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In a recent preprint, Park, Metzger, and Thornton reanalyze 20 empir-
ical protein sequence-function landscapes using a “reference-free
analysis” (RFA) method they recently developed. They argue that
these empirical landscapes are simpler and less epistatic than ear-
lier work suggested, and attribute the difference to limitations of the
methods used in the original analyses of these landscapes, which
they claim are more sensitive to measurement noise, missing data,
and other artifacts. Here, we show that these claims are incorrect.
Instead, we find that the RFA method introduced by Park et al. is ex-
actly equivalent to the reference-based least-squares methods used
in the original analysis of many of these empirical landscapes (and
also equivalent to a Hadamard-based approach they implement). Be-
cause the reanalyzed and original landscapes are in fact identical,
the different conclusions drawn by Park et al. instead reflect different
interpretations of the parameters describing the inferred landscapes;
we argue that these do not support the conclusion that epistasis plays
only a small role in protein sequence-function landscapes.

In a recent manuscript (1), Park, Metzger, and Thornton
apply methods they recently developed (2) to reanalyze

20 empirical protein sequence-function landscapes originally
characterized by us (3–6) and by others (7–15). They argue
that these protein sequence-function landscapes are relatively
simple, with higher-order epistasis playing a less important
role than earlier work suggested. Here, we show that the
conclusions Park et al. draw from their reanalysis result from a
misinterpretation of the relationship between different methods
of characterizing protein sequence-function landscapes.

Park et al. highlight three key differences between their
analysis and that used in the original characterizations of the
20 empirical landscapes they consider: (1) They claim that
their “Reference-free analysis” (RFA) method is more accurate
and more robust to measurement error and partial sampling
than earlier approaches. (2) They allow for effects of global
“nonspecific epistasis,” in which the measured protein function
is a nonlinear function of some underlying phenotype. They
introduce a simple form for this global nonlinearity, and claim
that with this assumption the underlying phenotype has a
simpler and less epistatic architecture. (3) Where appropriate
they use a model with 20 possible alleles (interpreted as amino
acid states) per locus, rather than a standard biallelic model.

Here we show that point (1) above is incorrect. As a basis
for comparison with their RFA method, Park et al. implement
a reference-based model that estimates coefficients without
any averaging. This model, as they claim, is therefore highly
sensitive to noise. However, this is not the approach used in
most of the original analyses of the 20 empirical landscapes
they consider. Instead, the reference-based framework ac-
tually used in the original characterization of most of these

landscapes is implemented using linear regression. Here we
show that these models are exactly equivalent to the RFA
model implemented by Park et al. Thus the original analysis
is exactly as robust to measurement noise and missing data
as their reanalysis, and leads to identical results. This exact
relationship is not a novel result, and is well established in the
quantitative genetics literature (see e.g. (16)). Park et al. also
claim their RFA framework is superior to a Hadamard-based
approach used in the original analyses of a few of the empirical
landscapes. However, the RFA and Hadamard-based models
are also exactly equivalent, with coefficients that are identical
up to a simple multiplicative factor which depends on the
precise convention chosen for the Hadamard model (though
Park et al. are correct to note that the Hadamard approach by
construction cannot account for missing data (16)). We note
that in some other contexts (e.g., when addition of additive
or epistatic coefficients to a model is constrained by a regu-
larization term), these various approaches can yield different
results. In these cases, the relative performance of the different
methods depends on the specific context, and no method can
be considered better in an absolute sense.

We next turn to point (2) above. We argue that global epis-
tasis can provide a simpler representation of protein sequence-
function landscapes in some cases, particularly where there
is a natural biochemical or biophysical reason to believe that
protein function depends nonlinearly on some underlying ad-
ditive phenotype. For example, in some cases we might expect
mutations to affect free energy of folding or binding, which
in turn are related nonlinearly to protein functions defined
in terms of fraction of protein folded or bound. However, in
many of the 20 empirical landscapes reanalyzed by Park et
al., the measured phenotype is itself a free energy, and there
is no biochemical basis for assuming that this is related non-
linearly to some other underlying additive phenotype. In such
cases, we argue that introducing global epistatic functions can
instead distort biological interpretations of the data.

We do not directly address point (3) in this manuscript. The
use of 20-allele models is indeed appropriate when considering
landscapes involving many or all possible amino acid variants
at a given protein residue. However, in 12 of the 20 empirical
protein landscapes reanalyzed by Park et al., there are only
two possible alleles considered at each site. Thus for these
landscapes, this aspect of the method is not relevant.
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Fig. 1. Performance of the different models in a simulated 12-site (L = 12 landscape; max epistatic order 3) that includes simulated experimental noise (see Methods for
details). (A-D) Comparison of phenotype predictions between least squares reference-free (RFA) model and least squares reference-based model used in the original analysis
of this data (A), Hadamard reference-free (BA) model (B), reference-based model without averaging (RBA) (C) and the actual phenotypes (D). Note that the RFA method is
exactly equivalent to the least squares reference-based and BA approaches. (E) Variance explained by the different models at all orders. Note the exact correspondence
between RFA, original, and BA approaches. (F) Cross-validation for the original and RFA approaches (the two least squares methods compatible with missing data), trained on
80% of the data with R2 evaluated on the remaining 20%. (G) The effect of simulated measurement noise on the R2 of the models inferred using the different approaches.
Note that the original least squares reference-based method performs identically to RFA and the BA approach regardless of the amount of experimental error. (H) Effect of
missing data on the R2 of the inferred models. Note that the original and RFA approaches (the two methods compatible with missing data) perform identically regardless of the
fraction of data missing. (I) Comparison between a subset of the epistatic coefficients obtained with the two reference-free methods (RFA, BA) and the real coefficients. Note
the exact correspondence between RFA and BA methods.
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Framework Inference Method Name used
Reference-free Least squares RFA

Hadamard/Fourier BA
Reference-based Least squares Original/RBA-LS

Single measurement RBA

Table 1. Overview of the epistasis inference methods considered.

Reference-based and reference-free epistasis frame-
works are exactly equivalent

Consider a protein sequence-function landscape defined by all
possible genotypes at some set of L loci. We consider here
the biallelic case, so there are 2L possible genotypes, each of
which corresponds to some functional value y (though we note
that Park et al. also consider a more general 20-allele model,
which introduces additional complexities which we do not
address here). In what Park et al. refer to as a “reference-free”
framework, we write the landscape as

y = f0 +
∑

i

fixi +
∑
i<j

fijxixj +
∑

i<j<k

fijkxixjxk + . . . , [1]

where xi ∈ {+1, −1} is the genotype at locus i. Note that
because there are as many coefficients f as there are genotypes,
we can write an arbitrary sequence-function landscape in this
form (though we may wish to truncate the landscape at some
order K, in which case we refer to it as a linear epistasis
model at order K). The choice of xi ∈ {+1, −1} in Eq. (1) is
what defines the reference-free framework (though as noted
above this is specific to the biallelic case). It is simple to
show that f0 is the average functional value, that fi is half
the effect of changing the allele at locus i (from −1 to +1),
averaged over backgrounds at all other loci, that fij is half
the average effect of changing the alleles at loci i and j from
an asymmetric to a symmetric configuration, and so on. In
this sense, the f terms can be thought of as reference-free,
because there is no reference to any wild-type sequence and all
the terms are defined instead based on average effects across
all possible states at other loci. We often refer to the fi as
additive terms, the fij as pairwise epistatic terms, and so
on, but it is important to remember their precise meaning as
defined in Eq. (1).

Park et al. contrast reference-free frameworks with
reference-based frameworks. In the reference-based frame-
work, we instead write the landscape defined above as

y = g0 +
∑

i

gixi +
∑
i<j

gijxixj +
∑

i<j<k

gijkxixjxk + . . . , [2]

where now xi ∈ {0, 1}. As above, we can truncate this at
order K to create a linear epistasis model at that order, or
consider the full model with K = L. Due to this alternative
choice of how the genotype is represented, the genotype with
x = 0 at all loci now has a special status as the “wild-type”
sequence, and at each locus we can refer to the “wild-type”
allele as xi = 0 and the “mutant” allele as xi = 1. We can
easily see from Eq. (2) that g0 is the functional value of the
wild-type sequence, that gi is the effect of changing locus i
from the wild-type to the mutant allele on a background that
is wild-type at all other loci, that gij is the effect of having
the mutant allele at both loci i and j above and beyond the

sum of the additive effects of mutant alleles at these loci (on
a background that is wild-type at all other loci), and so on.
We often refer to the gi as additive terms, the gij as pairwise
epistatic terms, and so on, but as above it is important to
remember their precise meaning, in this case as defined in Eq.
(2).

Because of the different representations of the landscapes
in the reference-free versus reference-based frameworks, the
f and g terms will not be the same. Thus our interpretation
of what are called additive versus epistatic effects may be
different. However we emphasize that this is the exact same
landscape: exactly the same genotypes correspond to exactly
the same functional values. As a simple example, consider a
two-locus landscape with four possible genotypes: AB, aB,
Ab, and ab. Imagine the functional values of each of these
four genotypes are yAB = 0, yaB = 0, yAb = 0, and yab = 1.
In the statistical framework we have f0 = 1/4, f1 = 1/4,
f2 = 1/4, and f12 = 1/4, while in the biochemical framework
we have g0 = 0, g1 = 0, g2 = 0, and g12 = 1. Thus in
the reference-free framework we interpret this landscape as
having both additive and pairwise epistatic terms, while in the
reference-based framework we interpret it as having no additive
term and a stronger pairwise epistatic term. However, the
landscape is identical in both frameworks, and the difference
is merely a matter of how the coefficients are interpreted. This
is true regardless of what order the model is truncated at: any
sequence-function landscape that can be represented at order
K in the reference-free framework is exactly equivalent to a
corresponding landscape in the reference-based framework at
that same order K.

Park et al. argue that, although the true landscape may
be identical in both the reference-free and reference-based
frameworks, inferring its structure in the reference-free frame-
work using their RFA approach is more accurate and more
robust to measurement noise and partial sampling. They are
indeed correct that RFA as they implement it is more robust
than the reference-based inference method that they imple-
ment (which they term “RBA”). This is because their RBA
method computes coefficients in the reference-based frame-
work based on differences between specific reference genotypes
(i.e., first-order terms are defined based on the differences in
single-mutant sequences relative to the wild-type, second-order
terms based on deviations from additivity in double-mutants,
and so on). This simple method is extremely sensitive to
measurement noise, as each coefficient is inferred based on
very few phenotypic measurements. It is also very sensitive
to missing data — for example, if a double mutant is absent,
all higher order effects involving the corresponding two muta-
tions cannot be estimated. Because of these weaknesses, this
method cannot be recommended and is seldom used to study
epistasis in empirical landscapes.

However, this poor performance is due to the limitations of
the RBA inference method, not the reference-based framework
itself. Instead of using RBA, most of the original analyses of
the 20 empirical landscapes considered by Park et al. instead
used least squares regression to infer coefficients within the
reference-based framework (i.e., truncating the model to some
order K < L and fitting the coefficients to minimize least-
squared error in the observed phenotypes). We refer to this
inference approach as RBA-LS. We show here that RBA-LS is
exactly equivalent to RFA at any order K. Thus these original
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analyses are exactly as accurate and robust to measurement
noise and partial sampling as the reanalysis of Park et al.
The key point is that although the reference-based framework
does make reference to a wild-type sequence, inference of the
coefficients using least squares regression effectively averages
each coefficient over many sequence backgrounds, and hence
is not overly sensitive to measurement errors in any single
sequence or set of sequences.

To see this, we represent the genotype at L biallelic loci
as the vector x⃗ = (x0, ..., xL), with xi ∈ {0, 1}, and write an
arbitrary protein structure-function landscape involving these
loci as:

y = a0 +
K∑

k=1

∑
i1<···<ik

ai1,··· ,ik

k∏
j=1

(αxij −β) = a⃗ · ϕ⃗(K)(αx⃗−β).

[3]
This landscape is linear in the coefficients a and has 2K coeffi-
cients at order K. A complete model, where K = L, would
contain as many coefficients as there are available genotypes
(2L). The reference-free framework considered by Park et al.
corresponds to α = 2 and β = 1, while the reference-based
framework corresponds to α = 1 and β = 0.

Given a dataset of phenotypes y⃗ = {yg} and associated
genotypes {x⃗g}, these models can be inferred by minimizing
the least squares error. Because the models are linear, the
solution can be computed explicitly as a function of ϕ(K). We
have

a⃗ =
(
XT X

)−1
XT · y⃗ with Xi,g = ϕ⃗(K)(αx⃗g − β)

∣∣
i
. [4]

With this formalism, it is straightforward to see that the
coefficients generated by one set of (α, β) parameters are
linearly related to the coefficients generated by a different set
of parameters: both models will give the same predictions and
have exactly the same goodness-of-fit. This is true regardless
of what order K the models are truncated at, and remains
true regardless of the scale of measurement errors or missing
data.

We emphasize that this equivalence does not only hold at
the level of model performance or of predicted phenotypes:
all of the coefficients inferred in either framework are also
exactly interchangeable. That is, we can infer the reference-free
coefficients by first using RBA-LS to infer the reference-based
ones and then applying the linear transformation described
above. The resulting reference-free coefficients are identical to
those inferred by RFA directly. The converse is also true: RFA
infers the same reference-based coefficients (after applying the
linear transformation) as RBA-LS.

To illustrate this equivalence between the inferences in the
reference-free and reference-based frameworks, we simulated a
biallelic landscape with L = 12 sites with random (normally
distributed) epistatic coefficients up to order 3 (see Methods
for details). We added varied degrees of simulated experimen-
tal noise to this data. We then used the reference-free least
squares method (i.e. RFA as defined by Park et al.) and
the reference-based least squares method (as implemented in
our original analyses of several of these empirical landscapes)
to infer the landscape. As expected, we find that the land-
scapes inferred by the two methods are identical (Fig 1A),
and explain identical amounts of phenotypic variance at each
order (Fig 1E). This remains true regardless of the extent of
simulated noise (Fig 1G). Provided that experimental noise is

Fig. 2. Performance of the different models on the empirical CR9114-H1 dataset.
(A-D) Comparison of phenotype predictions between least squares reference-free
(RFA) model and least squares reference-based model used in the original analysis
of this data (A), Hadamard reference-free (BA) model (B), reference-based model
without averaging (RBA) (C) and the actual phenotypes (D). Note that the RFA method
is exactly equivalent to the least squares reference-based and BA approaches. (E)
Variance explained by the different models at all orders. Note the exact correspon-
dence between RFA, original, and BA approaches. (F) Cross-validation for the original
and RFA approaches (the two least-squared methods compatible with missing data),
trained on 80% of the data with R2 evaluated on the remaining 20%.

not too extensive, these inferences accurately recapitulate the
true underlying landscape (Fig 1D); because both models lead
to identical landscapes this goodness of fit is also identical. We
also explored the effect of missing data by randomly removing
some fraction of the simulated measurements; as expected,
the reference-free and reference-based least squares inferences
remain identical (Fig 1H). We also inferred the landscape using
the subtraction-based (RBA) method implemented by Park et
al, and find as expected that this approach is not equivalent
to the other two methods (Fig 1C), explains much less of
the phenotypic variance (Fig 1E), and is substantially more
sensitive to experimental noise (Fig 1G). We implemented a
standard cross-validation approach to find the optimal order
epistatic model; both the reference-free and reference-based
least squares approaches correctly select the simulated third
order model (Fig 1F).

We next repeated this comparison for our CR9114-H1 data,
as one example from the 20 landscapes reanalyzed by Park
et al. Again, we find that the reference-free and reference-
based least squares models infer identical landscapes (Fig 2A),
and explain identical amounts of phenotypic variance at each
order (Fig 2E). This inferred landscape provides reasonably
accurate predictions of the observed phenotypes (Fig 2D). In
contrast, the simple reference-based method (RBA) leads to
very different inferences (Fig 2C), which are much less accurate
and perform very poorly in explaining phenotypic variance
(Fig 2E). A standard cross-validation approach with the least
squares methods finds that the fifth-order model is optimal,
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as we found in our original analysis (Fig 2F).

The reference-free least squares and Hadamard models
are exactly equivalent

Park et al. also compared their reference-free least squares
model (RFA) to a Hadamard model (this has also been called
a Fourier or Hadamard-Walsh model (16)), and more particu-
larly to a specific implementation of this which they term a
“background-averaged” (BA) model. In this comparison, Park
et al. claim that, for most metrics, the reference-free least
squares model outperforms the Hadamard model. Contrary
to this assertion, we show here that the Hadamard-Walsh
transformation and the least squares approach are equivalent.
This equivalence has been described in previous work (16),
with the apparent discrepancy found by Park et al. arising
from a failure to account for a scaling difference in how the
epistatic coefficients are defined in the two models (16).

To clarify this difference in scaling factor, we rederive the
Hadamard matrix here. We write the phenotype y associated
with genotype (k1, · · · , kL) (with ki ∈ {0, 1}) as yk⃗ = yk1,··· ,kL .
We call xi = (−1)ki the genotype in the reference-free (xi ∈
{+1/−1}) framework. The multi-dimensional discrete Fourier
transform of this phenotype can then be expressed as

yk⃗ =
1∑

n1=0

· · ·
1∑

nL=0

(−1)
∑

i
kini un1,··· ,nL

=
1∑

n1=0

· · ·
1∑

nL=0

(
L∏

i=1

xni
i

)
un1,··· ,nL .

We then define fi1,··· ,im (with i1 < · · · < im) such that
fi1,··· ,im = un⃗, with ni = 1 if i ∈ {i1, · · · , im} else 0. For
example, with L = 3, f2 = u010 and f12 = u110. Rewriting
the above equation, we find at maximum order K = L:

yk⃗ =
L∑

m=0

∑
i1<···<im

 ∏
i∈{i1,··· ,im}

xi

 fi1,··· ,im . [5]

We see from this result that for the complete model
(K = L), the coefficients f of the reference-free framework
are identical to the Fourier coefficients u, but with a different
indexing system. The advantage of the Hadamard method is
that the coefficients u are easier to manipulate algebraically
and can be obtained by computing the inverse Fourier trans-
form on the phenotypes:

un⃗ = 1
2L

1∑
k1=0

· · ·
1∑

kL=0

(−1)
∑

i
niki yk⃗. [6]

This is known as the Walsh-Hadamard transformation, and
can be written in matrix form as u⃗ = Ω(L)y⃗, where the matrix
Ω(L) is usually given as a recursion formula in the number of

sites L, which we can find by fixing the value of the first site:

u
(L+1)
0,n2,··· ,nL+1

= 1
2

[
1

2L

1∑
k2=0

· · ·
1∑

kL=0

(−1)
∑

i
niki y0,k2,···

+ 1
2L

1∑
k2=0

· · ·
1∑

kL=0

(−1)
∑

i
niki y1,k2,···

]
,

u
(L+1)
1,n2,··· ,nL+1

= 1
2

[
1

2L

1∑
k2=0

· · ·
1∑

kL=0

(−1)
∑

i
niki y0,k2,···

− 1
2L

1∑
k2=0

· · ·
1∑

kL=0

(−1)
∑

i
niki y1,k2,···

]
.

This leads to the recursion relation:

Ω(L+1) = 1
2

(
Ω(L) Ω(L)

Ω(L) −Ω(L)

)
. [7]

Up to a factor of
√

2, Ω(L) is the standard Hadamard matrix.
However, this formula differs from the one used by (1),(16)
and (13). Instead, the definition quoted in these papers adds a
factor of (−2)K to the coefficients f at order K. This discrep-
ancy was not compensated for by Park et al. when comparing
the two models. Because their Hadamard coefficients are a
factor of 2K larger than the RFA coefficients, the error on
these coefficients is also a factor of 2K larger.

Correcting for this factor, we find that the RFA and
Hadamard methods are identical, resulting in the exactly
the same landscape and parameterized by exactly the same
coefficients (appropriately re-indexed and scaled). This is true
regardless of what order the models are truncated at. Specifi-
cally, the Walsh-Hadamard transformation makes it possible
to directly compute the coefficients of the reference-free frame-
work for the full order model (with K = L). Because (as noted
by Park et al.) the coefficients in the reference-free framework
remain constant regardless of model order, the coefficients
of a lower order reference-free least squares model (i.e. with
K < L) also exactly match a corresponding subset of the coef-
ficients inferred using this reference-free Hadamard approach.
This exact correspondence can be verified numerically (see
Fig. 1B, 1I, and 2B). The Hadamard method can therefore
be preferable to the least squares method, as it is often faster
and yields the exact same coefficients. This remains true
in the presence of any amount of noise in the experimental
measurements.

However, the main drawback of the Hadamard approach
is missing data. The method will only perform correctly at
order K if the data is complete up to order K (16). Park et
al. attempted to address this by applying linear regression
with elastic net regularization to generate what they call their
“background-averaged” (BA) method, and make a number of
comparisons between RFA and BA. As they noted, the two
methods perform similarly in the two-sites scenario, which
is unsurprising as they are both essentially the same linear
regression, fitted with either least squares (for RFA) or elastic
net (for their “BA”). It should also be noted that in presence
of missing data, the reference-free least squares approach loses
its distinctive statistical properties. Notably, the average of
the phenotypes no longer serves as the intercept, and the
model coefficients become dependent on the maximal order
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of the inferred model. This is because missing data breaks
the connection between the least squares approach and the
Hadamard/Fourier transform (16). It is also important to
note that the equivalence between these two approaches no
longer applies when least squares estimation is modified to
include regularization terms (e.g., lasso or ridge regression;
see below for further discussion).

On interpreting the inferred landscapes

We have seen above that reference-free least squares landscape
inferred by Park et al. in their reanalysis of our CR9114-
H1 data (and many of the other 19 empirical data sets they
consider) is identical to the reference-based least squares land-
scape we originally inferred (up to considerations involving
“global” epistasis, which we return to below). The different
conclusions Park et al. draw about the extent and importance
of epistasis therefore reflect the different interpretations of
the coefficients in the two frameworks, rather than any true
difference in the inferred landscapes.

What are the key differences in interpretation between the
coefficients of the reference-free versus the reference-based
framework? In reference-free least squares model, the coeffi-
cients have the desirable property of being summary statistics
for the phenotype distribution. For example, f0 represents
the mean phenotype value, and fi is half the average effect
of the ith mutation. Because of this statistical interpretation,
and as Park et al. have noted, these coefficients do not de-
pend on the order K at which the inferred model is truncated.
However, the tradeoff for this desirable property is that, as
ensemble values, the reference-free least squares coefficients
are sensitive to the set of loci considered in the model. For
example, if we decide to fix one of the mutations, or to add
an additional locus to the data set, the reference-free least
squares coefficients will all change. In that sense, calling these
coefficients reference-free is misleading, because they depend
on which mutations are considered in the dataset.

By contrast, the reference-based least squares coefficients
capture interactions between mutations more directly. For
example, in our CR9114 and CR6261 datasets, we directly
measure binding free energy ∆G to hemagglutinin of each
antibody sequence variant. Because we expect these energies to
be additive, a natural null expectation is that a given mutation
i makes some change ∆∆Gi, potentially with some interactions
with other mutations. While this model is relatively simple
(e.g., it does not take into account large structural changes),
the coefficients of the reference-based least squares epistatic
model will correspond to these changes in binding free energy.
However, because the coefficients are not independent of the
order of the model, this interpretation is only valid if the model
already captures most of the relevant epistatic interactions.

These considerations highlight the fact that the reference-
free and reference-based epistasis frameworks serve distinct
purposes. Reference-free epistasis is often employed in ge-
nomics for phenotypes that are not directly biochemical (e.g.,
fitness and other complex traits) (16). In this case, any bio-
chemical meaning is usually lost. It is particularly relevant
in considering evolution in outcrossing populations, where
the model coefficients are then directly related to average
selection pressures. On the other hand, when looking at pro-
tein phenotypic properties, reference-based epistasis can be
more relevant. It is also more useful in analyzing mutational

trajectories, where model coefficients are directly related to
selective effects of individual substitutions. However, both
models will result in identical fit, and the coefficients of one
can be transformed easily into the coefficients of the other.

In both the reference-free and reference-based frameworks,
the number of coefficients increases exponentially with the
maximum order of the model, K. With more coefficients and
the same number of phenotypes, the impact of phenotype
measurement errors on the inferred coefficients also increases
exponentially. Specifically, and in both frameworks, the error
in the highest-order coefficients grows as 2K/2, where K is the
order of the model. Where the two frameworks differ is that in
reference-free least squares epistasis, low-order terms remain
stable regardless of the model order, meaning their associated
errors do not increase. By contrast, in reference-based least
squares epistasis, all the coefficient errors generally increase
with model order, at a speed that depends on the epistatic
structure. However this does not affect the error on the inferred
phenotypes (see Fig 1E, Fig 2E) – the two models are still
exactly identical, the error is simply distributed differently
across coefficients. Because both sets of coefficients can be
interconverted without any loss of precision, the choice of
representing in one framework rather than the other cannot be
made based on expected error, and instead should be guided
by the biological question at hand.

A key overall conclusion of Park et al.’s reanalysis is that pro-
tein sequence-function landscapes are simpler and less epistatic
than earlier work suggested. This conclusion rests primarily
on their finding that variance explained (or equivalently R2

of the predicted versus measured phenotypes) increases only
slightly with increasing model order. However, as we have
seen, the exact same conclusion can be drawn from our origi-
nal reference-based least squares analysis of the CR9114-H1
dataset (Fig. 2F), along with many of the 19 other empirical
landscapes. Why then did earlier work argue that high-order
epistasis is important? The basic reason is that variance ex-
plained is not the only measure of importance: high-order
epistasis can be widespread and significant while still not sub-
stantially increasing variance explained. This is particularly
clear from our simulated data. In these simulations, the third-
order terms have the same total magnitude as the pairwise
and additive terms. They are therefore widespread and signif-
icant, and and will certainly have a dramatic impact on the
accessible evolutionary trajectories across this landscape. Yet
adding these terms only slightly increases variance explained
and cross-validated R2 (Fig. 2E,F note the logarithmic scale).

The relationship between variance explained, cross-
validated R2, and model order for the CR9114-H1 dataset
(and many of the other 19 empirical landscapes) has a similar
form to our simulated data. Thus it entirely plausible that
high-order terms are widespread and significant, as claimed in
the original analysis of this data, even though their contribu-
tion to variance explained is limited. This is supported both
by the cross-validation and by our estimates of the measure-
ment errors in high-order coefficients in our original analysis.
For example, if σ is the standard error in our phenotype
measurements, the error in the coefficients in our original
reference-based least squares inference of the CR9114-H1 land-
scape at order 5 is ≈ σ/

√
216−5 ≈ 0.005. This is negligible

compared to the value of the epistatic coefficients we deemed
significant (some order 5 coefficients reach 0.5; see Fig 3F in
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(3)). Thus this epistasis is well supported by the data and is
potentially both biochemically and evolutionarily significant,
despite not contributing substantially to overall phenotypic
variance explained.

Finally, we emphasize that the equivalence between the
reference-free and reference-based epistasis frameworks only
holds if coefficients are inferred through least square minimiza-
tion. This is what is used by Park et al. for their reference-
free analyses (RFA), and what was used by us in the original
analysis of our datasets. The reference-based approach that
they compare their RFA model to infers coefficients recur-
sively, beginning by subtracting the single reference phenotype
from each individual measurement. The coefficients generated
by this method indeed have more uncertainty, because they
depend sensitively on measurement errors in one or a few refer-
ence strains (Fig1C,E , Fig2C,E). In most cases this approach
cannot be recommended.

We also note that because the coefficients represent differ-
ent quantities (despite the overall model being the same), the
reference-free and reference-based frameworks will no longer
lead to exactly identical models if there is some regularization
imposed on the inference of the coefficients. For example,
if one uses Lasso or elastic net regularization, rather than
plain linear regression, both models can perform differently.
However, in these cases the model that performs better will
be the one for which the regularization is more appropriate
(i.e., for any particular landscape the regularization penalty
for the true model coefficients will be smaller in one or the
other framework; that framework will perform better for that
landscape). It is our view that when the measured phenotype
reflects some underlying biochemical property (e.g., a free
energy of binding or folding) it is more appropriate to regular-
ize for sparsity in the reference-based framework, because we
expect interactions between sites to only occasionally affect
these properties. When the measured phenotype is some more
complex phenotype, this may not be true. However, this is
merely speculation, and much further empirical work will be
needed to determine whether one approach is typically better
or if the appropriate framework for regularization tends to
vary depending on the specific context.

Global versus idiosyncratic epistasis

Beyond the formalisms described above, an alternative ap-
proach to describing sequence-function landscapes is to view
deviations from additivity as arising from a nonlinear trans-
formation of an underlying, unobserved additive phenotype.
In this approach, non-additive phenotypes can be transformed
into their underlying additive counterparts by applying a sim-
ple nonlinear transformation, which represents the “nonspe-
cific” or “global” epistasis present in the dataset (17, 18). In
principle, this transformation can capture (1) the relationship
between the measured phenotype and an underlying additive
phenotype, (2) measurement noise or limits on the dynamic
range, and (3) a combination of specific epistatic effects, like
those described above. Following transformation, any remain-
ing deviations from additivity are attributed to true specific
epistatic effects.

This approach has been widely implemented by the pro-
tein evolution field, and these studies typically observe fewer
significant epistatic coefficients following the non-linear trans-
formation (19–21). Mathematically, this result is obvious:

specific (“idiosyncratic”) epistatic effects can always be cap-
tured by a global transformation, and global epistasis can
always be represented by specific epistatic coefficients. The
question then becomes: which representation of the genotype-
phenotype architecture is more meaningful?

As an example of a system where idiosyncratic epistasis
is the correct formalism, we simulated a twelve-site (L = 12)
sequence-function landscape featuring only additive terms
plus four pairwise epistatic coefficients (and no global non-
specific epistasis). We inferred a first-order landscape using
the equivalent reference-based and reference-free least squares
approaches. We then compare the predictions from this first-
order (additive-only) model to the simulated phenotypes. We
find that a noticeable non-linearity emerges (Fig 3A). It would
be natural to misconstrue this nonlinearity as a limitation in
the dynamic range of the measurement and attempt to model
it using a global nonlinear transformation. However, in this
case applying the nonlinear transformation would obscure the
genuine interactions and reduce the accuracy of the first-order
linear coefficients.

This example illustrates why, in contrast to Park et al., we
argue that whether a model of nonspecific epistasis is appro-
priate depends on the biological question. In cases where the
measured phenotypes are on an arbitrary or relative scale (e.g.,
some measure of “fitness”), a nonlinear transformation may
be appropriate to reveal an unmeasured additive phenotype
(17). In contrast, in cases where the measured phenotypes are
a thermodynamic state variable (e.g., free energy of binding),
it is natural to expect that they behave additively without any
such transformation (22). Applying a nonlinear transformation
to this type of phenotype can still potentially reduce experi-
mental noise or specific epistatic effects. However, rather than
capture some unmeasured additive phenotype, this transforma-
tion may instead distort the phenotypic data and obscure its
biological interpretation. Thus, there is an inherent trade-off
to transforming additive phenotypic data: the ideal inference
will reduce noise without removing biological features.

Even when the dynamic range of the experimental pheno-
type measurements is limited, a global epistasis inference may
not be the best choice. Whenever possible, it is more appropri-
ate to directly measure the experimental nonlinearities, and
use this measured function. When this is not possible, and
when the dynamic range of the experiment is well-defined, a
censored regression model (23) (also known as a Tobit model)
is a more appropriate way to capture information from phe-
notypes outside the dynamic range. This approach avoids
the risk that fitting an arbitrary nonlinear function to the
data would distort the information within the range. This ap-
proach is particularly useful when, for example, large parts of
a protein binding affinity landscape consists of sequences that
have no detectable binding; we used it for this reason in our
analysis of a SARS-CoV-2 RBD landscape (6). Alternatively,
if specific mutations cause genotypes to fall outside the experi-
mental dynamic range, those mutations can be excluded from
the epistatic inference, and can be interpreted as essential for
having some measurable phenotype (as we did in our original
analyses of the CR9114-H3, CR9114-FluB, and CH65-SI06
landscapes (3, 4)).

The trade-off between inference of global epistasis versus
idiosyncratic effects will vary for each dataset and can be
evaluated empirically, as we did in Phillips et al. 2021 ((3);
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Fig. 3. (A) Comparison of a first-order model with normalized phenotype in a simulated 12-site, second-order landscape. The first-order coefficients are randomly generated
and only four second-order biochemical coefficients are non-zero (see graph above). (B) Measured binding affinity versus predictions of the first-order epistasis model for our
CR9114-H1 empirical landscape, with genotype at two specific loci highlighted. (C) Binding affinity distribution for CR9114-H1 data (orange) and CR6261-H9 data (purple). (D)
Two example titration curves for H1 (orange) and H9 (purple) with high KD values. Cross markers show inferred fluorescence levels, while the fitted curve is represented by the
line. A vertical dashed line indicates the KD value derived from the fit. (E) Similar representation for examples with low KD values. (F) Hill plot for CR9114-H1, including Hill
coefficient fit result (n = 0.8).

see Appendix 2), by determining the appropriate nonlinear
transformation and inferring specific epistatic effects on both
transformed and untransformed data. For these datasets, we
find that the phenotypes, which are free energies of binding,
can be transformed onto an “additive” scale through a logistic
function (similar to the function described by Park et al).
Following logistic transformation, the optimal epistatic models
are quite similar to those for the untransformed data, differing
at most by one order. Because the transformed data did not
produce substantially more concise models, we examined how
the logistic transformation was altering the structure of the
data. Across the datasets, there are many genotypes with
exceedingly low or high affinity, and the logistic transforma-
tion distributes these genotypes to remove nonlinearity from
the data. Though this transformation could be removing a
technical artifact from the data (e.g., limited dynamic range),
this is unlikely because affinities below the dynamic range
correspond to non-specific binding (24), and the maximum
phenotype is well within the dynamic range (Fig 3C,D,E)
(3, 25). Furthermore, the aggregated Hill plots from our data
(Fig 3F) validate that the Hill equation we employ to derive
the dissociation constant is a good fit across the range of
concentrations we investigate. Conversely, in several cases, the
“pileup” of genotypes at low and high affinity corresponded
to the presence of one or more specific mutations (Fig 3B).
Thus, rather than reducing error, in this case we found that
the global transformation distorted biological interpretations
of the genotype-to-phenotype map.

Discussion

We have shown here that least squares inference within the
reference-free framework (Park et al.’s RFA model) and least
squares inference within the reference-based framework (used
in the original analysis of many of the 20 empirical pro-
tein sequence-function landscapes) lead to exactly equivalent
sequence-function landscapes. We emphasize that this rela-

tionship has been demonstrated previously (see e.g. (16));
we simply rehash it here in the context of the recent work
by Park et al. (1). As we discuss above, the choice between
these models is primarily a question of how the coefficients are
interpreted. Beyond this, the models are exactly equivalent:
the inferred coefficients can be interconverted using a simple
linear transformation, and they are identically susceptible to
noise and missing data. Both models are far superior to the
subtraction-based RBA method, which is very sensitive to
experimental noise (and which was not used in the original
analysis of most of the empirical datasets). We also show that
Park et al.’s RFA model is identical to the “background aver-
aged” Hadamard approach, with the deviations they report
resulting from a difference in conventions.

Although the RBA-LS and RFA approaches are exactly
equivalent inference methods, and lead to identical sequence-
function landscapes, it is important to note that the reference-
based and reference-free coefficients have different interpreta-
tions and are inferred with different degrees of precision. As
Park et al. show, the reference-free coefficients can typically be
estimated with higher accuracy than the reference-based coef-
ficients, at least for the classes of sequence-function landscapes
they focus on in their simulations. It may seem paradoxical
that inference methods written in the two frameworks can
be equivalent, and yet one set of coefficients is inferred (by
either method) less accurately than the other. However, this is
actually a common phenomenon in statistical inference. Con-
sider for example a simple toy example: imagine we make
many measurements of two independent quantities, X and
Y . We then use least-squares inference to infer X and Y
(call this method XY-LS), or alternatively to to infer Z =
X+Y and W = X-Y (call this method ZW-LS). Under certain
standard assumptions about the distributions of errors in our
measurements, our estimates of X and Y will typically be
more accurate than our estimates of Z and W . However, the
two sets of coefficients are of course exactly equivalent; we
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can interconvert them easily and it is clear that XY-LS and
ZW-LS are equivalent methods. The estimates of Z and W
are less accurate because the errors in these quantities are
anticorrelated, so when we convert them to X and Y we reduce
the error.

As in this toy example, reference-based and reference-free
coefficients are related by linear transformations, so it is
not surprising that some sums or differences of quantities
have higher or lower relative error. In fact, inferences of the
reference-based coefficients (either by RBA-LS or RFA fol-
lowed by conversion) are often not only less accurate, but also
biased (i.e. they will not converge to the true values as the
amount of data used for inference increases). It is tempting
to argue that it is therefore somehow “better” to character-
ize protein sequence-function landscapes in the reference-free
framework. However, the reference-based coefficients are phys-
ical properties of the protein (e.g. in our CR9114 datasets the
first-order terms represent the effects of specific initial amino
acid substitutions on antigen binding affinity). The fact that
these physical properties can be estimated less accurately than
other properties of the protein (e.g. the reference-free coeffi-
cients) is interesting, but does not imply that the reference-free
framework provides the best way of interpreting the protein
architecture. For example, the epistasis relevant for evolution
from a germline to somatic antibody is directly related to the
reference-based and not the reference-free coefficients, so the
simplicity or complexity of the landscape is best assessed in
those terms. By contrast, the epistasis relevant for evolution
involving recombining loci in an outcrossing population can
be more directly related to the reference-free coefficients, so
in these cases it is more appropriate to assess the simplicity
of the landscape in those terms.

Prior to implementing either the reference-based or
reference-free inference approach, it may be necessary to trans-
form the measured phenotypes onto an additive scale, particu-
larly if the phenotype is not expected to behave additively or
if the measurements are noisy and/or are affected by limited
experimental dynamic range. If such a transformation dra-
matically reduces the complexity of the resulting model, the
resulting more concise model may have improved biological
interpretability. However, apparent global effects can also be
caused by a few specific idiosyncratic interactions, in which
case misinterpreting them as a nonlinear transformation can
obscure important effects. Because of these considerations, in
determining whether a nonlinear transformation of the data is
appropriate, we recommend (1) considering whether the data
are expected to behave additively, (2) confirming that pheno-
types fall within the assay dynamic range, (3) determining
whether the nonlinearity is attributable to a specific epistatic
interaction, and (4) evaluating whether the transformation
produces a more concise model.

In our view, our results show that high-order epistasis is
indeed critical to understanding many of the 20 landscapes
reanalyzed by Park et al., contrary to their overall conclu-
sion. In some cases, we concur that almost all phenotypic
variance can indeed be explained with models that include
only additive effects and pairwise epistasis. However, as ex-
plained above, this does not mean that high-order terms are
not widespread or that they do not play a critical role in
shaping the space of accessible evolutionary trajectories. In
other cases, where a substantial fraction of sequences lead

to nonfunctional proteins (with phenotypes below the exper-
imental threshold of detection), we argue that this is often
indicative of strong high-order epistasis rather than a limited
dynamic range, contrary to the suggestion of Park et al. This
is likely to be particularly critical for mutational landscapes
relevant for the gain of a new function, such as the formation
of protein-protein interfaces that involve contacts between mul-
tiple residues, with individual contacts insufficient for binding.
In such cases, we expect several mutations to be individually
neutral but in combination to lead to detectable binding. This
is arguably a particularly important form of high-order epis-
tasis, and can easily cause a large fraction of genotypes to
have phenotypes at the lower threshold for detectability (as
in our CR9114-FluB dataset). Obscuring this effect (e.g., by
incorrectly inferring strong additive effects for each mutation
that lead to unphysically weak binding affinities, and then
applying a nonlinear transformation to map these to the lower
limit of detection) masks a key feature of the landscape that
is critical for understanding constraints on evolution.

Methods

For more in-depth methods, refer to Phillips, Lawrence et al.
Appendix 2 (3). Here, we focus on the key elements of the
above analyses. For Fig2A-F, we use the CR9114-H1 dataset
(3). Filtered KD values can be found on the original github.
The code used to generate the figures is here.

Both least square models are inferred by numerically solving
the linear equations 1 or 2. We employ the ‘scipy.linalg.lstsq‘
function (26), with the ‘gelsd‘ solver. For cross-validation, we
randomly choose 80% of all genotypes for training and assess
the R2 score on the remaining genotypes. The model at order
K was inferred by solving equation 2 using only the phenotypes
with K or less than K mutations. The resulting system is
fully determined with as many equations as unknowns. This
formulation is equivalent to (and simpler to implement than)
the one described in Park et al.

The generated model in Fig 1 features L = 12 sites. The in-
tercept follows a normal distribution centered at 2 with a stan-
dard deviation of 1. Its n-th order coefficients (reference-based)
are normally distributed with a mean of 0 and a standard

deviation calculated as 2 ×
√(

L
n

)−1. The scaling of epistatic
coefficients is selected such that the sum of all coefficients
at order n is independent of n. Phenotypes are generated
from these coefficients, with a small added noise (normal dis-
tribution, standard deviation 0.05, except in Fig 1G,I). For
Fig 1I, the noise level is increased to better show the difference
between real and inferred values (standard deviation 10).

The model in Fig 3 has L = 12 sites with a randomly
generated intercept (mean 2, scale 1) and first-order coefficients
(mean 0, scale 0.2). Only four second-order coefficients are
non-zero (i-j, j-k, k-l, i-k), each set to −1.

The equation for the fitted curve in Fig 3D and Fig 3E is:

log(F ) = log10

(
A × c

c + KD
+ B

)
Here, F is the fluorescence, c is the concentration, and A,
B, and KD are the estimated coefficients. Mean receptor
occupancy is given by Y = F −B

A
, and the value plotted in

Fig 3F is:

log10

(
Y

1 − Y

)
= log10(c) − log10(KD)
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We adjust the intercept such that log10
(

Y
1−Y

) ∣∣∣
c=10−7

= 0,
making the curves overlap regardless of KD value. The slope
of the curve gives the Hill coefficient (27).

Acknowledgements

We thank Alief Moulana and other members of the Desai
lab for helpful comments on the manuscript. TD acknowl-
edges support from the Human Frontier Science Program
Postdoctoral Fellowship, AMP acknowledges support from the
Howard Hughes Medical Institute Hanna H Gray Postdoctoral
Fellowship, and MMD acknowledges support from grant PHY-
1914916 from the NSF and grant GM104239 from the NIH.
Computational work was performed on the FASRC Cannon
cluster supported by the FAS Division of Science Research
Computing Group at Harvard University.

1. Y Park, BPH Metzger, JW Thornton, The simplicity of protein sequence-function landscapes.
bioRxiv 556057 (2023).

2. BP Metzger, Y Park, TN Starr, JW Thornton, Epistasis facilitates functional evolution in an
ancient transcription factor. eLife 12, e88737 (2023).

3. AM Phillips, et al., Binding affinity landscapes constrain the evolution of broadly neutralizing
anti-influenza antibodies. eLife 10, e71393 (2021).

4. AM Phillips, et al., Hierarchical sequence-affinity landscapes shape the evolution of breadth in
an anti-influenza receptor binding site antibody. Elife 12, e83628 (2023).

5. A Moulana, et al., Compensatory epistasis maintains ace2 affinity in sars-cov-2 omicron ba. 1.
Nat. Commun. 13, 7011 (2022).

6. A Moulana, et al., The landscape of antibody binding affinity in sars-cov-2 omicron ba. 1
evolution. Elife 12, e83442 (2023).

7. NC Wu, et al., Major antigenic site b of human influenza h3n2 viruses has an evolving local
fitness landscape. Nat. communications 11, 1233 (2020).

8. DM Weinreich, NF Delaney, MA DePristo, DL Hartl, Darwinian evolution can follow only very
few mutational paths to fitter proteins. science 312, 111–114 (2006).

9. DW Anderson, F Baier, G Yang, N Tokuriki, The adaptive landscape of a metallo-enzyme is
shaped by environment-dependent epistasis. Nat. Commun. 12, 3867 (2021).

10. AC Palmer, et al., Delayed commitment to evolutionary fate in antibiotic resistance fitness
landscapes. Nat. communications 6, 7385 (2015).

11. TLV Lite, et al., Uncovering the basis of protein-protein interaction specificity with a combinato-
rially complete library. Elife 9, e60924 (2020).

12. CD Aakre, et al., Evolving new protein-protein interaction specificity through promiscuous
intermediates. Cell 163, 594–606 (2015).

13. FJ Poelwijk, M Socolich, R Ranganathan, Learning the pattern of epistasis linking genotype
and phenotype in a protein. Nat. Commun. 10, 4213 (2019).

14. NC Wu, L Dai, CA Olson, JO Lloyd-Smith, R Sun, Adaptation in protein fitness landscapes is
facilitated by indirect paths. Elife 5, e16965 (2016).

15. AS Jalal, et al., Diversification of dna-binding specificity by permissive and specificity-switching
mutations in the parb/noc protein family. Cell reports 32 (2020).

16. FJ Poelwijk, V Krishna, R Ranganathan, The context-dependence of mutations: A linkage of
formalisms. PLOS Comput. Biol. 12, 1–19 (2016).

17. ZR Sailer, MJ Harms, Detecting high-order epistasis in nonlinear genotype-phenotype maps.
Genetics 205, 1079–1088 (2017).

18. J Otwinowski, DM McCandlish, JB Plotkin, Inferring the shape of global epistasis. Proc. Natl.
Acad. Sci. United States Am. 115, E7550–E7558 (2018).

19. RM Adams, JB Kinney, AM Walczak, T Mora, Epistasis in a fitness landscape defined by
antibody-antigen binding free energy. Cell systems 8, 86–93 (2019).

20. KS Sarkisyan, et al., Local fitness landscape of the green fluorescent protein. Nature 533,
397–401 (2016).

21. ZR Sailer, MJ Harms, High-order epistasis shapes evolutionary trajectories. PLoS Comput.
Biol. 13, e1005541 (2017).

22. JA Wells, Additivity of mutational effects in proteins. Biochemistry 29, 8509–8517 (1990).
23. J Tobin, Estimation of relationships for limited dependent variables. Econometrica 26, 24–36

(1958).
24. FD Batista, MS Neuberger, Affinity dependence of the b cell response to antigen: A threshold,

a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).
25. I Jarmoskaite, I AlSadhan, PP Vaidyanathan, D Herschlag, How to measure and evaluate

binding affinities. Elife 9, e57264 (2020).
26. P Virtanen, et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat.

Methods 17, 261–272 (2020).
27. S Goutelle, et al., The Hill equation: a review of its capabilities in pharmacological modelling.

Fundamental & Clin. Pharmacol. 22, 633–648 (2008).

10 | Dupic et al.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.29.577800doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577800
http://creativecommons.org/licenses/by-nd/4.0/

