�t
generations ago. Provided that our usual assumption Ub/s � 1
holds, the typical variation in coalescence times within a class
will be small compared to �t, making this a good approximation.

We note that the probability a sample of individuals comes
from the same clonal lineage is the same in each fitness class,
since the clonal structure of the class was always determined
when that class was at the nose of the distribution (neverthe-
less, conditional on some individuals coalescing in a class, the
probability of additional coalescence events is substantially al-
tered; see below). In addition, the coalescence probabilities do
not depend onwhen themutations occurred in the ancestral line-
ages of each sampled individual, since all clonal lineages were
founded when a class was at the nose of the fitness distribution.
These are major simplifications compared to the case of purifying
selection, where the relative timings of mutations and the
differences in clonal structure in different classes are important
complications (Desai et al. 2012; Walczak et al. 2012).

To use the fitness-class coalescent approach to calculate
the probability of a given genealogical relationship among
a sample of individuals from the population, it remains only
to calculate the probabilities that arbitrary subsets of these
individuals coalesced within each fitness class. In the next
section, we use the above-described clonal structure to compute
these fitness-class coalescence probabilities.

Fitness-class coalescence probabilities

We begin our calculation of the fitness-class coalescence
probabilities by considering the probability that H individu-
als coalesce to 1 in a given class. We call this probability DH1.
This coalescence event will occur if and only if all H of these
individuals are members of the same clonal lineage. The prob-
ability an individual is sampled from a clone of size n is n/s,
so summing over all possible clones we have

DH1 ¼
*XB

i¼1

nHi
sH

+
(13)

with s[
P

ini. In the Appendix we use the expression for distri-
bution of n from Equation 10, and take the B/N limit, to find

DH1 ¼ GðH2aÞ
GðHÞGð12aÞ: (14)

We can use a similar approach to calculate the probabilities
of more complicated coalescence configurations. Consider
the general situation where H individuals coalesce into K in
a given fitness class, with h1 individuals coalescing into lin-
eage 1, h2 individuals coalescing into lineage 2, and so on,
up to hK individuals coalescing into lineage K (note thatPK

j¼1hj ¼ H). In the Appendix, we show that this probability,
CH;K;fhjg, is given by

CH;K;fhjg ¼ HaK21

K

YK
j¼1

G
�
hj2a

�
G
�
hj þ 1

�
Gð12aÞ: (15)

To compute any quantity that depends on genealogical topol-
ogies, it is important to know not just that H individuals coa-
lesced into K lineages, but that they did so in a specific
configuration {hj}. For example, if we have four individuals co-
alescing into two, this could occur by three of them coalescing
into one and the other lineage not coalescing, or alternatively by
two pairwise coalescence events. These different topologies af-
fect some aspects of molecular evolution such as the polymor-
phism frequency spectrum. To compute these quantities, we
must work with the full coalescence probabilities in Equation 15.

However, the specific coalescence configurations do not
affect non-topology-related quantities such as the total branch
length, time to most recent ancestor, or any statistics that de-
pend on these quantities (e.g., the total number of segregating
sites Sn). To compute the statistics of these aspects of genealo-
gies, we need to know onlyH and K. Thus it is useful to sum the
probabilities of all possible configurations {hj} that lead to a par-
ticular K. We call this total probability of H individuals coalesc-
ing to K lineages DHK. We have

Figure 4 Schematic of the fitness-class coalescent process. The distribu-
tion of fitnesses within the population is shown (here for a case where the
nose is ahead of the mean by q = 6 beneficial mutations). Clonal lineages
founded by individual beneficial mutations are shown in different colors
within each fitness class. Three individuals (A, B, and C) were sampled
from the population, from classes k = 3, k = 2, and k = 1, respectively. The
ancestors of individuals A and B descended from individuals in the silver
lineage in fitness class k = 0, and this individual shared a common an-
cestor with individual C in the gray lineage in class k = 23. Individuals A
and B differ by five beneficial mutations, while individual C differs by
seven beneficial mutations from the common ancestor of B and C. Indi-
viduals A and B coalesce when the silver lineage in class k = 0 was
originally created, which occurred when this class was at the nose of
the fitness distribution, TAB ¼ 6�t generations ago. Individuals A, B, and
C last shared a common ancestor when the gray lineage in class k = 23
was originally created when this class was at the nose of the fitness
distribution, TMRCA ¼ 9�t generations ago.
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DHK ¼
X
fhjg

CH;K;fhjg; (16)

where the sum over the {hj} is constrained to values such
that

PK
j¼1hj ¼ H.

To compute DKH, we first make the definition

fðH;KÞ ¼
X
fhjg

YK
j¼1

aG
�
hj2a

�
G
�
hj þ 1

�
Gð12aÞ (17)

and note that

DHK ¼ H
Ka

f ðH;KÞ: (18)

We can define the generating function for f(H, K),

Rf ðzÞ[
XN
H¼0

fðH;KÞzH: (19)

In the Appendix, we show that

Rf ðzÞ ¼ ½12ð12zÞa�K : (20)

This means that we can compute f(H, K) using a simple
contour integral,

fðH;KÞ ¼ 1
2pi

ð
dz

zHþ1½12ð12zÞa�K ; (21)

where the integral is taken circling the origin. Alternatively,
we can compute f(H, K) for arbitrary H and K by noting that

f ðH;KÞ ¼ 1
H!

dH

dzH
Rf ðzÞ

����
z¼0

(22)

and substitute this into Equation 18 to compute DHK. To give
a few examples, we find

D21 ¼ 1
q
; (23)

D31 ¼ 1
2q

�
1þ 1

q

�
; (24)

D32 ¼ 3
2q

�
12

1
q

�
: (25)

Taking more derivatives, we can easily make a table of f(H,
K) and evaluate any arbitrary DHK. We note that in the large
H limit, one can directly obtain f(H, K) using saddlepoint
evaluation of the contour integral defined above.

Note that the case of rapid adaptation, for which clonal
interference is pervasive, corresponds to the case where q is
reasonably large (conversely q =1 corresponds to sequential
selective sweeps, and our analysis does not apply in this
limit). In the large-q regime, D21 is small. In neutral coales-

cent theory, the probability of a three-way coalescence event
would then be even smaller: D31 � D2

21. However, this is not
the case here: the probability that three lineages coalesce is
of the same order as the probability that two lineages co-
alesce, D31 � D21, so “multiple-merger” coalescence events
are not uncommon. This is a signature of the fact that occa-
sionally a fitness class is dominated by a single large clone,
as described above. When this happens, that clone domi-
nates the structure of genealogies, as any ancestral lineages
we trace through the fitness distribution are very likely to
have originated from this single large lineage, and hence
coalesce within this fitness class. Although these anoma-
lously large clones are rare, they are sufficiently common
that they are responsible for a significant fraction of the total
coalescence events, and they are responsible for tendency of
genealogies to take on a more “star-like” shape.

Genealogies and Patterns of Genetic Variation

From the results above for the probabilities of all possible
coalescence events in each fitness class, we can calculate the
probability of any genealogy relating an arbitrary set of
sampled individuals. From these genealogies, we can in turn
calculate the probability distribution of any statistic describ-
ing the expected patterns of genetic diversity in the sample.

We begin by neglecting neutral mutations and calculating
the structure of genealogies in fitness-class space. That is,
we consider individuals sampled from some set of fitness
classes. We trace their ancestries backward in time as they
“advance” from one fitness class to the next, via mutational
events, and calculate the probability that they coalesce in
a particular set of earlier-established classes. Since each step
in the fitness-class coalescent tree corresponds to a beneficial
mutation, this immediately gives us the pattern of genetic
diversity at the positively selected sites. We later consider
how these fitness-class genealogies correspond to genealo-
gies in real time and use this to derive the expected patterns
of diversity at linked neutral sites.

The distribution of heterozygosity at positively
selected sites

We first describe the simplest possible case, a sample of two
individuals. If we sample two individuals at random from
the population, the first comes from class k1 and the second
from class k2 with probability uk1uk2. If these two individuals
coalesce in class ℓ, their total pairwise heterozygosity at pos-
itively selected sites, pb, will be (k1 2 ℓ) + (k2 2 ℓ) = k1 +
k2 2 2ℓ.

We can now calculate the average pb given k1 and k2 by
noting that D

pb
k1;k2

E
¼ jk22 k1j þ

D
pb
k;k

E
: (26)

By conditioning on whether two individuals sampled from
class k coalesce within that class (in which case they have
pb = 0), we have
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D
pb
k;k

E
¼ 0D21 þ ð12D21Þ

hD
pb
k;k

E
þ 2
i
; (27)

which implies

D
pb
k;k

E
¼ 2ð12D21Þ

D21
: (28)

Plugging this into the above, we find

D
pb
k1;k2

E
¼ jk22 k1j þ 2ð12D21Þ

D21
: (29)

We can now average this over k1 and k2 to find the overall
average. Since we saw in Equation 2 that k1 and k2 are
approximately normally distributed with variance 1=ðs�tÞ,
their average absolute difference is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=ðs�tpÞp

. Thus we have

D
pb
k1;k2

E
¼

ffiffiffiffiffiffiffiffi
4
ps�t

r
þ 2ð12D21Þ

D21
: (30)

Note that for large q, the second term (corresponding to
heterozygosity between individuals sampled from the same
class) is approximately 2q, while the first term is approxi-
mately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q=p  logðs=UbÞ

p
, which is smaller by a factor of

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p  logðNsÞp

. This suggests that a rough qualitative ap-
proximation is to assume that all individuals are sampled
from the mean fitness class. However, we note that even
for very large Ns the factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p  logðNsÞp

will never be
tiny, so although this crude approximation is useful for
building qualitative intuition, it cannot be relied on for good
quantitative accuracy.

We can use a similar approach to compute the full
probability distribution of pb. We have

P


pb
k;k ¼ g

�
¼ D21dg;0 þ ð12D21ÞP



pb
k;k ¼ g2 2

�
; (31)

which implies that

P


pb
k;k ¼ g

�
¼
�
D21ð12D21Þg=2 for g even
0 for g odd:

(32)

We can then write the more general result

P


pb
k1;k2 ¼ g

�
¼ D21dg;k12k2 þ ð12D21ÞP



pb
k1;k2 ¼ g22

�
;

(33)

from which we find

Pðpb
k1;k2 ¼ gÞ

¼

8>>>><
>>>>:

D21ð12D21Þ
g2ðk12k2Þ

2
for 

g2 ðk1 2 k2Þ
2

 even

and g$ k1 2 k2
0 otherwise:

(34)

If desired, we can now average these results over the dis-
tributions of k1 and k2 to get the unconditional distribution of
pb. In Figure 5, A and B, we illustrate these theoretical pre-
dictions for the overall distribution of pairwise heterozygosity
with the results of full forward-time Wright–Fisher simula-
tions, for two representative parameter combinations. We
see that the distribution of heterozygosity has a nonzero peak
and that the agreement with simulations is generally good.

We emphasize that our results for P(pb) describe the
ensemble distribution of heterozygosity. That is, if we picked
a single pair of individuals from each of many independent
populations, this is the distribution of pb one would expect
to see. It is not the population distribution: if we were to
pick many pairs of individuals from the same population, the
pb of these pairs would not be independent because much of
the coalescence within individual populations occurs in rare
classes that are dominated by a single lineage for which D21

is much higher than its average value. Thus if we measured
the average pb within each population by taking many sam-
ples from it, the distribution of this pb across populations
would be different from the distribution computed above.
To understand these within-population correlations, we now
consider the genealogies of larger samples.

Statistics in larger samples

We can compute the average and distribution of statistics
describing larger samples in an analogous fashion to the pair
samples. For example, consider the total number of segre-
gating positively selected sites among a sample of three
individuals, which we call S3b. These three individuals are
sampled (in order) from classes k1, k2, and k3, respectively,
with probability uk1uk2uk3. For three individuals sampled
from the same fitness class k, by conditioning on the coales-
cence possibilities within class k we find that the average
total number of segregating positively selected sites is

hSkkki ¼ 0D31 þ D32

h
2þ

D
pb
k;k

Ei
þ D33½3þ hSkkki�: (35)

Solving this for hSkkki, we find

hSkkki ¼
2D32=D21 þ 3D33

D31 þ D32
: (36)

More generally we have



Sk1k2k2

� ¼ ð12D21Þk22k1 ½2ðk22 k1Þ þ hSkkki�
þ Pk22k121

i¼0
D21ð12D21Þi

h
k2 2 k1 þ pb

k;k þ i
i
;

(37)

and even more generally we have



Sk1k2k3

� ¼ k3 2 k2 þ


Sk1k2k2

�
: (38)

If desired, we can average these over the distribution of k1, k2,
and k3 using the properties of differences of Gaussian random
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variables, as above. Alternatively, as in samples of size two, in
large populations we can make the rough approximation that
all sampled individuals come from the mean fitness class. Anal-
ogous calculations can be used to find the average number of
segregating positively selected sites in still larger samples.

In Figure 6 we illustrate some of these predictions (in
practice generated from coalescent simulations; see below)
for samples of size 2, 3, and 10, and compare these to the
results of forward-time Wright–Fisher simulations. We note
that the agreement is generally good.

We can apply similar thinking to describe the distribution
of the total number of segregating selected sites. First consider
this distribution for a sample of size 3, all of which happen to
be sampled from the same fitness class k, Skkk. We have

PðSkkk ¼ gÞ ¼ D31dg;0 þ D32P


pb
k;k ¼ g22

�
þ D33PðSkkk ¼ g2 3Þ:

(39)

We can multiply by zg and sum over g to pass to generating
functions, U3ðzÞ[

P
zgPðSkkk ¼ gÞ. This yields

U3ðzÞ ¼ D31 þ D32z2U2ðzÞ þ D33z3U3ðzÞ; (40)

which we can solve to find

U3ðzÞ ¼ D31 þ z2D32U2ðzÞ
12D33z3

: (41)

More generally, we have that the total number of seg-
regating sites among a sample of H individuals all chosen
from the same fitness class k, which we call SH, has the
distribution

PðSH ¼ gÞ ¼ DH1dg;0 þ DH2PðS2 ¼ g22Þ
þ DH3PðS3 ¼ g2 3Þ þ . . .DHHPðSH ¼ g2HÞ:

(42)

We can again pass to generating functions, giving

UHðzÞ ¼ DH1 þ DH2z2U2ðzÞ þ DH3z3U3 þ . . . ; (43)

which we can easily solve to give

UHðzÞ ¼ DH1 þ
PH21

ℓ¼2 zℓDHℓUℓðzÞ
12DHHzH

: (44)

Figure 5 The distribution of pairwise heterozygosity. (A) Comparison of our theoretical predictions for the distribution of pairwise heterozygosity at
positively selected sites, pb with the results of forward-time Wright–Fisher simulations, for N = 107, s = 1022, and Ub = 1024. Simulation results are an
average over 56 independent runs, with 106 pairs of individuals sampled from each run. (B) Pairwise heterozygosity at positively selected sites for N = 107,
s = 1022, and Ub = 1023. (C) Comparison of our theoretical predictions for the distribution of pairwise heterozygosity at linked neutral sites, pn, with the
results of forward-timeWright–Fisher simulations, for N = 107, s = 1022, Ub = 1024, and Un = 1023. (D) Pairwise heterozygosity at linked neutral sites for N =
107, s = 1022, Ub = 1023, and Un = 1023.
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It still remains to consider the distribution of the total
number of segregating selected sites among H individuals
chosen at random from arbitrary fitness classes. The general
case becomes quite unwieldy to compute analytically, be-
cause we must average over all fitness classes in which in-
ternal coalescence events can occur. Computing these averages
for the case of a sample of size 3, we find that the generating
function for the distribution of the total number of segregating
positively selected sites among a sample of three individuals
sampled from classes k1, k2, and k3 is given by

W3ðzjk1; k2; k3Þ ¼
zk12k3U2ðzÞD21

h
12 ðzD22Þk12k2

i
12D22z

þ Dk12k2
22 U3ðzÞ:

(45)

Note that these distributions are all for samples each taken
from an independently evolved population, rather than
found from averaging many samples from each population
and then finding the distribution of this across populations.

Analogous expressions can be computed for larger sam-
ples, but these involve ever more complex combinatorics. One
may also wish to compute other statistics describing genetic
variation in larger samples, such as the allele frequency
spectrum. While in principle it is possible to calculate analytic
expressions for any such statistic using methods similar to
those described above, in practice it is easier to use our
fitness-class coalescent probabilities to implement coalescent
simulations, and then use these simulations to compute any
quantity of interest. We describe these coalescent simulations
in a later section. Alternatively, for large populations we can
make use of the rough approximation that all individuals are
always sampled from the mean fitness class; we explore some
consequences of this approximation further in a section
below.

Time in generations and neutral diversity

Thus far we have focused on the fitness-class structure of
genealogies and the genetic variation at positively selected
sites. We now describe the correspondence between our
fitness-class coalescent genealogy and the genealogy as
measured in actual generations. Fortunately, this correspon-
dence is extremely simple: each clonal lineage was originally
created by mutations when that fitness class was at the nose
of the fitness distribution. Thus if we define the current
mean fitness to be class k = 0, the current nose class will be
at approximately k = q, and some arbitrary class k will have
been created at the nose approximately ðq2 kÞ�t generations
ago. Although there is some variation in each establishment
time, we neglect this variation throughout our analysis here,
since it is small compared to the variation between coales-
cence times within clones in different classes. As we see
below, this approximation holds well in comparison to sim-
ulations in the parameter regimes we consider. This makes
the correspondence between real times and steptimes much
simpler here than in our previous analysis of purifying se-
lection, where the variation in real times, even given a spe-
cific fitness-class coalescent genealogy, was substantial
(Walczak et al. 2012).

The simple approximation of neglecting the variations in
time of establishment of the fitness classes allows us to make
a straightforward deterministic correspondence between the
fitness-class coalescent genealogy and the coalescence times.
We can then compute the expected patterns of genetic diver-
sity at linked neutral sites: the number of neutral mutations on
a genealogical branch of length T generations is Poisson dis-
tributed with mean UnT. From this we can compute the distri-
bution of statistics describing neutral variation (e.g., the neutral

Figure 6 Comparisons between theoretical predictions (from coalescent
simulations) and forward-time Wright–Fisher simulations for the average
pairwise heterozygosity and total number of segregating sites in samples
of size 3 and 10 at positively selected sites and at linked neutral sites, (A)
as a function of Ub/s and (B) as a function of Ns. In A and B, N = 107 and
Ub = 1024 while s is varied. Note forward-time Wright–Fisher simulation
data represents an average over 56 forward simulation runs, with 106

pairs of individuals sampled from each run. Theoretical predictions gen-
erated using backward-time coalescent simulations represent the aver-
age of 3 · 106 independently simulated pairs of individuals. Note that
both A and B show the same data, plotted as a function of different
parameters.
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heterozygosity pn or total number of neutral segregating sites
in a sample Sn) from the corresponding statistics describing the
variation at the positively selected sites. We illustrate these
theoretical predictions for the distribution of neutral heterozy-
gosity pn in Figure 5, C and D, and compare these predictions
to the results of full forward-timeWright–Fisher simulations. In
Figure 6 we also show our predictions (generated using the
coalescent simulations described above) for the mean number
of segregating neutral sites in samples of size 2, 3, and 10,
compared to the results of forward-time Wright–Fisher simu-
lations. We note that the agreement is good across the param-
eter regime we consider, although there are some systematic
deviations for smaller values of Ub/swhere our approximations
are expected to be less accurate.

Time to the most recent common ancestor

Thus far we have considered the coalescence events at each
mutational step separately: this is necessary to describe the
full structure of genealogies. However, another important
quantity of interest is the time to the most recent common
ancestor—i.e., the coalescence time of the entire sample. We
begin by considering this time measured in mutational steps,
and then describe how this relates to the coalescence time
measured in generations.

We can derive relatively simple expressions for the
number of mutational steps to coalescence of an entire
sample by directly calculating the probability of coales-
cence events over several steps at once. To do so, we note
that since the dynamics at each mutational step are
identical, the generating function

GðℓÞ
i ðzÞ[

D
e2znðℓÞi

E
(46)

of the number of individuals, nðℓÞi , descended from amutation
at site i that occurred ℓ mutational steps ago, can be derived
iteratively. Equation 10 gives the generating function for ℓ =
1. Then, since any of the B possible further mutations on the
n
ðℓ21Þ
i individuals at the previous step can, with equal and

independent probability, give rise to a number of descend-
ants at the ℓth step, we have that

GðℓÞ
i ðzÞ ¼

�h
e2za=B

iBnðℓ21Þ
i

�
¼ Gðℓ21Þ

i ðzaÞ: (47)

Iterating, we thus obtain

GðℓÞ
i ðzÞ ¼ exp

�
2

1
B
zhℓ

�
; (48)

where we have defined

hℓ [aℓ ¼ ð121=qÞℓ: (49)

From this generating function, we can immediately compute
the distribution of the number of mutational steps to
coalescence of H individuals sampled from the same fitness
class, J(H). The cumulative distribution of J is given by

FðH; ℓÞ[ Prob ½JðHÞ# ℓ� �
XB
i¼1

 
n
ðℓÞ
iPB

i¼1n
ðℓÞ
i

!H

: (50)

We can compute F(H, ℓ) using methods identical to those
used to calculate the fitness-class coalescence probabilities
above and find

FðH; ℓÞ ¼ GðH2hℓÞ
GðHÞGð12hℓÞ

: (51)

From this, we find

hJðHÞi ¼
XN
ℓ¼0

ð12 FðH; ℓÞÞ: (52)

Note that these times to the most recent common ancestor
make use of the various approximations discussed above.
We could alternatively obtain expressions for J(H) more di-
rectly from the fitness-class coalescence probabilities in a sin-
gle step, by conditioning on the coalescence events that can
happen in the first step in a similar way to that we used to
compute hpbi and hS3bi.

In the large-q limit, the ratios of these coalescence times
(measured in mutational steps) in samples of different sizes
are independent of q:

hJð3Þi
hJð2Þi ¼

5
4
;

hJð4Þi
hJð2Þi ¼

25
18

;
hJð5Þi
hJð2Þi ¼

427
288

: (53)

These ratios are identical to those given by the Bolthausen–
Sznitman coalescent (Bolthausen and Sznitman 1998), which
has recently been shown to describe a number of other very
different models of selection (Derrida and Brunet 2013). We
return to this point in the Discussion. For large H we find

hJðHÞi
hJð2Þi/log log H þOð1Þ; (54)

which is also in agreement with the Bolthausen–Sznitman
coalescent (Goldsschmidt and Martin 2005). These results
suggest that there is a q-independent limiting process: we
discuss this briefly below. We also note that the distribution
of times to coalescence for large H is quite different than in
the neutral case—the between-population variation in J(H)/
hJ(2)i is only of order unity, compared to its mean of log log
H. In contrast, for the neutral coalescent, the time to last
common ancestor of the whole population has mean of 2hJ
(2)i and random variations of the same order.

As with other aspects of genealogical structures, it is
straightforward to convert these expressions for the coales-
cence times measured in mutational steps to the time in
generations to the most recent common ancestor of a sample,
TMRCA(H). Specifically, J = ℓ corresponds to the case where
the most recent ancestor occurs ℓ mutational steps ago, so if
the sampled individuals were from class k the time to the
most recent common ancestor is ½q2 ðk2 ℓÞ��t generations.
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We note that for a sample of two this implies that the nose-to-
mean time tnm is the characteristic time scale of the coales-
cent, as claimed above.

Thus far we have considered the most recent common
ancestor of H individuals all sampled from the same fitness
class k. However, in general we typically sample individuals
from a variety of different classes. In this case, we must sum
over all possible internal coalescence events, until we reach
a state where all remaining ancestral lineages are together
in the same fitness class. This quickly becomes unwieldy in
larger samples. In practice, it is easier to compute times to
the most common recent ancestor in these cases using co-
alescent simulations based on our fitness-class coalescent
approach, which we describe below.

As with other statistics described above, however, there is
a simple approximation which is asymptotically correct for
large populations: we can simply assume that all individuals
are sampled from the mean fitness class. This approximation
relies on the fact that most individuals sampled randomly
from the population will have fitnesses close to the mean:
within of order

ffiffiffi
v

p
of it. Thus the time differences between

their establishments will typically be substantially smaller
than the nose-to-mean time, tnm. As this is the time scale
on which typical coalescent events take place, treating all
the individuals as if they were in the dominant fitness class
is a reasonable rough approximation. In this approximation,
the results for the times to most common ancestor for sam-
ples of H can be simply obtained from the single-fitness class
results above. We find

hTMRCAð2Þi � 2tnm; (55)

and in larger samples we have

hTMRCAð3Þi
hTMRCAð2Þi ¼

9
8
;

hTMRCAð4Þi
hTMRCAð2Þi ¼

43
36

;
hTMRCAð5Þi
hTMRCAð2Þi ¼

715
576

:

(56)

We note, however, that the dominant-fitness-class approxi-
mation is valid only in the limit that the lead is much larger
than the standard deviation of the fitness distribution. As
this ratio is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  logðNsÞp

, in practice it never becomes very
large.

The frequency of individual mutations

An alternative way to compute many of the coalescent
properties is to consider the fraction of the population with
a particular mutation, which is closely related to the site-
frequency spectrum. The frequency of a given mutation at
a particular site is determined by when that mutation occurred
relative to others in its fitness class. But its frequency at later
times is also strongly affected by whether (and when) later
mutations occur in its genetic background at each subsequent
mutational step.

We first consider how the frequency of a particular muta-
tion changes with time due to successive mutations in its line-

age. If at one time the mutation has frequency g in the nose
population, then a time ℓ�t later (i.e., after ℓ further steps have
occurred), it will have some frequency, f, in the current nose
population. The probability density of f can be found by com-
paring the statistics of the relative number of descendants, n,
of the fraction g of the initial nose population that has the
mutation in question with the relative number of descendants
n̂, of the remaining fraction, l 2 g, of the initial nose popu-
lation that does not have the mutation in question. Specifi-
cally, n̂ ¼ s2 n and f = n/s. By definition, the conditional
probability density of f is given by

rℓðf jgÞ ¼ hd½ f 2 n=ðn þ n̂Þ�jgi ¼ hðn þ n̂Þd½ f n̂2 ð12 fÞn�jgi:
(57)

Using the fact that n and n̂ are independent, we find

rℓð f jgÞ ¼ 2

ð
dv
2p

d
du

nD
e2nð12fÞðuþivÞj g

ED
e2n̂fðu2ivÞj12g

Eo����
u¼0

(58)

¼ 2

ð
dv
2p

d
du

fexpð2g½ðuþ ivÞð12f Þ�hℓ2ð12gÞ½u2ivf �hℓÞg
����
u¼0

;

(59)

where the d=du gives the factor of n þ n̂ in the previous
expression, the integral over v enforces the d-function,
and hℓ = (1 2 1/q)ℓ as defined earlier. The integral can be
done straightforwardly to obtain

rℓð f jgÞdf ¼ df
gð12 gÞ=½GðhℓÞGð12hℓÞfð12 fÞ�

ð12gÞ2ðf=ð12fÞÞhℓ þ g2ðð12fÞ=fÞhℓ þ2gð12 gÞcosðphℓÞ
:

(60)

From this, quantities such as the variance of the probability
of H individuals coalescing ℓ steps in the past and hence the
variances in the coalescent times of H individuals can be
computed.

To compute the distribution of the fraction of the current
nose class that are descendants of a particular mutation that
occurred ℓ steps in the past, we can simply set g ¼ 1=B. Noting
that B � 1, we obtain

rℓð fÞdf ¼
df
B

1

GðhℓÞGð12hℓÞ f1þhℓð12fÞ12hℓ
: (61)

Coalescent properties depend on averages of f H. Summing
over all B sites and using the standard integrals of powers of
f and 1 2 f expressed in terms of gamma functions, we
obtain immediately the same result we had found above:
hFðH; ℓÞi ¼ GðH2hℓÞ=GðHÞGð12hℓÞ.

In the limit of large q, the exponent h that parameterizes
the time difference, t ¼ ℓ�t, is simply h � e2t=tnm. This is in-
dependent of q: only the nose-to-mean time that it takes for
the new mutants to dominate the population matters. In this
limit, a single mutational step occurs in a time that is a very
small fraction, e = 1/q, of the nose-to-mean time tnm. The
conditional probability of going from g to f in this step is
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rℓð f jgÞdf �
gð12 gÞe df

ðf2gÞ2 þp2e2½gð12gÞ�2: (62)

Equation 62 is an approximate delta function in f2 g, as one
would expect in the limit of a small time step. But it also
corresponds to a probability per unit time of a jump from g
to f of ð1=tnmÞdfgð12 gÞ=ðf2gÞ2. Specifically it describes the
genetic background either containing the mutation (fre-
quency g) or not containing the mutation (frequency 1 2 g)
increasing in size by a factor between 1 + h and 1 + h + dh
with rate ð1=tnmÞdh=h2 (with e providing a small h cutoff).
This corresponds to a continuous time birth process in
a subpopulation of (large) size n with rate per individual
to give birth to k offspring, ð1=tnmÞð1=k2Þ. These consider-
ations provide an alternative way to compute coalescent
statistics.

Coalescent simulations

We can use the fitness-class coalescence probabilities in
Equation 15 to implement an algorithm for coalescent sim-
ulations along the lines of Gordo et al. (2002), using the
structured coalescent framework of Hudson and Kaplan
(1994). Specifically, to describe the diversity in a sample of
n individuals, we first randomly sample their fitness classes
independently from the distribution uk. We then start with
the individual in the most-fit class and trace back its ancestry
as it steps through successive classes within the fitness distri-
bution. When that individual enters a class with other indi-
viduals, we use Equation 15 to determine the probabilities of
all possible coalescence events in that class. We then continue
to trace back the ancestry of the sample further through the
distribution, allowing for coalescence events at each step
according to the appropriate probabilities. We continue this
procedure until all individuals have coalesced.

This simple coalescent algorithm produces a fitness-class
coalescent tree drawn from the appropriate probability dis-
tribution of genealogies. We can then compute any statistic of
interest describing this genealogy. By repeating this algo-
rithm, we can obtain the probability distribution of the statistic.
In practice this is a highly efficient procedure, since the coales-
cent simulations are extremely fast and the computational time
required scales only with the size of the sample rather than the
size of the population.

Comparison to simulations

Our coalescent simulations represent an algorithmic imple-
mentation of our fitness-class coalescent, using all of the
analytical expressions for the sampling and coalescence
probabilities described above. Thus these coalescent simu-
lations rely on all of the approximations underlying our
method. To test the validity of these approximations and the
accuracy of our fitness-class coalescent method, we com-
pared the predictions of these coalescent simulations to full
forward-time Wright–Fisher simulations of our model. These
comparisons are illustrated in Figure 5 and Figure 6 and in
Table 1.

We implemented our Wright-Fisher simulations assuming
a population of constant size N, in which each generation
consisted of a mutation and a selection step. In the mutation
step, we independently chose the number of beneficial and
neutral mutations within each extant genotype from the
appropriate multinomial distribution. Each new mutation
was assigned a unique index and all unique genotypes were
tracked. In the selection step, we sample N individuals with
replacement from the previous generation, using a multino-
mial sampling weight adjusted for selective differences be-
tween individuals relative to the population mean fitness
(Ewens 2004).

Discussion

We have developed a fitness-class coalescent method to
calculate how positive selection on many linked sites alters
the structure of genealogies. This has allowed us to calculate
how clonal interference shapes the patterns of genetic
diversity in rapidly adapting populations. Our approach
moves away from the traditional method of calculating the
structure of genealogies in real time. Rather, we treat each
mutational step from one fitness class to the next as an “ef-
fective generation” and trace how a sample of individuals
descended by mutations through these fitness classes. In each
effective generation we calculated the total probability of all
possible coalescence events, Equation 15. This allows us to
calculate the structure of genealogies in this fitness-class
space, which corresponds directly to the genetic diversity at
positively selected sites. We then converted this fitness-class
coalescent to the genealogy in real time to calculate the
expected patterns of neutral diversity.

We have shown that we can use this approach to compute
analytic expressions for the distributions of several simple
statistics describing patterns of molecular evolution. However,
it is often easiest to compute expected patterns of variation
using backward-time coalescent simulations, which explicitly
implement the fitness-class coalescent algorithm using the
distribution of the fraction of the population in each fitness
class uk and the coalescence probabilities in Equation 15 to
simulate genealogies. These coalescent simulations are ex-
tremely efficient, and in practice it is usually faster to run
millions of these backward-time simulations than it is to nu-
merically evaluate the sums over fitness classes involved in
the corresponding exact analytic expressions. These coales-
cent simulations also have the advantage of being very similar
in spirit to structured coalescent simulations that describe the
effects of purifying selection (see, e.g., Gordo et al. 2002 and
Seger et al. 2010), so they can in principle be used for pa-
rameter estimation and inference in analogous ways.

Our analysis throughout this article is very similar in
spirit to the fitness-class coalescent method we previously
used to describe how purifying selection at many linked sites
alters the structure of genealogies and patterns of molecular
evolution (Desai et al. 2012; Walczak et al. 2012). However,
there are two important technical differences. First, in the
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case of purifying selection, fluctuations in the frequencies of
each fitness class uk due to genetic drift can be substantial in
certain parameter regimes. These fluctuations are particu-
larly important near the nose of the distribution, where they
can lead to effects such as Muller’s ratchet. Although indi-
viduals are unlikely to be sampled from this nose, they are
very likely to coalesce there. Neglecting these fluctuations
was therefore an important approximation that substantially
restricted the regime of validity of our analysis. By contrast,
in the case of positive selection, fluctuations in the sizes of
each fitness class are negligible (except at the nose) across
a broad range of relevant parameter values. Furthermore,
fluctuations at the nose are much less important for patterns
of diversity than in the case of purifying selection, because
individuals are unlikely to either be sampled there or to
coalesce there. This reflects a fundamental difference be-
tween the neutral and purifying selection processes and
the rapid adaptation dynamics analyzed here. For the for-
mer, genetic drift plays a key role in driving the fluctuations,
while for the latter, genetic drift is almost irrelevant: the
fluctuations are dominated by the stochasticity in the tim-
ings of the beneficial mutations that occur near the nose of
the fitness distribution.

A second key simplification of our analysis of positive
selection, compared to the purifying selection case, is that
the clonal structure of each fitness class becomes effectively
“frozen” once that class is no longer at the nose of the fitness
distribution. This means that coalescence probabilities are
identical in all fitness classes, which stands in contrast to the
case of purifying selection, where the clonal structure within
all classes is constantly changing. This also avoids the need
to carefully analyze the timing and order of mutation events
in the history of a sample and simplifies the mapping be-
tween our fitness-class coalescent genealogy and the gene-
alogy measured in real time.

Our results demonstrate how positive selection on many
linked sites distorts the structure of genealogies away from
neutral expectations. We show several examples of these
selected genealogies, for various different parameter values,
in Figure 7. The most striking qualitative conclusion of
our analysis is that multiple merger events, where several
ancestral lineages coalesce into one in a single effective

generation, occur with comparable probabilities to pairwise
coalescence events. We note that these events are multiple
mergers within a single effective generation in our fitness-
class coalescent and hence are not actually multiple mergers
within a single real generation. However, these events hap-
pen very close together in real time compared to the other
relevant time scales, so they appear as effectively instanta-
neous. This leads to a more “starlike” shape of genealogical
trees. This signature is characteristic of the action of positive
selection; our analysis here illustrates how starlike we ex-
pect genealogies to be (and how many deeper coalescence
events are preserved) given the interplay between interfer-
ence and hitchhiking effects characteristic of this rapid ad-
aptation regime. It may prove useful in future work to analyze
this specific situation in the context of more general models of
the coalescent with multiple mergers (Pitman 1999).

We note that the characteristic time scale of the co-
alescence is the nose-to-mean time, tnm, which is the time
after which the collection of new mutants at the nose take to
dominate the population. In units of this time, trees for
different values of q become statistically similar for large
q. One striking feature, that occurs roughly once each tnm,
is the coalescence of a substantial fraction of all the (remain-
ing) lineages at a single time step: this is caused by one new
beneficial mutation occurring so much earlier than typical
that its descendants represent a substantial fraction of the
population in the nose. Examples of this can be seen in
Figure 7. Another perhaps-surprising feature of the geneal-
ogies in large samples is that some aspects are less variable
from one population to another than neutral coalescent
trees, while other aspects are more variable. In the recent
past, for times much shorter than the mean coalescence time
of pairs of individuals, neutral coalescent trees tend to be
rather similar, while the multiple-coalescence events that
characterize the positively selected genealogies cause larger
variations between populations. In contrast, the time to last
common ancestor of large samples is broadly distributed for
neutral trees but narrowly distributed (at least asymptoti-
cally) for positively selected trees.

Because individuals are unlikely to be sampled from near
the nose of the distribution, the initial coalescence events in
the history of the sample are typically in the bulk of the
fitness distribution. Since these coalescence events hap-
pened well in the past when these classes were at the nose
of the distribution, the terminal branches in the genealogies
of a sample are likely to be longer compared to internal
branches than we would expect under neutrality. In other
words, recent branches of genealogies are longer relative to
more ancient branches. This effect is qualitatively similar to
the situation in which effective population size declines as
time recedes into the past: this has long been recognized as
a general signature of the effects of both purifying and
positive selection. It leads to an excess of singleton mutations
in the site-frequency spectrum and the negative values of
Tajima’s D that we have observed. However, clonal interfer-
ence mitigates these effects relative to a hard selective sweep.

Table 1 Comparisons between theoretical predictions (from
coalescent simulations) and forward-time Wright–Fisher
simulations for Tajima’s D (Tajima 1989) in a sample of size 10, D10

Ub /s Ns D10 theory D10 simulations

0.2000 5000 23.3199 23.3378
0.1000 10000 23.3489 23.3569
0.0200 50000 23.3533 23.3322
0.0100 100000 23.3571 23.4188
0.0020 500000 23.3665 23.3024
0.0010 1000000 23.3717 23.3670

Here Ub = 1024 and N = 107 while s is varied. Theoretical predictions are obtained
by sampling 107 backward coalescent simulations. Forward-time simulation results
are an average over 56 forward simulation runs, with 106 samples of p and S10 used
to compute D10.
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Our results also demonstrate that even when beneficial
mutations are rare compared to neutral mutations, Ub � Un,
positively selected sites can still contribute a significant frac-
tion of the total genetic variation observed in a population.
For example, in a sample of two individuals the total het-
erozygosity at positively selected sites is typically several
times q. The typical neutral heterozygosity, on the other
hand, is of order pn � Untnm. Thus even when Un � Ub,
pb is often comparable to or even greater than pn. This is
consistent with the general observation in microbial evo-
lution experiments that a substantial fraction of observed
mutations are beneficial (Gresham et al. 2008; Kao and
Sherlock 2008; Barrick and Lenski 2009; Barrick et al.
2009). The fact that positively selected sites can be a sig-
nificant fraction of the polymorphisms emphasizes the
importance of understanding the patterns of diversity at
these sites, which have distinct patterns compared to linked
neutral variation and hence may provide important signa-
tures in sequence data of adaptation that involves clonal
interference.

Our predictions for the structure of the fitness-class
genealogies depend on the population size, mutation rate,
and strength of selection only through the combinations log
[Ns] and log[Ub/s]. The time scales in generations are also
proportional to the inverse of the strength of selection. Thus
the patterns of genetic variation in an adapting population
depend only very weakly (logarithmically) on population
size and mutation rate in the large-q regime, where clonal
interference is pervasive, suggesting that there is limited
power to infer these parameters from patterns of molecular
evolution. This is a consequence of the fact that the evolu-
tionary dynamics are also only very weakly dependent on
these parameters in the clonal interference regime.

We have seen that in the large-q limit of our model, the
ratios of the number of mutational steps to the most recent
common ancestors in samples of different sizes are exactly
equivalent to those expected in the Bolthausen–Sznitman
coalescent (Bolthausen and Sznitman 1998). This is identi-
cal to the limiting behavior of these ratios in several very
different models of selection recently studied by Brunet,

Figure 7 Examples of fitness-class coalescent genealogies in samples of size 50 from forward-time Wright–Fisher simulations. The tips of each tree
correspond to individuals sampled from the present. Each tip is placed horizontally according to the fitness class from which that individual was sampled
(classes are numbered according to the number of beneficial mutations relative to the most recent common ancestor of the sample). Coalescence events
are depicted according to the fitness class in which they occurred. Each unit of time on the horizontal axis corresponds to one beneficial mutation, so
that two individuals separated by a branch length of ℓ have pb = ℓ. These fitness-class genealogies can be converted to genealogies in real time by using
our approximation that all coalescent events happen when the relevant class was at the nose of the fitness distribution. Note that the characteristic time
for coalescence is the time it takes for q successive beneficial mutations: this varies considerably with the parameters used. In all trees, N = 107 and Ub =
1024. (A) An example of a genealogical tree for s = 1023. (B) An example of a tree for s = 5 · 1023. (C) An example of a tree for s = 1022. (D) An
example of a tree for s = 5 · 1022.
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Derrida, and others (Brunet et al. 2006, 2007, 2008a; Bere-
stycki et al. 2013; Brunet and Derrida 2012); see Derrida
and Brunet (2013) for a recent review. The reason for this
equivalence between very different models remains unclear,
but suggests a degree of universality: an interesting topic for
future work. We emphasize, however, that the times to most
recent ancestors in our model reduce to the Bolthausen–
Sznitman ratios only when measured in mutational steps
and only when all individuals are sampled from the same
fitness class. The ratios of time to most recent common
ancestors, measured in generations, have a different form.
Nevertheless, in the limit of very large q, almost all the
individuals will have fitness much closer to the mean than
to the nose. As the rate of coalescence is proportional to the
difference between the mean and the nose, the approxima-
tion of sampling only from the largest fitness class is asymp-
totically good. The modifications of the Bolthausen-Sznitman
ratios are then simply determined by adding the nose-to-
mean time, (which turns out to be equal to the mean pairwise
correlation time) to all the coalescent times.

Our analysis in this article has focused on the simplest
possible model of positive selection on a large number of
linked sites, and we have neglected many potential compli-
cations. For example, we have assumed that epistatic
interactions between mutations can be neglected and that
the total potential supply of beneficial mutations is not
significantly depleted over the course of adaptation. This is
consistent with our focus on rapidly adapting populations in
the large-q clonal interference regime. As a population
approaches a fitness peak, these approximations will likely
fail and the dynamics of adaptation and patterns of genetic
variation may either become more complex or return to the
regime where further adaptation is driven by isolated selec-
tive sweeps. We have also focused exclusively on beneficial
mutations that all have the same fitness effect s and have
neglected both deleterious mutations and beneficial muta-
tions that confer different fitness effects. This is justified by
earlier work by us and others that suggests that in rapidly
adapting populations, clonal interference ensures that evo-
lution is dominated by beneficial mutations that confer a spe-
cific fitness advantage (Fogle et al. 2008; Rouzine et al.
2008; Good et al. 2012). However, we have recently ana-
lyzed the evolutionary dynamics within a population in
a model that explicitly allows for a distribution of fitness
effects of beneficial mutations (Good et al. 2012). We and
others have also analyzed the case where a mix of both
beneficial and deleterious mutations are possible (Rouzine
et al. 2008, 2003; Goyal et al. 2012). Those works describe
the variation in fitness within populations in these more
complex models and hence could form the basis for a more
complex version of the fitness-class coalescent method we
have used here. This generalized fitness-class coalescent
would admit the possibility of mutational steps of various
different sizes and toward both lower and higher fitness.

An alternative approach by one of us allows for benefi-
cial mutations to have a variety of different effects, without

making reference to fitness classes (Fisher 2013). As long as
the distribution of fitness effects of potential beneficial
mutations falls off faster than a simple exponential for large
s, the dynamics in large populations is dominated by muta-
tions with s close to some value, ~s (Good et al. 2012; Fisher
2013). In this case, most properties of the dynamics on time
scales longer than the nose-to-mean time tnm are quite uni-
versal (and more strongly so when v=~s2 is large). As tnm is
also the time scale of the coalescence, this suggests that the
coalescent statistics should also be universal. The continu-
ous-time results quoted above for the evolution of the fre-
quency of a subpopulation emerges naturally in this more
general analysis and indeed correspond to the universal
limit of asymptotically large populations (Fisher 2013). In
the alternative regime where the distribution of fitness
effects of potential beneficial mutations falls off more slowly
than exponentially, mutations can jump from the bulk of the
distribution to the lead. These play an important role in the
dynamics and cause q to remain small even for asymptoti-
cally large populations (Desai and Fisher 2007). The behav-
ior is then less universal, but this situation is likely to be
relevant in real populations, especially in the initial stages of
adaptation to a new environment. Further study into these
effects of the distribution of effects of beneficial mutations,
of initial transient dynamics, and of large numbers of dele-
terious mutations are interesting topics for future research.

The final simplification of our analysis is its focus on
purely asexual populations: we have neglected the effects of
recombination. Thus our results are primarily applicable to
interpreting the patterns of genetic variation in asexual
microbial evolution experiments, although they may also be
relevant to sexual organisms on short genomic distance
scales within which recombination is rare on the relevant
timescales. We note, however, that our results provide an
essential ingredient for predicting the effects of infrequent
recombination on the evolutionary dynamics. Specifically,
we can use our predictions for the genetic variation between
a pair of individuals sampled from the population to predict
the distribution of fitnesses of recombinant offspring result-
ing from sex between these individuals. This in turn
determines how rare recombination alters the evolutionary
dynamics and the distribution of fitnesses within the
population. It may prove possible to then in turn calculate
how these shifts in evolutionary dynamics alter the patterns
of genetic diversity in the population. These extensions of
our approach to analyze the effects of recombination on
both evolutionary dynamics and patterns of molecular
evolution are an important direction for future research.
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Appendix: Coalescence Probabilities

In this appendix, we carry out the calculations of coalescence probabilities in detail. Consider H individuals who coalesce into
K lineages, with h1 individuals coalescing into lineage 1, h2 individuals coalescing into lineage 2, and so on, up to hK
individuals coalescing into lineage K. We note that

PK
j¼1hj ¼ H. We begin by asking the probability that H individuals

coalesce into K lineages at a specific set of K sites (out of the total of B) in the genome: call these sites 1–K in the genome,
for concreteness. We also assume for now that the H individuals coalesce in a specific way into these K lineages (i.e.,
individual 3 coalesces into the lineage at site 5, etc.). We denote the frequency of the lineage at site j in the genome by
fj, so that fj ¼ nj=s. We denote by A the probability that the H individuals coalesce into the K lineages at these specific sites
according to the specific configuration {hj}.

Given these definitions, we have

A ¼
*YK

j¼1

f hj

j

+
¼
*YK

j¼1

n
hj

j

shj

+
¼
*

1
sH

YK
j¼1

n
hj

j

+
: (A1)

We make use of the identity

1
sH ¼

ðN
0

xH21

ðH2 1Þ!e
2xsdx (A2)

to obtain

A ¼
ðN
0

xH21

GðHÞ

*
e2xs

YK
j¼1

n
hj

j

+
dx: (A3)

We now use the definition of s as the sum of the nj and separate out the nj that correspond to the lineages we are
considering. Note that the nj are independent of each other. Thus one obtains

A ¼
ðN
0

xH21

GðHÞ
�
e2x
PB

j¼Kþ1
nj

�*YK
j¼1

n
hj
j e

2xnj

+
dx; (A4)

whence, by independence,

A ¼
ðN
0

xH21

GðHÞhe
2xn1iB2K

*YK
j¼1

n
hj

j e
2xnj

+
dx: (A5)
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From Equation 10 we have

he2znii ¼ e2mi=Ub
121=q ¼ e2za=B; (A6)

where a[ 12 1
q. Substituting this in, and assuming large B so that (B 2 K)/B � 1, we find

A ¼
ðN
0

xH21

GðHÞe
2xa
*YK

j¼1

n
hj

j e
2xnj

+
dx: (A7)

We then use that

D
nhe2xn

E
¼ ð21Þh @

h

@xh

h
e2xa=B

i
: (A8)

Making the large-B approximation that e2xa=B � 12 ðxa=BÞ and differentiating, we find

D
nhe2xn

E
¼ a

B
Gðh2aÞ
Gð12aÞx

a2h: (A9)

Using this result, we have

A ¼
ðN
0

xH21

GðHÞe
2xa

YK
j¼1

axa2hjG
�
hj2a

�
BGð12aÞ  dx: (A10)

Since
PK

j¼1hj ¼ H we can rewrite this as

A ¼
ðN
0

xKadx
x

aK

BKGðHÞe
2xa

YK
j¼1

G
�
hj2a

�
Gð12aÞ : (A11)

Now we define

y ¼ xa; dy ¼ axa21dx;
dy
ay

¼ dx
x
; (A12)

and making this change of variables obtain

A ¼
ðN
0

dy
a

yK21e2yaK

BKGðHÞ
YK
j¼1

G
�
hj2a

�
Gð12aÞ : (A13)

The dy integral yields a G function, giving

A ¼ GðKÞaK21

BKGðHÞ
YK
j¼1

G
�
hj 2a

�
Gð12aÞ : (A14)

So far we have considered the probability of this coalescence event involving K lineages at a specific set of K sites on the
genome. We now want to sum over all the possible sets of K sites on the genome at which this could occur. In the large-B
limit, there are a total of BK/K! of these. We define E to be the probability of this coalescence event involving K lineages at
any set of K sites on the genome. We have

E ¼ aK21

KGðHÞ
YK
j¼1

G
�
hj 2a

�
Gð12aÞ : (A15)

Now so far we have assumed that specific individuals coalesce into specific lineages. But given a set {hj} there are a total
of ð H

h1; h2; . . . hK
Þ ways to assign specific individuals to specific lineages. Thus the total probability of H individuals coalescing into

K lineages, in a specific configuration {hj}, which we call CH;K;fhjg, is
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CH;K;fhjg ¼ H!QK
j¼1hj!

aK21

KGðHÞ
YK
j¼1

G
�
hj2a

�
Gð12aÞ

¼ HaK21

K

YK
j¼1

G
�
hj2a

�
G
�
hj þ 1

�
Gð12aÞ;

(A16)

equivalent to Equation 15 in the main text.
To compute DHK, we first make the definition

f ðH;KÞ ¼
X
fhjg

YK
j¼1

aG
�
hj2a

�
G
�
hj þ 1

�
Gð12aÞ (A17)

and note that

DHK ¼ H
Ka

f ðH;KÞ: (A18)

There is no simple analytic expression for f(H, K). However, we can define its generating function

Rf ðzÞ[
XN
H¼0

f ðH;KÞzH : (A19)

Note that we are summing from H = 0, but we define f(H, K) = 0 for H , K. Now we have

Rf ðzÞ ¼
XN
H¼0

Xconstrained

fhjg
f ðH;KÞzH ¼

XN
h1¼1

XN
h2¼1

. . .
XN
hK¼1

fðH;KÞzH: (A20)

Substituting in for f(H, K), we find

Rf ðzÞ ¼
"XN

h¼1

aGðh2aÞzh
Gðhþ 1ÞGð12aÞ

#K
; (A21)

where we have used the fact that the sums over the different h are now independent. Recognizing the Taylor series, we have

Rf ðzÞ ¼ ½12ð12zÞa�K ; (A22)

as quoted in the main text. Note we can also plug in K = 1 to recover the result for DH1 quoted in Equation 14.
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