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ABSTRACT

Two important problems affect the ability of asexual populations to accumulate beneficial mutations
and hence to adapt. First, clonal interference causes some beneficial mutations to be outcompeted by
more-fit mutations that occur in the same genetic background. Second, multiple mutations occur in some
individuals, so even mutations of large effect can be outcompeted unless they occur in a good genetic
background that contains other beneficial mutations. In this article, we use a Monte Carlo simulation to
study how these two factors influence the adaptation of asexual populations. We find that the results
depend qualitatively on the shape of the distribution of the fitness effects of possible beneficial mutations.
When this distribution falls off slower than exponentially, clonal interference alone reasonably describes
which mutations dominate the adaptation, although it gives a misleading picture of the evolutionary
dynamics. When the distribution falls off faster than exponentially, an analysis based on multiple
mutations is more appropriate. Using our simulations, we are able to explore the limits of validity of both
of these approaches, and we explore the complex dynamics in the regimes where neither one is fully
applicable.

THE accumulation of beneficial mutations drives
adaptation and evolutionary innovation. Yet de-

spite its central importance, the evolutionary dynamics
by which a population accumulates such mutations are
poorly understood. To better understand adaptation in
any particular system, we must ask two questions. First,
what is the range of beneficial mutations that are
possible given the particular environmental challenge
and genetic state of the population? Second, given this
set of possibilities, what will actually happen probabi-
listically?

The first of these questions is fundamentally empirical,
although Orr and Gillespie have argued on general the-
oretical grounds that the distribution of fitness effects of
beneficial mutations should be exponential (Gillespie

1983, 1984, 1991; Orr 2002, 2003). A variety of recent
experimental studies are roughly consistent with this ex-
ponential expectation (Imhof and Schlotterer 2001;
Rozen et al. 2002; Sanjuan et al. 2004; Depristo et al.
2005; Lunzer et al. 2005; Rokyta et al. 2005; Kassen and
Bataillon 2006). However, beneficial mutations are rare
and their fitness effects are difficult to measure precisely,
so these experimental studies are generally based on
relatively few total mutations and have correspondingly
limited resolution. The tail of the distribution, which
refers to the rare mutations that confer a very large fitness

benefit, is particularly hard to measure. Further, the spe-
ctrum of beneficial mutations available to a population
is likely to vary with genetic background, history, and
the environment, so it is unclear how far we can gen-
eralize from individual experimental studies. Thus it
is still unknown whether in general the distribution of
mutant effects, particularly of large-effect mutations, is
exponential.

Even if we knew the precise distribution of mutational
possibilities, it is not clear how a population would
evolve. Because mutations are random events, there will
inevitably be some randomness in how a given popula-
tion adapts. What we want to understand is the statistics
of which beneficial mutations are more or less likely to
contribute to adaptation and the dynamics by which
they do so. That is, given a set of things that are possible,
what is the probability that any given one of them will
actually occur and contribute to the adaptation of the
population? What is the evolutionary dynamics by which
they do so? In this article, we focus on how the
distribution of mutations that actually occur and spread
through the entire population (i.e., fix), rf(s), depends
on the distribution of mutations that are possible, r(s),
where s is the fitness benefit from a single mutation. We
explore these features as a function of the population
size N and the overall mutation rate U. Besides its
importance in understanding adaptation, this question
is relevant in practical attempts to measure the distri-
bution of possible mutations, since rf(s) is much easier
to measure experimentally than r(s). We also examine
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some aspects of the dynamics by which the mutations
that fix do so.

There are a number of effects that make the distri-
bution of mutations that fix different from the distribu-
tion of all possible mutations. First, most beneficial
mutations that occur are lost rapidly by random genetic
drift. If a beneficial mutation is particularly lucky, it will
avoid this stochastic loss and reach a high enough
frequency that thereafter its dynamics become domi-
nated by selection rather than by drift. We refer to this
process as the establishment of the beneficial mutation.
Mutations of larger effect are more likely to survive
random drift—they have a higher establishment prob-
ability—so this will tend to bias the distribution of
mutations that actually fix toward larger-effect muta-
tions, relative to the distribution of mutations that are
possible (Haldane 1927; Rozen et al. 2002).

Once a mutation has become established, it will fix
provided that nothing else interferes. However, this
fixation takes time, and other beneficial mutations can
become established in individuals without the original
mutation before the original mutation can fix. In an
asexual population, if one or more of these other
mutations has a larger fitness benefit than the original
mutation, the original mutation will eventually be out-
competed and driven to extinction. This process is
known as clonal interference (Gerrish and Lenski 1998;
Gerrish 2001; Wilke 2004). The same process also
operates in a sexual population, where it is referred to as
the Hill–Robertson effect, but is mitigated because the
two competing mutations can potentially recombine
onto the same genome and fix together (Hill and
Robertson 1966). In this article, we focus exclusively
on asexual populations, where this effect is strongest.

In a small population with a small to modest mutation
rate, the establishment of a beneficial mutation is an
extremely rare event. Thus clonal interference is unlikely
to occur, and the distribution of mutations that fix is
simply the distribution of mutations that establish. In a
larger population, or one with a higher mutation rate,
however, clonal interference can be extremely common.
This is true whenever the population size times the
beneficial mutation rate is large compared to one (the
precise condition is actually slightly weaker than this), so
clonal interference is likely common in a wide range of
microbial and viral populations, especially in light of
recent studies showing that beneficial mutation rates in
bacteria and yeast are relatively high ( Joseph and Hall

2004; Perfeito et al. 2007). Because small-effect muta-
tions aremore likely to be interferedwith than large-effect
mutations, clonal interference biases the distribution of
mutations that fix toward those of large effect. This bias
has been analyzed in detail both theoretically (Gerrish

and Lenski 1998; Wilke 2004) and experimentally (De

Visser et al. 1999; De Visser and Rozen 2005).
These analyses of clonal interference consider only

mutations that occur in the wild-type population; they

assume that the largest such mutation is the one that
fixes. The possibility of double mutations in a single
organism is neglected. But, in fact, even if a more-fit
mutation B occurs before an earlier but less-fit mutation
A fixes, A may still survive, because an individual with
mutation A can get another mutation C such that the
A-C double mutant is more fit than B. Recently, Desai

and Fisher (2007) showed that whenever clonal in-
terference is important, these multiple mutations are
also at least of comparable importance—and, in fact,
many large asexual populations will often routinely have
triple or quadruple mutations (Desai et al. 2007).
Because small-effect mutations are more common than
mutations of larger effect, they are more likely to form
double mutants. Thus the possibility of multiple muta-
tions biases the distribution of mutations that fix back
toward those of smaller effect. In short, it will often be
the case that getting two small-effect mutations is more
common than getting a single (rarer) large-effect
mutation. This effect depends on the shape of the dis-
tribution of mutational effects: the rarer large-effect mu-
tations are compared to small-effect ones, the stronger
the multiple-mutation effect should be. The importance
of this effect also depends on population size and mu-
tation rate, though in a somewhat different way than
clonal interference does.

In addition to affecting the distribution of mutations
that fix, multiple mutations also have an important
impact on the evolutionary dynamics. Different individ-
uals have different numbers and strengths of beneficial
mutations, so a large population can maintain sub-
stantial variation in fitness. It is only those mutations
that occur in the most-fit individuals that have the best
chance of surviving and contributing to the long-term
adaptation of the population. Thus the dynamics of
adaptation are slowed down, limited by the rate at which
good mutations occur in good backgrounds.

Because the distribution of beneficial mutations that
fix depends in a subtle way on both clonal interference
and multiple-mutation effects, it cannot be fully un-
derstood without a complete model that includes both.
No analytical results from such a model yet exist, though
Kim and Orr (2005) have analyzed a model that
includes some aspects of both effects and Pepin and
Wichman (2008) have studied an experimental system
in which both appear to occur. In this article, we address
this question using Monte Carlo simulations of the full
evolutionary dynamics of large asexual populations,
including both clonal interference and multiple-muta-
tion effects. Our analysis is in the spirit of Park and
Krug (2007), though we focus more directly on the
interplay between clonal interference and multiple
mutations. We consider several distributions of possible
mutational effects r(s) and determine the distribution
of mutations that fix, rf(s), across a range of population
sizes and mutation rates. We find that clonal interfer-
ence analysis provides a good approximation for some
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aspects of rf(s) when large-effect mutations are suffi-
ciently common relative to small-effect ones. When
large-effect mutations are more rare, we find that
an approximation focusing on multiple-mutation ef-
fects, proposed by Desai and Fisher (2007), is more
appropriate.

We next turn to the evolutionary dynamics by which
beneficial mutations fix. Using our Monte Carlo ap-
proach, we simulate the evolutionary dynamics. We
show that multiple-mutation dynamics involving muta-
tions within a narrow range of fitness effects describe
the evolution. We describe how this range of fitness
effects depends on r(s) and the other parameters and
how the mutations within this range accumulate.

MODEL AND SIMULATION METHODS

We consider an asexual population of N haploid
individuals with an overall mutation rate Ub toward
beneficial mutations. Our model also applies to asexual
diploids, where the fitness effects of mutations refer to
their effects in the individual in which they occur (i.e., if
the mutation creates a heterozygote the relevant fitness
effect is given by the difference in fitness between the
original state and the newly mutated heterozygote, and
analogously if the mutation creates a homozygote).
Given that a beneficial mutation occurs, we assume that
its fitness effect is between s and s 1 ds (i.e., the fitness of
the organism increases by a factor between e s and e s1ds)
with probability

rðsÞds ¼ e�ðs=sÞb

sGð1 1 1=bÞ ds; ð1Þ

where the two parameters s and b characterize the
shape of the distribution and G is the Gamma function.
This form for r(s) allows us to explore the importance of
the shape of the tail of the distribution of mutant
effects—that is, the relative rareness of large-effect
mutations compared to small-effect ones. When b ¼ 1,
the distribution of mutant effects is exponential with
mean s. When b . 1, the distribution of mutant effects
falls off faster than exponentially (i.e., large-effect
mutations are more rare), and when b , 1 the
distribution of mutation effects falls off more slowly
than exponentially (large-effect mutations are more
common). Note that this distribution is normalized to 1,
so beneficial mutations with effect between s and s 1 ds
occur at a rate Ubr(s)ds. The average fitness effect of a
beneficial mutation, �s, is

�s ¼ s
Gð2=bÞ
Gð1=bÞ ; ð2Þ

so s is exactly equal to the average effect only for b ¼ 1.
We assume that there is no epistasis, so that an
individual with two mutations of effect s1 and s2 has

fitness es11s2 (or more generally for n mutations, the
fitness is

Qn
i¼1 esi ).

We neglect deleterious mutations, as Rouzine et al.
(2003) and Desai and Fisher (2007) have shown
theoretically that they are not expected to qualitatively
affect the rate or dynamics by which a large asexual pop-
ulation adapts when beneficial mutations are relatively
common, which is the situation we study here (Rouzine

et al. 2003 verified this expectation with simulations).
When deleterious mutations become extremely com-
mon, beneficial mutations are sufficiently rare, or the
population sizes are small enough that Muller’s ratchet
becomes important, this approximation breaks down.
We do not study any of these situations here, but several
other authors have analyzed them using both theoret-
ical and simulation approaches (Orr 2000; Johnson

and Barton 2002; Rouzine et al. 2003; Campos and De

Oliveira 2004).
We assume dynamics with discrete generations. In

each generation, we first randomly select which individ-
uals will survive to the next generation, weighted by
each individual’s fitness. The overall survival probabil-
ities are normalized so that on average half of the
population will survive to the next generation. Each
surviving individual then duplicates to create two iden-
tical individuals in the next generation. Finally, each of
these individuals in the next generation has a probabil-
ity Ub of acquiring a new beneficial mutation. We then
repeat this algorithm for the subsequent generation. We
record all the information about the genetic state of the
population at each step. All simulations were checked to
ensure that the results were extracted after a steady state
had been achieved. Note that this algorithm does not
enforce an exact population size N at each step, but
rather keeps the average population size equal to N.

These evolutionary dynamics have the advantage of
being fast to simulate, allowing us to explore a greater
range of parameters in a reasonable amount of compu-
tation time. However, they are slightly different from
standard Wright–Fisher dynamics. It is not clear which
of these models is the best representation of any partic-
ular population, but our model might be expected
to correspond to a bacterial or yeast population that
divides by binary fission in a chemostat (or that fluc-
tuates in size, with an appropriately defined effective
population size). The differences between models do
lead to small differences in the stochastic dynamics
while lineages are rare and thus are expected to cause
minor modifications to the evolutionary dynamics.
However, we have also simulated the standard Wright–
Fisher dynamics for many of the parameters we describe
in this article, and the results are all qualitatively similar.

To test the assumption that deleterious mutations can
be neglected, we have also carried out a more limited
set of simulations of a model that includes deleteri-
ous mutations. For these simulations, we assume that
deleterious mutations occur at an overall rate Ud. Given
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that a deleterious mutation occurs, we assume that it has
a fitness cost drawn at random from an exponential
distribution. The results from these simulations are
nearly identical to those from simulations that neglect
them, justifying our assumption, with a few minor
differences that are noted in the results section.

PREVIOUS THEORY

In large asexual populations, the effects of clonal
interference and multiple mutations interact in a subtle
way. As noted in the Introduction, analytic results are
difficult to obtain in this complex situation, and no
complete theory yet exists. Instead, two different theo-
retical approaches have been proposed. The first fo-
cuses exclusively on the clonal interference effect, while
the second focuses on multiple mutation dynamics.
In this section, we briefly summarize the relevant
theoretical predictions given by each of these two ap-
proaches, as well as our expectations for small popula-
tions where neither effect matters. We then compare
these predictions to our simulations in subsequent
sections.

Definitions and small populations: We begin by
considering populations that are sufficiently small that
neither clonal interference nor multiple mutations will
occur [this requires NUb>1=ln½N s� (Desai and Fisher

2007)]. In these populations, the distribution of muta-
tions that fix, rf(s), equals the distribution of mutations
that establish. We expect

rfðsÞ ¼ pðsÞrðsÞ; ð3Þ

valid for small N and Ub, where p(s) is the establishment
probability. Note that by convention we assume rf(s) is
not normalized; this makes various calculations much
more transparent. In our model, for N ?1 this estab-
lishment probability is given by

pðsÞ ¼ 1� e�2s

1� e�2Ns ; ð4Þ

where s is the fitness advantage relative to the back-
ground population. Note that despite slightly different
stochastic dynamics, this establishment probability is
identical to that of the Wright–Fisher model. When
Ns>1, we have pðsÞ � 1=N , while for Ns?1 but s>1 we
have p(s) � 2s. This small-population limit of rf(s),
which is the distribution of mutations that establish, is
sometimes called the distribution of contending muta-
tions (Rozen et al. 2002). We denote it by rc(s).

To determine how beneficial mutations of different
effects contribute to the overall adaptation of the
population, we need to weight mutations by their fitness
effects. That is, a single fixed mutation with effect 2s
contributes the same amount to the adaptation of the
population as two mutations with effect s. Thus we

define R(s) [ srf(s) as the distribution of the relative
contributions to the overall adaptation as a function of s.
The integral of R(s) from s1 to s2 is the total contribution
of mutations of size between s1 and s2 to the adaptation.

Using R(s), we can study which mutations are most
important. We expect that mutations of very small effect
will not contribute substantially to adaptation, because
they confer such a small advantage (and in larger
populations they are also strongly suppressed by clonal
interference). On the other hand, mutations of very
large effect will be too rare to contribute substantially
(and in larger populations may be impeded by multiple
smaller mutations). Thus we expect that typically R(s)
will have a peak at some intermediate value of s, with
some range of mutations around this that contribute
substantially to adaptation. This is indeed what we find.
We characterize R(s) by its mean, which we call s̃ [to be
precise, we define s̃ [

Ð ‘

0 sRðsÞ=
Ð ‘

0 RðsÞ]. We estimate
the width of the range of mutations around the mean
that contribute substantially to the evolution by the
standard deviation of R(s) around s̃, which we call SD(s).
From rf(s), we can easily calculate the R(s), and hence
also the s̃ and SD(s), relevant for populations so small
that neither clonal interference nor multiple mutations
occur.

As beneficial mutations accumulate, the population
adapts. We define the rate of adaptation, v, to be the rate
at which the average fitness of the population increases.
In the small-population limit, v is simply the rate at
which mutations destined to establish occur times the
fitness effect of these mutations.

Clonal interference analysis: We now turn to a de-
scription of the first theoretical approach to the adapta-
tion of large populations, which focuses on clonal
interference and neglects the possibility of multiple
mutations (Gerrish and Lenski 1998; Wilke 2004). In
this analysis the probability that a beneficial mutation
fixes is the probability that it establishes and then fixes
before another more-fit mutation establishes. Gerrish

and Lenski (1998) found that given that a mutation of
effect s has established, the expected number of more-
fit mutations establishing before the original mutation
fixes is roughly

lðsÞ � NUb

s
ln N

ð‘

‘

pðxÞrðxÞdx; ð5Þ

assuming that all mutations arise in the wild-type
population. Thus the distribution of mutations that
fix is

rfðsÞ ¼ pðsÞe�lðsÞrðsÞ: ð6Þ

From Equation 6 it is also straightforward to calculate
the expected s̃ and SD(s). Because clonal interference
becomes more likely as either population size or
mutation rate increases, increasing either of these
parameters is expected to increase s̃.
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The average rate at which mutations fix equals the
rate at which those destined to fix occur. Thus clonal
interference analysis predicts that the average fixation
rate Ækæ is

Ækæ ¼ NUb

ð‘

0
rfðsÞds: ð7Þ

This means that the rate of adaptation v is

v ¼ Ækæ Æsæ; ð8Þ

where Æsæ is the average fitness of mutations that fix.
Multiple-mutations analysis: We now turn to a de-

scription of the second theoretical framework, pro-
posed by Desai and Fisher (2007), which focuses
primarily on multiple-mutation effects. These and other
authors studied a model where all beneficial mutations
have the same fitness advantage s (Ridgway et al. 1998;
Rouzine et al. 2003, 2008; Desai and Fisher 2007).
They calculated the rate at which these mutations ac-
cumulate, v(s), as a function of population size and
mutation rate. We do not go through this calculation
here, but note that in this idealized single-s model, we
can describe the state of the population as a distribution
of the number of mutations each individual has. Some
lucky most-fit individuals have more than the average
number of mutations, and it is only additional muta-
tions within this small subpopulation that will contrib-
ute to the long-term evolution of the population; others
will eventually go extinct because they are handicapped
by their relatively poor genetic background. The mul-
tiple-mutations analysis focuses on the rate at which new
mutations occur in this small highly fit subpopulation
and how this subpopulation evolves relative to the rest of
the population. We define the lead, q, to be the number
of beneficial mutations the most-fit individual possesses
in excess of that of the average individual (more pre-
cisely, q� 1 is defined to be the difference in number of
mutations between the most-fit class of established in-
dividuals and the mean individual). By definition, mul-
tiple mutations are important when q . 1.

In a more general situation where beneficial mutations
have a range of fitness effects, Desai and Fisher (2007)
argued that under many conditions SD(s) should be small
compared to s̃, so that mutations within a narrow range of
fitness effects dominate the evolution. If this is true, it is
natural to expect that multiple mutations of effect of
order s̃ may routinely appear and that their accumulation
can be described roughly by the single-s model, provided
one chooses that single s to be s̃ and chooses the beneficial
mutation rate to these mutations, Ũb, to be the total
mutation rate to all mutations within�6SD(s) of s̃. This
approximation should be valid as long as SD(s) is re-
latively narrow—at most of order s̃. As we will see for large
populations and mutation rates, our simulations show
that this is indeed the case, as do recent experimental
studies in Saccharomyces cerevisiae and Escherichia coli

(Hegreness et al. 2006; Desai et al. 2007). Note that we
can define the lead q in this more complex situation as the
fitness of the most-fit individual minus the fitness of the
mean individual, divided by s̃ (more precisely, q � 1 is
defined to be the difference in the fitness of the most-fit
class of established individuals and the mean individual,
divided by s̃). That is, q is the number of extra s̃-sized
mutations that the most-fit individual has compared to
the average individual.

Of course, the appropriate values of s̃ and Ũb depend
on r(s), N, and the overall mutation rate. A full
understanding of this depends in a subtle way on both
clonal interference and multiple-mutation effects, but
Desai and Fisher (2007) proposed a simple approxi-
mation. They first calculate v(s) for each possible value
of s, assuming that only mutations of this size are
possible. To do this, one must specify an appropriate
mutation rate to mutations of this size, Ũb. Desai and
Fisher (2007) made the ad hoc assumption that Ũb

should be the total mutation rate to mutations of order s
(i.e., within roughly a factor of 2 of s). They then
calculated v(s). This v(s) expresses the contribution of
mutations of effect s to the overall evolution and thus
should equal R(s), up to normalization. From this R(s),
they calculate s̃. They find

s̃ ¼ s
‘

b� 1

� �1=b

; ð9Þ

where ‘ is related to the overall mutation rate by

‘ ¼ �ln
Ub

sGð1 1 1=bÞ

� �
: ð10Þ

This expression for s̃ is valid only for b . 1; for
distributions of mutational effects that fall off exponen-
tially or slower the behavior is more complicated and the
analysis breaks down. These results were derived using a
continuous-time version of our model; see Desai and
Fisher (2007) for details. Note that this analysis makes
no precise prediction for rf(s), but does imply that R(s)
will be a narrow distribution centered around s̃.

Using Equation 9 and their analysis of the single-s
model, Desai and Fisher (2007) calculated how the rate
of adaptation v and the lead q should depend on N and Ub

and the shape of the distribution of mutational effects by
plugging in the appropriate valuesof s̃ and Ũb. They found

q � 2 ln½N s�ðb� 1Þ
‘b

; ð11Þ

and

v � 2Cbs2 ln½N s�
‘2�2=b

; where Cb[
ðb� 1Þ2�2=b

b2 : ð12Þ

As with Equation 9, these expressions are valid only for
b . 1.
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RESULTS

We now describe the results of our Monte Carlo
simulations for the evolutionary dynamics in large
populations when both clonal interference and multi-
ple mutations are present and compare these results to
the theoretical predictions described above.

The distribution of mutations that fix: We begin in
Figure 1 by showing several examples of the distribution
of mutations that fix, rf(s), as compared to the distri-
bution of possible and contending mutations, r(s) and
rc(s), respectively. The predictions of clonal interfer-
ence analysis, Equation 6, are also shown.

In small populations, we have seen that neither clonal
interference nor multiple mutations will occur. Thus we
expect the distribution of mutations that fix to equal the
distribution of mutations that establish, rf(s) ¼ rc(s).
This is indeed the case (Figure 1a), except for extremely
small s (these s are so small that clonal interference
prevents them from fixing even in these small popula-
tions). We find similar results for small populations
regardless of b (data not shown).

In larger populations, the behavior depends on b. In
all cases, small-effect mutations are suppressed quite
dramatically by clonal interference effects (Figure 1,
b–d). Note, however, that clonal interference analysis
predicts that this suppression of small-effect mutations
should be even stronger than we observe. This is
because some of these small-effect mutations are able

to fix in multiple-mutation combinations with those of
larger effect. As we would expect, this effect is more
dramatic for larger b, where multiple mutations play a
larger role.

For large-effect mutations, clonal interference analy-
sis predicts that rf(s) should equal rc(s), regardless of b,
since clonal interference cannot suppress the fixation of
the largest-effect mutations. This is indeed the case for
small b (Figure 1, c and d). However, for large b the
largest-effect mutations are also suppressed (Figure 1b).
This is consistent with the multiple-mutations approach
of Desai and Fisher (2007), who suggest that whenever
b . 1 multiple small-s mutations can suppress the
fixation of large-s mutations, exactly as we observe.

We have also studied the distribution of mutations
that fix using a model that includes deleterious muta-
tions (see model and simulation methods section).
We find that the distributions of beneficial mutations
that fix, rf(s), are nearly identical to those shown in
Figure 1, even in the presence of deleterious mutations
(data not shown). In addition to these beneficial mu-
tations, a few deleterious mutations also fix. This occurs
when a small-effect deleterious mutation occurs in an
individual with a large beneficial mutation. However,
even for deleterious mutation rates 1000-fold higher
than the beneficial mutation rate, the number of delete-
rious mutations that fix is a tiny fraction of the number
of beneficial mutations that fix, and these deleterious
mutations have a fitness cost that is small compared to

Figure 1.—Examples of the distribu-
tion of possible mutations r(s) (black
line), the distribution of contending
mutations rc(s) (red line), and the distri-
bution of fixed mutations rf(s) from our
simulations (yellow histogram). Also
shown is the distribution of mutations
that occurred in the simulations (white
histogram). Additionally the distribu-
tion of predicted fixed mutations rf(s)
from a clonal interference calculation
is shown (blue line). Note the logarith-
mic scale. In all examples, s ¼ 0.02.
(a) A small population, where rf(s) ¼
rc(s) except for the smallest-effect muta-
tions. Here N ¼ 3 3 104, Ub ¼ 10�5, and
b ¼ 1.0. (b) A large population with b ¼
10. Here N ¼ 107 and Ub ¼ 10�5. Note
that small-effect mutations are sup-
pressed by clonal interference effects,
while large-effect mutations are sup-
pressed by multiple-mutation effects.
(c) A large population with b ¼ 1. Here
N ¼ 107 and Ub ¼ 10�5. Note that small-
effect mutations are suppressed by clonal
interference effects, but less strongly than
clonal interference analysis alone pre-
dicts. (d) A large population with b ¼
0.5. Here N ¼ 1 3 107 and Ub ¼ 10�5.
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the average fitness advantage of the beneficial muta-
tions that fix.

Which mutations contribute to adaptation: To ana-
lyze our results across a broad range of parameters, we
shift to considering the distribution of mutations that
fix weighted by their contributions to adaptation, R(s).
Above we have claimed that R(s) will have a peak at some
intermediate value s̃, with some range of mutations
around this that contribute substantially to adaptation.
This is indeed what we find. In Figure 2, we show how s̃ in
our simulated populations depends on N and Ub for
several different values of b. We compare these simu-
lated results to the predictions of clonal interference
analysis alone and, for b . 1, to multiple-mutations
analysis. Note that clonal interference provides accurate
estimates of s̃ for b # 1, but breaks down for larger N and
Ub, especially when b . 1. The multiple-mutations
analysis, on the other hand, more accurately predicts s̃
when N and Ub are large and b . 1, but does not provide
a prediction for the case b # 1.

In Figure 3, we show SDðsÞ=s̃ as a function of N and Ub,
again for several values of b, compared to the predic-
tions of clonal interference analysis. Note that
SDðsÞ=s̃ > 1 corresponds to the case where a narrow
range of mutations around s̃ dominate the evolution.
We see that this is typically the case, regardless of
whether the distribution of mutational effects falls off
faster or more slowly than exponentially, except for
small N or Ub. However, SD(s) is not nearly as small as
clonal interference analysis predicts for b . 1. This is
due to multiple-mutation effects and has consequences
for the predictions of the clonal interference approach,
as we describe in the discussion.

Note that although for clarity we only show one case
where b . 1 (namely, b ¼ 10) in all the figures, we have
also simulated the case b ¼ 2, and the results are
qualitatively the same as those shown for b ¼ 10.

The dynamics of adaptation: We now turn to the
dynamics by which these important mutations accumu-

late. We have seen that multiple mutations are impor-
tant in determining s̃ for b . 1, but not so important for
b # 1. Despite this, mutations of effect around s̃, which
dominate the overall adaptation of the population, may
accumulate via multiple-mutations dynamics even when
b # 1, although mutations of much larger effect fix
whenever they establish. As we have seen, this will be
true whenever the lead q . 1.

In Figure 4, we show how q depends on N and Ub for
several different values of b. We see that even for b # 1,
these multiple mutations are important to the dynamics
(where values of q ¼ 3–5 are reached). For b ¼ 10, we
also show the predictions of the multiple-mutations
analysis. Note that clonal interference analysis implicitly
assumes no multiple mutations. Thus it implies that q is
between 1 and 2, depending on whether an established
mutant group is sweeping to fixation.

As beneficial mutations accumulate, the population
adapts. In Figure 5, we show how the rate at which the
average fitness of the population increases, v, depends
on N and Ub, again for several values of b. We compare
this to the predictions of clonal interference theory
alone and to the multiple-mutations analysis of Desai

and Fisher (2007).
As for Figures 2 and 3, we have also carried out

simulations for the case b¼ 2, and the results for q and v
are qualitatively similar to those for b ¼ 10. In addition,
we have performed a limited set of simulations that
include deleterious mutations. Our results for v and q
are the same as those shown in Figures 4 and 5 for the
model that excludes deleterious mutations, even when
the deleterious mutation rate is orders of magnitude
larger than the beneficial mutation rate.

DISCUSSION

Our Monte Carlo simulation approach allows us to
study the evolutionary dynamics of adaptation in large
asexual populations, where both clonal interference

Figure 2.—The average scaled fitness
effect of mutations that fix, s̃. In all cases
s ¼ 0.02. (a) Simulation results for s̃ for
N ¼ 107 as a function of Ub for b ¼ 0.5
(solid black circles), b ¼ 1 (open red
circles), and b ¼ 10 (open blue
squares). Predictions of clonal interfer-
ence analysis are shown as dotted lines,
and the predictions of the multiple-mu-
tation analysis (for b ¼ 10) are shown as
a solid line. Note that for b ¼ 10, s̃ de-
creases with Ub for large Ub. (b) Simula-
tion results for s̃ for Ub ¼ 10�5 as a
function of N for b ¼ 0.5 (solid black
circles), b ¼ 1 (open red circles), and
b ¼ 10 (open blue squares). Predictions
of clonal interference analysis are shown
as dotted lines, and the predictions of
the multiple-mutation analysis (for b ¼
10) are shown as a solid line.
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and multiple mutations are important. We have de-
scribed two theoretical approaches that each focus on
one of these two effects. Using our simulations, we can
now assess the usefulness and generality of these
methods.

In its original form, which neglects the possibility of
multiple mutations, clonal interference analysis pre-
dicts the distribution of mutations that contribute to
adaptation, rf(s), according to Equation 6. From this we
can also calculate clonal interference analysis predic-
tions for s̃ and SD(s). Because clonal interference be-
comes more likely as either population size or mutation
rate increases, increasing either of these parameters is
expected to increase s̃. These predictions are shown in
Figures 2 and 3. Finally, we have seen that the rate of
adaptation, v, predicted by clonal interference analysis
is given in Equation 8. This prediction is shown in
Figure 5.

For b¼ 0.5 and b¼ 1, we see from Figure 2 that clonal
interference yields reasonable estimates of s̃. This makes
sense, as in this regime multiple mutations do not
suppress the fixation of larger-effect mutations. For b¼
10, clonal interference systematically overestimates s̃, by
an amount that increases with the population size and
mutation rate. This also makes sense, as in large
populations for b ¼ 10 multiple mutations in fact
suppress the fixation of large-effect mutations.

Although clonal interference accurately predicts s̃ for
small b, we can see from Figure 4 that for all values of b,
q . 2 when N and Ub are large, pointing to the
importance of multiple mutations in the dynamics.
Clonal interference analysis, by contrast, assumes that
all mutations occur and fix in the wild-type population,
which implies q between 1 and 2. This underlies the
calculation of the fixation rate in Equation 7, which
assumes that mutations in any individual can contribute
to adaptation, when in fact for q . 1 it is only the
mutations in the relatively rare individuals that already
have other beneficial mutations that contribute. Thus
we expect that neglecting the importance of multiple

mutations should lead clonal interference analysis to
overestimate the rate of adaptation v, for all b. This is
indeed what we find for b¼ 0.5, but we see from Figure 5
that clonal interference analysis accurately predicts v for
b¼ 1 and actually underestimates the rate of adaptation
for b ¼ 10.

The reason for this discrepancy is apparent from
Figure 3, which shows that for b ¼ 1 and b ¼ 10, clonal
interference tends to underestimate SD(s). This prob-
lem gets worse as N and Ub increase. The reason for this
underestimate is that clonal interference analysis as-
sumes that the largest mutation that occurs before any
other fixes goes to fixation by itself. This strongly
suppresses the fixation of mutations that have a sub-
stantially smaller fitness effect and leads to a prediction
of a very small SD(s). But in fact, mutations with a variety
of smaller effects will sometimes happen to occur in
individuals that have this larger-effect mutation, and
these will sweep to fixation together. This broadens the
distributions of mutations that fix and hence increases
the actual SD(s), as is apparent in Figure 3 and in the
distributions shown in Figure 1, b and c. This means that
clonal interference assumes that only mutations within
a much narrower range of fitness effects contribute to
adaptation than is actually the case, which should lead
to underestimates of the rate of adaptation. In other
words, although only mutations that happen in very fit
individuals can contribute (which slows adaptation),
many mutations of various effects occur in these fit
individuals and can all fix together (speeding adapta-
tion). The underestimate of v from this latter effect is
more severe for larger b, because larger b corresponds
to a larger underestimate of SD(s). We see from Figure 5
that for b ¼ 1, this underestimate of v roughly cancels
the overestimate of v caused by the assumption that
mutations in any individual can contribute to adapta-
tion. For b ¼ 0.5, the underestimate of SD(s) is less
severe, so it only partially cancels the overestimate, and
in sum clonal interference overestimates the rate of
adaptation. For b ¼ 10, the reverse is true.

Figure 3.—The scaled width of the
weighted distribution of mutations that
fix, SDðsÞ=s̃. In all cases s ¼ 0.02. (a)
Simulation results for SDðsÞ=s̃ for N ¼
107 as a function of Ub for b ¼ 0.5,
b ¼ 1, and b ¼ 10. Predictions of clonal
interference analysis are shown as dotted
lines. (b) Simulation results for SDðsÞ=s̃
for Ub ¼ 10�5 as a function of N for
b ¼ 0.5, b ¼ 1, and b ¼ 10. Predictions
of clonal interference analysis are shown
as dotted lines.
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Together, these results allow us to study the parameter
regimes in which different aspects of clonal interfer-
ence analysis are accurate. The key parameter is b. For
b . 1, clonal interference analysis does not accurately
predict either s̃ or the shape of the distribution of
mutations that fix, or the dynamics of adaptation in
large populations. For b ¼ 1 it correctly estimates s̃, but
still misunderstands the distribution of mutations that
fix. For b , 1, clonal interference fares best, accurately
estimating both s̃ and the distribution of mutations that
fix. However, even here it still does not give an accurate
analysis of all quantities of interest—it wrongly asserts
q , 2 and overestimates the rate of adaptation.

It should be noted that for small populations, where
NUb>1=ln½N s�, clonal interference gives an accurate
picture of all aspects of the evolution of the populations,
regardless of the value of b. This is largely because this is
the regime where the small-population analysis is
correct for the mutations of interest—that is, clonal
interference analysis is accurate because it correctly
predicts that clonal interference will not occur, except
possibly among extremely small-effect mutations.

We have described above an alternative theoretical
approach, focusing primarily on multiple-mutation ef-
fects, which we expect to be valid when SD(s) is small
compared to s̃, so that mutations within a narrow range of
fitness effects dominate the evolution. We can see from
our simulations that this is indeed the case (Figure 3).
Desai and Fisher (2007) calculated s̃ using this ap-
proach, finding Equation 9 when b . 1; the approxima-
tion broke down for b # 1. Using this s̃, and assuming that
the mutation rate relevant to v(s) is the total mutation
rate to mutations of order s, Desai and Fisher (2007) also
calculated the lead q and the rate of adaptation v,
Equation 11 and Equation 12, respectively, for b . 1.

We compare these theoretical predictions to our
simulation results in Figures 2, 4, and 5. We see that
for this b . 1 case, and large N and Ub, they give
qualitatively the correct behavior for s̃, the lead q, and
the rate of adaptation v, though they do systematically

overestimate v and underestimate q (see below). In this
regime, these results are more accurate than those given
by clonal interference analysis. We see from Figure 4
that indeed q can become .2, indicating that multiple
mutations are often important to the dynamics. For
small N and Ub, corresponding to q # 2, the multiple-
mutations results are less accurate, as expected because
the above results are valid only when q * 2 (Desai and
Fisher 2007).

The theoretical predictions for q and v, Equations 11
and 12, rely on the ad hoc assumption that the appro-
priate mutation rate Ũb to the mutations around s̃ that
dominate the dynamics is the total mutation rate to
mutations of order s̃ (i.e., within roughly a factor of 2 of
s̃). As we have found here, SD(s) is often much smaller
than s̃ (Figure 3), so the range of mutational effects that
contributes substantially to the evolution is much
smaller than assumed. This means that the intuitive
picture behind the multiple-mutations model of the
dynamics is correct: there is indeed a narrow range
of mutations that contribute to the evolution, and
their accumulation is well described by a corresponding
single-s model of the dynamics. However, the estimate of
the appropriate mutation rate Ũb is too large, since a
narrower range contributes than was assumed. In
addition to this, the estimate of s̃ in Equation 9 is also
slightly too large (Figure 2). Both of these effects mean
that the prediction for v in Equation 12 should be an
overestimate, as we observe in Figure 5. On the other
hand, while its overestimate of Ũb should mean that
theory overestimates q, its overestimate of s̃ leads to a
compensating underestimate of q (because q is defined
in terms of s̃). The net result of these two effects is that
the theory underestimates q (Figure 4). To correct these
problems, we need to understand what determines
SD(s). Unfortunately neither clonal interference anal-
ysis nor the multiple-mutations approach does this well;
it remains an important topic for future analytical work.

Another feature of our simulation results is particu-
larly striking. Both the multiple-mutations and the

Figure 4.—The effective lead q. (a)
Simulation results for q as a function
of Ub for b ¼ 0.5, b ¼ 1, and b ¼ 10.
Other parameters are as in Figure 3a.
Predictions of the multiple-mutations
analysis (for b ¼ 10) are shown as a solid
blue line. Note that clonal interference
predicts q � 1, independent of the pa-
rameters. (b) Simulation results for q
as a function of N for b ¼ 0.5, b ¼ 1,
and b ¼ 10. Other parameters are as
in Figure 3b. Predictions of the multi-
ple-mutations analysis (for b ¼ 10) are
shown as a solid blue line. As before,
clonal interference predicts q � 1, inde-
pendent of the parameters.
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clonal interference analyses predict that s̃ should in-
crease with N, because increasing the population size
increases the probability of clonal interference but does
not dramatically change the relative importance of
large-effect mutations compared to multiple smaller-
effect ones. However, for large b, there is a qualitative
difference between the predictions of the two ap-
proaches for the relationship between s̃ and Ub. Clonal
interference analysis alone predicts that s̃ increases with
Ub, because higher mutation rates make clonal inter-
ference more common. However, higher mutation rates
also increase the importance of multiple small-effect
mutations relative to large-effect ones. From Equation 9
we see that for b . 1 this should mean that s̃ actually
decreases with Ub for large Ub. Although the effect is
small, we do in fact observe this decrease in our
simulations (Figure 2a). For small b, on the other hand,
we expect that multiple-mutation effects typically do not
impede the fixation of large-effect mutations. Thus
clonal interference analysis gives a qualitatively accurate
picture of how s̃ depends on N and Ub, as observed.

While the clonal interference and the multiple-
mutations approximations together help us to form a
more complete understanding of the dynamics, both
leave much to be desired. Clonal interference processes
appear to be the main determinant of s̃ when b # 1, as
demonstrated by Figure 2. But even for these small b, we
see that q is often .2, and hence clonal interference
analysis gives the wrong picture for the dynamics.
Further, it misses the possibility of smaller-effect muta-
tions fixing together with those of effect �s̃ and hence
drastically underestimates SD(s) even for b ¼ 1. On the
other hand, while the multiple-mutations analysis pro-
vides the right picture of the dynamics for b . 1, and
accurately predicts s̃, q, and v, it provides no way to
estimate SD(s) nor any specific predictions when b # 1.
The simulation approach we have taken in this article
sheds some light on where and why these two different
approaches work and has highlighted the regimes
where neither one provides a satisfactory picture. A

more detailed understanding will require analysis of
a general model that explicitly incorporates both clonal
interference and multiple mutations, to produce a
theory that has the correct picture of the dynamics in
these difficult regimes. Given that both of these effects
appear likely to be widespread in microbial and viral
populations (Bollback and Huelsenbeck 2007; Desai

et al. 2007; Pepin and Wichman 2008), this is an
important topic for future work.

An interesting result of our simulations is that the
general shape of the distribution of the mutations that
contribute to adaptation, R(s), is rather universal. R(s) is
always a relatively narrow distribution with a clear peak
at some s̃. The distribution of mutations that fix, rf(s),
has a similar shape with a sharp peak near s̃. This means
that if we do a single experiment at a given population
size and mutation rate, the observed rf(s) will not
provide much information about the underlying r(s).
This lack of sensitivity of experimental adaptation to the
distribution of mutational effects has been noted in a
related context by Hegreness et al. (2006). However,
our simulations also show that the scaling of various
aspects of rf(s) (such as s̃) with population size and mu-
tation rate does depend strongly on r(s). Most important
is the shape of the tail of r(s); as we have seen, the way in
which s̃ depends on N and Ub is strongly dependent on
b. Thus careful experiments that are carried out at a
range of population sizes or mutation rates may make it
possible to infer important aspects of r(s) from meas-
urements of rf(s) or the rate of adaptation v.

As our simulations make clear, the actual values of b

applicable to natural asexual populations are of central
importance to the dynamics by which these populations
adapt. The values of b found in natural populations may
also tell us something about the evolutionary history of
these populations. Orr and Gillespie have argued that if
an individual is at a random high-fitness genotype, the
distribution of more-fit genotypes is exponential, so we
should expect b ¼ 1 (Gillespie 1983, 1984, 1991; Orr

2002, 2003). However, as a population adapts it is

Figure 5.—The average rate of adapta-
tion, v. (a) Simulation results for v as a
function of Ub for b ¼ 0.5, b ¼ 1, and
b¼ 10. Other parameters are as in Figure
3a. Predictions of clonal interference
analysis are shown as dotted lines, and
the predictions of the multiple-mutations
analysis (for b ¼ 10) are shown as a solid
blue line. (b) Simulation results for v as a
function of N for b ¼ 0.5, b ¼ 1, and b ¼
10. Other parameters are as in Figure 3b.
Predictions of clonal interference analy-
sis are shown as dotted lines, and the pre-
dictions of the multiple-mutations
analysis (for b ¼ 10) are shown as a solid
blue line.
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natural to expect r(s) to change. For example, a
population may face a static challenge and gradually
deplete the available beneficial mutations as it adapts. If
the population were small enough that rf(s) ¼ 2sr(s),
the distribution r(s) should converge to an exponential
as this adaptation progresses. But if clonal interference
and multiple-mutation effects cause large-effect muta-
tions to be depleted much faster than small-effect ones,
we expect that b should increase as the available mu-
tations become depleted. Thus large observed values of
b may be indicative of this type of adaptation. Of course,
this increase in b could be avoided if the accumulation
of beneficial mutations tends to open up new possibil-
ities for further adaptation. In other words, the struc-
ture of fitness landscapes has an important role in
determining typical values of b and how these change as
populations adapt. Given these values of b, our simu-
lations provide a way to understand, in a statistical sense,
which mutations will tend to contribute to adaptation
and the dynamics by which they will do so.
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