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ABSTRACT The outcomes of evolution are determined by which mutations occur and fix. In rapidly adapting microbial populations,
this process is particularly hard to predict because lineages with different beneficial mutations often spread simultaneously and interfere
with one another’s fixation. Hence to predict the fate of any individual variant, we must know the rate at which new mutations create
competing lineages of higher fitness. Here, we directly measured the effect of this interference on the fates of specific adaptive variants in
laboratory Saccharomyces cerevisiae populations and used these measurements to infer the distribution of fitness effects of new beneficial
mutations. To do so, we seeded marked lineages with different fitness advantages into replicate populations and tracked their subsequent
frequencies for hundreds of generations. Our results illustrate the transition between strongly advantageous lineages that decisively sweep
to fixation and more moderately advantageous lineages that are often outcompeted by new mutations arising during the course of the
experiment. We developed an approximate likelihood framework to compare our data to simulations and found that the effects of these
competing beneficial mutations were best approximated by an exponential distribution, rather than one with a single effect size. We then
used this inferred distribution of fitness effects to predict the rate of adaptation in a set of independent control populations. Finally, we
discuss how our experimental design can serve as a screen for rare, large-effect beneficial mutations.

EVOLUTIONARY adaptation is driven by the accumulation
of beneficial mutations. One can ask two basic questions

about this process. First, what set of mutations is available
to the population? That is, what is the overall mutation rate,
U, and the distribution of fitness effects, r(s), of new muta-
tions? Second, what is the fate of those mutations that occur?
In other words, how does the frequency of each mutation
change over time until it eventually fixes or goes extinct?

When beneficial mutations are rare, these two questions
are independent. Mutations of a given fitness effect, s, occur
at rate Ur(s). The fate of each mutant is then decided en-
tirely on its own merits: it increases in frequency (or is lost
due to random drift) at a rate commensurate with its selec-
tive effect. Experiments, however, have shown that even for

modestly sized laboratory populations of viruses and
microbes, multiple beneficial mutations often spread simul-
taneously and interfere with one another, an effect known as
clonal interference (de Visser et al. 1999; Miralles et al. 1999;
Joseph and Hall 2004; Desai et al. 2007; Perfeito et al. 2007;
Kao and Sherlock 2008; Lee and Marx 2013; see Sniegowski
and Gerrish 2010 for a recent review). This means that the
fate of each beneficial mutation depends not only on its own
effect, but also on its interactions with the rest of the vari-
ation in the population (Lang et al. 2011, 2013). In this
regime, the mutation rate and the distribution of fitness
effects of beneficial mutations [the DFE, r(s)] controls the
availability of competing mutations, which then play an im-
portant role in determining the fate of each new beneficial
mutation (Gerrish and Lenski 1998; Good et al. 2012).

These factors highlight the importance of the DFE as
a central parameter in adaptation, determining which new
mutations occur and influencing their subsequent fate. Some
theoretical work has argued that the DFE will typically be
exponential (Gillespie 1983; Orr 2003). However, this is
fundamentally an empirical question, and in principle the
details of the DFE could be highly system specific. Thus
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extensive experimental effort has been devoted to measur-
ing the DFE of beneficial mutations in a variety of laboratory
populations (Imhof and Schlötterer 2001; Rozen et al. 2002;
Sanjuán et al. 2004; Barrett et al. 2006; Kassen and Bataillon
2006; Burch et al. 2007; Perfeito et al. 2007; Rokyta et al.
2008; MacLean and Buckling 2009; Bataillon et al. 2011;
McDonald et al. 2011; a separate literature has used popu-
lation genetic methods to infer the DFE in natural popula-
tions, reviewed by Keightley and Eyre-Walker 2010).

Experimental efforts to measure the DFE of beneficial
mutations in laboratory populations have largely taken one of
two complementary approaches. The first approach is to isolate
mutants and directly assay their fitness. The difficulty with this
method is that beneficial mutations are rare, so many clones
must be screened to isolate comparatively few beneficial
mutations (Sanjuán et al. 2004; Kassen and Bataillon 2006). To
avoid this difficulty, some studies have imposed a harsh selection
and studied the survivors, which by definition must have a ben-
eficial mutation (MacLean and Buckling 2009; McDonald et al.
2011). However, this approach is limited to harsh and typically
narrow stresses (e.g., treatment with antibiotic), which may not
be representative of adaptation to other conditions.

The second common experimental approach is to track
the frequencies of genetic markers over time and use the

resulting dynamics to infer the underlying DFE. Such “marker
divergence” experiments typically use two or more strains that
differ by a single neutral genetic marker, which can be easily
tracked through time (e.g., antibiotic resistance or a fluorescent
reporter). These strains are mixed, usually in equal proportions,
and allowed to evolve in competition. The changes in frequen-
cies of the neutral markers then reflect subsequent beneficial
mutations that occur in one or the other genetic background
(Novick and Szilard 1950; Atwood et al. 1951; Helling et al.
1981; Paquin and Adams 1983; Adams and Oeller 1986; Imhof
and Schlötterer 2001; Barrett et al. 2006; de Visser and Rozen
2006; Hegreness et al. 2006; Perfeito et al. 2007; Kao and
Sherlock 2008; Barrick et al. 2010; Lang et al. 2011). Inferring
the DFE from such data typically requires estimating the fitness
effects of many mutations from the dynamics of relatively few
markers, which is naturally quite difficult (Hegreness et al.
2006; Pinkel 2007; Illingworth and Mustonen 2012; Zhang
et al. 2012; de Sousa et al. 2013). In principle, this difficulty
could be removed by reducing the population size to such a de-
gree that only one or zero beneficial mutations usually arise in
each population (Perfeito et al. 2007). However, this requires
careful tuning of the population size, to make it small enough
to minimize multiple mutations but also large enough to ensure
that many replicates acquire a beneficial mutation.

Figure 1 Trajectories of seeded lineages. Each line represents the frequency over time of a marked lineage with fitness advantage s0 seeded into
a replicate resident population. Colors correspond to the initial frequency f0 of the seeded lineage according to the legend at right. Time is measured in
generations, with t = 0 defined as the time at which each trajectory reached frequency 0.05. The dashed curves show the expected trajectories in the
absence of new beneficial mutations (i.e., without clonal interference). (Note that the seeded lineages for s0 � 4 and 5% consisted of multiple strains;
see Materials and Methods.)
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Here, we introduce a twist on the traditional design of
marker divergence experiments that produce dynamics
more directly revealing of the underlying DFE. Rather than
using neutral markers, we tracked the frequencies of marked
lineages with a fitness advantage relative to a reference
strain. We seeded these marked lineages at low frequency
into populations of the reference, so that their subsequent
dynamics are reflective of the fates of beneficial mutations
with a particular selective advantage. Since the DFE controls
the availability of competing mutations and hence the likeli-
hood of clonal interference, we can exploit the observed
fates of seeded lineages to infer the DFE. Using lineages with
different fitness advantages enabled us to probe different
corresponding portions of the DFE. This approach is partic-
ularly suited to inferring those aspects of the DFE that are
most important in determining the fates of new beneficial
“driver” mutations, e.g., the high-fitness tail, which is other-
wise hard to measure directly. In the process, we also di-
rectly measured how clonal interference alters a key
quantity in adaptation: the fixation probability of a beneficial
mutation as a function of its fitness effect.

Materials and Methods

Strains

All strains used in this study were derived from the base
strain DBY15084, a haploid Saccharomyces cerevisiae strain
derived from the W303 background with genotype MATa,
ade2–1, CAN1, his3–11 leu2–3, 112, trp1–1, URA3, bar1D::
ADE2, hmlaD::LEU2. Each experimental population in-
cluded a resident and a seeded lineage. The resident lineage
was DBY15108, a derivative of DBY15084 in which the fluo-
rescent protein ymCherry was integrated at the URA3 locus
(Lang et al. 2011). The seeded lineages were descendants
of strain DBY15104 isolated from time points of an earlier
long-term evolution experiment (Lang et al. 2011). To allow
us to track their frequency using flow cytometry, we ampli-
fied a pACT1–ymCitrine pTEF–HISMX6 cassette from plas-
mid pJHK043 (provided by John H. Koschwanez) and
integrated it at the HIS locus using oligos oGW137
(59-TTGGTGAGCGCTAGGAGTC-39) and oGW138 (59-
TATGAAATGCTTTTCTTGTTGTTCTTACG-39) provided by
Gregg Wildenberg. From this pool of transformants, we se-
lected strains EFY11–17 based on fitness assays described
below.

Experimental procedures

To obtain seeded lineage strains with a range of fitnesses, we
isolated a large number of evolved clones and assayed their
fitnesses as described in Lang et al. (2011). Briefly, this pro-
tocol is to mix each strain in roughly equal proportion with
a reference strain that bears a different fluorescent reporter,
propagate these mixed populations for 30 generations, and
measure the ratio of the strains at generations 10 and 30
using flow cytometry. Relative fitness was calculated as s =
(1/20) 3 log(final ratio/initial ratio). From among these
clones, we chose EFY11–17 to use as seeded lineages and
remeasured their fitnesses in 10 replicates. These additional
assays showed that strains EFY12–14 and EFY15–16 had in-
distinguishable fitnesses, and so for the purposes of analysis,
strains EFY11, EFY12–14, EFY15–16, and EFY17 were respec-
tively grouped into the fitness classes indicated in Figure 1.

To begin the evolution experiment, we grew an individual
resident clone to saturation in 3 ml of standard growth media
(YPD supplemented with 100 mg/ml ampicillin and 25 mg/ml
tetracyclin). We transferred 128ml of this culture into each
well of a 96 well-plate, diluted these cultures 210-fold into 12
96-well plates containing fresh media, allowed these cultures
to grow for 10 generations, and froze them at 280� in 15%
glycerol. Later, these plates were thawed and propagated for
30 generations (as described below) to reacclimate them to
this environment. In parallel, we prepared the seeded clones
in the same fashion. We then mixed seeded and resident
populations to found a total of 1044 populations in 12 96-
well plates (see Supporting Information, Table S1). These
populations were propagated at 30� in 128ml YPD per well
and diluted every 24 hr by a factor of 210 into new plates
containing fresh media. This corresponds to an effective pop-
ulation size Ne� 105 (Wahl et al. 2002; Lang et al. 2011). Each
plate contained a set of nine empty wells as cross-contamination
controls. All control wells remained sterile throughout the ex-
periment except for two accidents involving plate mixing. This
contamination was resolved by restarting from glycerol stocks
of an earlier time point. Transfers were carried out using a Bio-
mek FX pipetting robot.

At �50-generation intervals, seeded lineage frequencies
were measured using flow cytometry. In particular, BD
Biosciences Fortessa and LSR-II flow cytometers with high-
throughput plate samplers counted �100,000 cells per
population for the initial time point and �30,000 cells per
population for time points thereafter. Repeated measurement

Figure 2 The fates of seeded lineages. We classified
the trajectory of each seeded lineage according to
whether it increased monotonically to fixation (a selec-
tive sweep, shown left) or peaked and subsequently
declined in frequency (clonal interference, shown
right). Each clonal interference event implies that the
resident adapted fast enough to overtake the seeded
lineage in fitness. These cases were further classified
by the seeded lineage’s peak frequency, fpeak, and
relative fitness after this peak, sdown, as indicated in
the right scheme.
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of populations and blanks indicated that �100 cell counts
per sample were carried over from previous samples. There-
fore the uncertainty in frequency at the first time point was
�0.1% and�0.5% thereafter. These raw data were processed
in FlowJo v. 9.2. All processed data are provided in Table S1.

We also assayed the fitness of 16 additional control
populations founded with only the resident strain. To do so,
these populations were thawed from frozen-archive plates,
each was duplicated into four replicates, these were propa-
gated for 30 generations to acclimate them, and then their
fitness was assayed as described above.

Note that 386 of the populations were later excluded from
analysis, leaving a total of 658 replicate populations, appor-
tioned among the seven seeded lineages and controls as
described in Table S1. In 232 of these 386 excluded popula-
tions, frequency-dependent selection emerged. We identified
these by first investigating 15 populations in which lineages
coexisted at constant proportion for hundreds of generations.
We found that this coexistence was maintained by frequency-
dependent selection exclusively in populations having a char-
acteristic pellet morphology, so we excluded from analysis all
populations that also had this morphology. In the other 154
cases, the initial frequency of the seeded lineage was so low
that it could not be precisely determined or extinction due to
drift was common. To exclude these without biasing the sta-
tistics of trajectories, we chose a cutoff for the initial frequency
of each seeded strain such that in all replicates in which the
initial frequency was above the cutoff, the seeded lineage rose
to at least 5%. All replicates below the cutoff were excluded.

Results

Tracking the fates of seeded lineages

Any beneficial mutation creates a new lineage that is more fit
than the genetic background in which it arose. To systemat-
ically study the fates of such lineages, we prepared a set of
fluorescently labeled haploid budding yeast strains (the seeded

lineages) with measured fitness advantages, s0, of �3, 4, 5,
and 7% relative to a closely related but separately labeled
reference strain. We founded 658 replicate populations of
the reference (the resident), and introduced one of the seeded
lineages at low frequency into each replicate population. We
propagated these populations asexually in batch culture for
hundreds of generations at an effective population size of Ne

� 105, measuring the frequency of the seeded lineage in each
population approximately every 50 generations (see Materials
and Methods). This allowed us to track the fate of the seeded
lineages over time, as illustrated in Figure 1.

Each seeded lineage was introduced at an initial frequency
f0 large enough that genetic drift is expected to be weak
relative to natural selection (i.e., f0 � 1=Ns). In the absence
of additional mutations, this implies that the frequency f(t) of
each seeded lineage should increase deterministically accord-
ing to the logistic equation, f ðtÞ ¼ f0est=½1þ f0ðest 2 1Þ�. This
expectation is indicated by the dashed curves in Figure 1. As
is apparent from the figure, most seeded lineages initially
conformed to this expectation (the exceptions are lineages
whose initial frequencies were only severalfold greater than
1=Ns, which is low enough that genetic drift could partially
reduce their initial rate of increase). Subsequently, many line-
ages diverged into a variety of qualitatively distinct fates. Since
both genetic drift and measurement errors are expected to be
small relative to this divergence (see Materials and Methods),
the variation in the fates of seeded lineages indicates that their
relative fitnesses were modified by new beneficial mutations
arising during the experiment.

Fates of seeded lineages reflect supply of competing
beneficial mutations

The trajectory of each seeded lineage provides information
about the beneficial mutations that did (or did not) arise within
the competing resident population. Consider, for example, the
case in which a seeded lineage of fitness s0 peaks and then
declines in frequency. This reflects a clonal interference event,
where one or more new beneficial mutations in the resident
population create a competing lineage with fitness .s0 (see
Figure 2). By considering the range of outcomes in replicate
populations, we can estimate the probability of these events
(Figure 3). A higher probability of clonal interference implies
a larger supply of beneficial mutations that can generate suc-
cessful competing lineages.

Comparing the fates of seeded lineages of different
fitnesses provides additional insight into the mutations re-
sponsible for clonal interference. For example, the seeded
lineage with fitness advantage s0 = 7% always swept to fix-
ation without any detectable deviation from the expectation
in the absence of interference. In contrast, the lineage with
s0 = 5% swept in 84% of replicates. Together, these two
results suggest that clonal interference in the s0 = 5% case
was primarily due to beneficial mutations in the resident that
created competing lineages with fitness advantages between
5 and 7%. Extending this logic, comparing the fates of seeded
lineages with s0 = 5, 4, and 3% provides information about

Figure 3 The fates of seeded lineages as a function of their fitness. We
show the fraction of replicate populations in which the seeded lineage
had the indicated fate.
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the probabilities that beneficial mutations create competing
lineages of fitness between 4 and 5% and between 3 and 4%.

While this intuition is straightforward, quantitative infer-
ence of the DFE requires us to connect the rates of individual
mutations with the fitnesses of competing lineages. This is
complicated because competing lineages may often contain
multiple beneficial “driver” mutations. In addition, beneficial
mutations may also arise in seeded lineages, despite their ini-
tially much smaller population sizes. To fully account for these
effects, we now introduce a computational method for infer-
ring the DFE.

DFE inferred from seeded lineage dynamics

We implemented an approximate likelihood method which
uses information from the shapes of the trajectories of seeded
lineages to infer the DFE of beneficial mutations. Any
particular trajectory carries only information about the bene-
ficial mutations that rose to significant frequency in that
population (i.e., the “contending” mutations; Rozen et al.
2002), but by modeling the trajectories of many populations
together, we can learn about the overall distribution of possi-
ble beneficial mutations for the strains in our experiment. To
make this inference tractable, we limited ourselves to single-
parameter DFE shapes characterized by an average fitness
effect s and beneficial mutation rate Ub. For concreteness,
we considered three canonical distributions commonly used
in the literature: an exponential DFE, rexpðsÞ ¼ ð1=sÞe2s=s, a
uniform DFE runifðsÞ ¼ Heavisideð2s2 sÞ=ð2sÞ, and a d-function
DFE, where all beneficial mutations have the same fitness
effect, rdðsÞ ¼ dðs2 sÞ. We explain the significance of these
choices in the Discussion.

To compute the likelihood of particular DFE parameters,
we ran forward-time simulations of the experiment and
estimated the likelihood as the fraction of replicate simula-
tions that matched the data (see Appendix). In principle, we
could use the complete trajectory of each seeded lineage for
this comparison, identifying a match between simulations and
data whenever the two were identical. However, in practice
this was not computationally tractable. Instead, we focused on
two features of the dynamics: the first peak frequency, fpeak, of
each seeded lineage (binned into quartiles, including fixed

lineages) and the rate at which the seeded lineage declined
in frequency following this peak, sdown (binned into 2% inter-
vals). These are illustrated in Figure 2. We chose to focus on
these two quantities because we expect them to be particu-
larly sensitive to the DFE: fpeak indicates how quickly a com-
peting lineage arose in the resident population, while sdown

measures how much the relative fitness of the resident pop-
ulation increased in this time. In addition, this focus on early
time dynamics ensures that most relevant mutations occur in
the resident (due to its initially much larger population
size), minimizing the effects of potential differences in the DFEs
of the seeded genotypes.

For the three considered DFE shapes, we identified the
most-likely parameters Ub and s by scanning a grid of can-
didate values. These parameters are shown in Figure 4,
along with confidence bounds estimated by bootstrapping
(see Appendix). For each of these most-likely parameters,
we show simulations of the s0 = 3% seeded lineage trajec-
tories in Figure 5 and for the s0 = 4, 5, and 7% lineages in
Figure S1, Figure S2, and Figure S3. Using a likelihood ratio
test, we found that the exponential DFE provided a signifi-
cantly better fit to the data than either the d-function (P ,
1024) or uniform distribution (P , 1024) and that the uni-
form provided a better fit than the d (P , 1024).

Since the seeded lineage with s0 = 7.3% always swept
to fixation, indicating that larger-effect mutations must
be rare, we checked whether truncating the high fitness
end of the exponential DFE would improve its fit to the
data. To do so, we considered an exponential DFE trun-
cated at 7.3% and performed the same inference and
statistical tests as above. We found that this truncated
exponential provided a better fit to the data, but not
significantly so (P . 0.08, likelihood-ratio test). We also
checked whether truncating the low-fitness end of the
exponential would affect its fit to the data. We varied
this truncation and found that, for the inferred exponen-
tial DFE parameters, discounting mutations with fitness
effects ,2.1% improved these parameters’ fit to the data,
but only marginally so. This indicates that the seeded
lineages were not strongly affected by mutations with
fitness effects ,�2%.

Figure 4 Inferred DFE parameters. Left: The most-likely
parameters Ub and s for DFEs r(s) given by exponential
(star), uniform (square), and d-function (triangle) distri-
butions. Shaded circles indicate 1% confidence ranges
of these parameters as estimated by bootstrapping (see
Appendix). Right: The shapes of these distributions
shown for s $ 2% given their most-likely parameters.
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Measurements of adaptation rate corroborate
DFE inference

In addition to determining the dynamics of seeded line-
ages, the DFE determines the rate of adaptation. Thus to
test our inferences, we measured the changes in fitness
over time of 16 control populations that consisted of the
resident strain alone. We compared the average fitness of
the control populations with the predictions of the most-
likely exponential, uniform, and d-function DFEs. As seen
in Figure 6, the inferred exponential is fairly accurate in
predicting these data, whereas the uniform and d-function
are less so.

Throughout our analysis, we have implicitly assumed
that the DFE remained the same across all genotypes in
the experiment, which implies that the fitnesses of
populations should increase linearly on average after
some initial transient. In contrast, the rate of adaptation
slowed after generation 380 (P , 3 3 1023; see Appendix),
which is reminiscent of declines in adaptation rate commonly
observed in other evolution experiments (Elena and Lenski
2003). Fortunately, we based our DFE inference on the early
features of seeded lineage dynamics, most of which tran-
spired prior to this time. Thus the change in adaptation rate
is not inconsistent with our method.

Discussion

Interest in the DFE stems from a desire to know what
beneficial mutations are available and which of these drive
adaptation. In asexual populations, the DFE also determines
the distribution of competing mutations and the frequency
of clonal interference. Here, we have described a simple
experiment that exploits this connection to infer the DFE in
experimental populations of S. cerevisiae. By introducing line-
ages with different fitnesses and tracking their subsequent
dynamics, we inferred the DFE from the statistics of ob-
served interference events. In the process, we directly ob-
served how initial fitness advantages and clonal interference
jointly influence the fixation or loss of adaptive lineages.

Previous experimental work has analyzed several other
cases where an introduced lineage is outcompeted by a less-
fit resident population (Waite and Shou 2012; Gifford and
MacLean 2013). Unlike our experiment, these earlier studies
focus on the fates of a few key mutations (e.g., antibiotic
resistance or microbial “cheaters”) without attempting to
infer the underlying DFE. Nevertheless, our results comple-
ment this earlier work by showing the transition between
fitness effects that are susceptible to clonal interference and
those that decisively sweep to fixation, which has previously
been studied theoretically (Neher and Shraiman 2011;
Schiffels et al. 2011; Good et al. 2012). In our system, this

Figure 5 Lineage dynamics data and simulations for s0 = 2.8%. The trajectories of seeded lineages with initial fitness s0 = 2.8% are shown as observed
in the experiment (top left) and as reproduced by simulations assuming the DFE parameters indicated above each part.
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transition occurs when the fitness of the seeded lineage is
�5%, which represents a critical effect size required for
a mutation to drive adaptation. Of course, in natural popu-
lations some adaptive variants may arise in populations with
substantial standing fitness variation, rather than the homo-
geneous resident populations employed here. In this case,
the transition between mutations that sweep and those that
experience interference is determined both by the DFE and
by the distribution of fitnesses in the resident population.
Further work is needed to address this situation.

Our computational inference method allowed us to distin-
guish between three representative DFE shapes: exponential,
uniform, and d-function (in which all mutations have the same
effect). These represent idealized approximations to the actual
DFE, and it is likely that a larger number of replicates or more
sophisticated computational techniques could produce other
DFE shapes with a significantly better fit. Yet one cannot con-
tinue this process indefinitely without reaching a point where
further determination of the fine-scale DFE becomes irrelevant
for any particular application. In the end, certain features of
the DFE matter for predicting certain aspects of the evolution-
ary process, and the required level of resolution is ultimately
determined by the aspect of adaptation one wishes to study.
This experiment, which focuses on the fates of advantageous
mutants, provides a concrete illustration of this principle. Pre-
vious work has suggested that the dynamics of adaptation can
be summarized by a single characteristic fitness effect, with
a magnitude that depends on the actual DFE and the level of
clonal interference within the population (Hegreness et al.
2006; Desai and Fisher 2007; Good et al. 2012). By rejecting
the d-function and uniform DFEs in favor of the exponential,
we have shown that this assumption breaks down when one
considers more detailed features of the lineage trajectories.

Given these caveats, the DFE that we inferred is worth
pondering. We estimated an exponential distribution with
mean s ¼ 0:85% and total beneficial mutation rate Ub =
1.03 1024. Our modeling indicated that of these mutations,

only those with effects .2% affected the fates of seeded
lineages and that these mutations are predicted to arise at
a rate of order 1025 per individual per generation. If one
assumes a per-genome point mutation rate of roughly 4 3
1023 (Lynch et al. 2008), this would imply that of order 1
in 1000 mutations confer a fitness advantage of two percent
or more. This is consistent with past work in a related sys-
tem (Desai et al. 2007) and is also similar to DFEs reported
for bacteria adapting to rich laboratory media (Kassen and
Bataillon 2006; Perfeito et al. 2007; Wiser et al. 2013). In
such permissive environments, other studies in yeast that
have identified specific adaptive mutations report a mix of
loss-of-function vs. other kinds of beneficial mutations (Jansen
et al. 2005; Kao and Sherlock 2008; Wenger et al. 2011;
Kvitek and Sherlock 2013; Lang et al. 2013). If a large frac-
tion of beneficial mutations in our system are loss of func-
tion, and if �10% of spontaneous mutations in a gene cause
loss of function (Lang and Murray 2008), our results would
suggest that �1 in 100 genes are beneficial to disrupt. This
is at least qualitatively consistent with direct measurements
using the yeast deletion collection (Sliwa and Korona 2005;
Bell 2010). Together, these results illustrate how inferences
from lineage dynamics can combine with other lines of ev-
idence to help build a more complete picture of adaptation.

Finally, we note that our experimental design has a potential
practical application as a screen for beneficial mutations. When-
ever a seeded lineage with fitness advantage s0 experiences
clonal interference, the resident must contain a mutant lineage
at appreciable frequency with fitness greater than s0. Thus, by
picking clones from the resident immediately after a clonal in-
terference event, we should in principle be able to isolate rare
large-effect beneficial mutations. This is similar in spirit to ear-
lier studies that used the dynamics of neutral markers to screen
for adaptive clones (e.g., Rozen et al. 2002). However, because
our seeded lineages are more fit than the resident, we can
screen for beneficial mutations with particularly large effects.

Figure 6 The rate of adaptation. The average fitness over time of 16
experimental control populations (6 1 SEM) is shown in black. Solid
curves are the predictions of these data given the most-likely exponential,
uniform, and d-function DFEs. The fitnesses of individual populations are
shown in Figure S4.

Figure 7 A screen for beneficial mutations. We simulated the evolution-
ary dynamics for a range of seeded lineages and then simulated picking
a single clone at random from the resident population immediately after
a clonal interference event. The bars indicate the average fitness of this
clone and its largest effect mutation (61 SD, scale at left). We also show
the fraction of replicate populations in our simulations in which clonal
interference occurs (scale at right). The simulations assumed the most-
likely exponential DFE inferred in the study.
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Further, since the resident must quickly generate a competing
lineage, our approach is more likely to find clones with fewer
mutations of larger effect rather than many of smaller effect, as
well as limit the number of nonbeneficial hitchhiking muta-
tions. To illustrate this idea, we simulated seeded lineage tra-
jectories and then simulated picking a clone from the resident
population after observed clonal interference events. In Figure
7, we show the average fitness of each of these simulated clones
and of the largest-effect mutation in each clone. As is apparent
from the figure, it should be feasible to use this approach with
a seeded lineage of the appropriate fitness to isolate large-effect
beneficial mutations with specific fitness effects.
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Appendix: Inferring the DFE

Simulations

For a given DFE, we simulated lineage trajectories using a forward-time algorithm designed to mimic the conditions of our
experiment. Between each transfer, each cell expanded clonally for 10 generations at a deterministic exponential growth rate
r = r0 + X, where X is the fitness of the cell relative to the resident ancestor strain. At the transfer step, the population was
downsampled to Nb = 104 individuals with Poisson sampling noise. Mutations accumulate during the growth phase, but we
assumed that they did not influence the fitness of the cells until the next transfer cycle. Thus, mutation was approximated by
assuming that each individual has a probability 10Ub of gaining a beneficial mutation at the end of a transfer step, with
additive fitness effects drawn from the underlying DFE. To speed computation, we binned the fitnesses of individual cells
into discrete fitness classes of width Ds = 0.01% for all simulations except those in Fig. 7, which required information from
individual mutations.

Each replicate simulation began at generation t = 0 with a homogeneous seed population with initial fitness s0 and initial
size f0Nb and a resident population of size (1 2 f0)Nb, with s0 and f0 as measured experimentally. The initial genetic
composition of each resident population was obtained by simulating deterministic growth from a single cell to 3 3 108

cells, followed by a Poisson dilution down to Nb cells and four transfer cycles as described above. Simulated trajectories were
then obtained by propagating the seeded lineage and the resident and recording the number of descendants of the seeded
lineage at the same time points as the experiment, up to the time required for the fixation or first peak used in the inference.
Simulations for the rate of adaptation were carried out in a similar manner for populations consisting only of the resident
(without the four transfer cycles prior to t = 0). A copy of our implementation is available upon request.
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DFE parameter estimation

To determine the likelihood of the data for a particular set of DFE parameters, the 658 measured trajectories were
partitioned into 13 classes such that the seeded lineages within each class shared the same initial fitness s0 and differed in
their initial frequency f0 at most two- to fourfold (Table S1). We classified each trajectory into 1 of 17 bins of ( fpeak, sdown)
values as described in the text. To estimate the relative probabilities of each of these bins, we simulated a large number of
trajectories for each of the 13 seeded lineage classes and recorded the fraction of times that each trajectory bin was observed.
The total likelihood of the data for a given set of DFE parameters was then estimated as the product of the trajectory bin
probabilities for each of the 658 measured trajectories.

We determined the most-likely parameters for a particular DFE shape by scanning across a grid of Ub and s values, which
was locally resampled at finer resolutions until the most-likely parameters could be identified with a reasonable level of
confidence. We first simulated a coarse grid of parameter values with a mean rate of adaptation between 0 and 5% per 100
generations. We confirmed by visual inspection that the likelihood surface smoothly sloped toward the most-likely point
identified in this coarse grid. We drew a rectangle around this peak and resampled points and adjusted the boundaries of this
region until they satisfied the following criteria:

1. Any infinitesimal area of the region contained at least one point whose likelihood uncertainty (due to the finite number of
simulated trajectories) was,0.5 log-likelihood units (LLU). Here, infinitesimal areas correspond to 10% increments of Ub

and 0.1% increments of s. We estimated the uncertainty in the likelihood using the Wilson confidence interval (Brown
et al. 2001) and employed a minimum of 104 simulated trajectories per parameter value.

2. Each infinitesimal area on the border of the peak region contained a point with likelihood at least 10 LLU below the peak
and whose uncertainty was ,0.5 LLU.

Once these criteria were met, the most-likely parameters for the candidate DFE shape were estimated to be the grid point
with the highest likelihood value. We estimated the confidence regions in Figure 4 by refitting the most-likely parameters for
104 bootstrapped datasets, which we obtained by resampling the observed trajectories with replacement in such a way that
the total number of trajectories in each of the 13 trajectory classes was preserved. Figure 4 shows the scatter of parameters
that were found to be most likely for at least 1% of these bootstrapped data sets.

Statistical tests

We used a standard likelihood ratio test to evaluate whether the most-likely exponential DFE provided a significantly better
fit than the most-likely d-function DFE. To obtain the null distribution of the likelihood ratio, we simulated 104 data sets
using the most-likely d-function DFE and determined the most-likely parameters for each of these simulated data sets under
the exponential and d-function DFEs as described above. We then estimated the P-value as the fraction of simulated data sets
whose likelihood ratio was more extreme than the value obtained from the measured trajectories. A similar procedure was
used to compare the exponential and truncated exponential DFEs, with the exponential DFE now taking the role of the null
hypothesis.

To obtain an absolute measure of goodness-of-fit for the exponential and d-function DFEs, we used the estimated
maximum likelihood as a test statistic and generated 104 simulated data sets given the most-likely values of Ub and s. We
then estimated the P-value as the fraction of simulated data sets whose estimated maximum likelihood was lower than that
of the actual data.

The significance of the slowdown in adaptation rate was assessed with a nonparametric bootstrap procedure. We
generated 104 bootstrapped data sets obtained by resampling the 16 populations with replacement, and for each of these,
further resampling from the four fitness measurements at each time point. The null distribution for the change in adaptation
rate, Dv, was obtained by calculating the change in adaptation rate in each bootstrapped data set and subtracting the
observed value from the original data. We then estimated the P-value as a fraction of bootstrapped data sets in which |Dv|
was greater than that of the actual data.
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Generations after seeded lineage reaches frequency .05
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FIG. S1 Lineage dynamics data and simulations for s0 = 3.8%. Each panel shows the

trajectories of seeded lineages with initial fitness s0 = 3.8% as observed in the experiment (top

left) and as reproduced by simulations assuming the DFE parameters indicated above each panel.
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FIG. S2 Lineage dynamics data and simulations for s0 = 5.0%. Each panel shows the

trajectories of seeded lineages with initial fitness s0 = 5.0% as observed in the experiment (top

left) and as reproduced by simulations assuming the DFE parameters indicated above each panel.
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FIG. S3 Lineage dynamics data and simulations for s0 = 7.3%. Each panel shows the

trajectories of seeded lineages with initial fitness s0 = 7.3% as observed in the experiment (top

left) and as reproduced by simulations assuming the DFE parameters indicated above each panel

(which are also the ones indicated by the star, triangle and square in Fig. 4).

27

4 SI E. M. Frenkel, B. H. Good, and M. M. Desai



0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

12

14

16

Generations

Fi
tn

es
s 

(%
)

FIG. S4 The rate of adaptation. The fitness over time of 16 experimental control populations

(grey curves) and their mean (black curve). The error bars are ±1 s.e.m.
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Table S1   Lineage dynamics data 

Available for download as a .csv file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160069/-/DC1 


