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a b s t r a c t

Evolutionary dynamics and patterns of molecular evolution are strongly influenced by selection on linked
regions of the genome, but our quantitative understanding of these effects remains incomplete. Recent
work has focused on predicting the distribution of fitness within an evolving population, and this forms
the basis for several methods that leverage the fitness distribution to predict the patterns of genetic
diversity when selection is strong. However, in weakly selected populations random fluctuations due to
genetic drift are more severe, and neither the distribution of fitness nor the sequence diversity within the
population are well understood. Here, we briefly review the motivations behind the fitness-distribution
picture, and summarize the general approaches that have been used to analyze this distribution in the
strong-selection regime. We then extend these approaches to the case of weak selection, by outlining
a perturbative treatment of selection at a large number of linked sites. This allows us to quantify the
stochastic behavior of the fitness distribution and yields exact analytical predictions for the sequence
diversity and substitution rate in the limit that selection is weak.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A central goal of modern population genetics is to predict
the diversity and fate of DNA sequences within a population,
accounting for the joint effects of mutation, recombination, and
natural selection at the sequence level. Genetic diversity is a
fundamental feature on these genomic scales, sincemutation rates
inmost organisms are so large thatmany sequence variants coexist
within the population at any given time (Begun et al., 2007;
Kreitman, 1983; Lewontin and Hubby, 1966; Nelson et al., 2012;
Nik-Zinal et al., 2012; Rambaut et al., 2008). Some fraction of these
mutations will have a negligible effect on reproductive fitness, but
mounting empirical evidence suggests that a significant number
are influenced by natural selection as well (see Hahn (2008) for
a recent review). It is therefore imperative that our models of
sequence evolution should be able to describe a large number
of variants at disparate sites within the genome, possibly with
different effects on the reproductive fitness of each individual.

This picture of extensive diversity at the sequence level stands
in contrast to the large body of population genetics theory
developed during the first half of the 20th century, which typically
focused on the fate of a single mutant allele (relative to the
wildtype) at a single genetic locus. Numerous mathematical
models have been proposed, even for this highly simplified
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scenario, which correspond to different underlying assumptions
about the mechanisms of natural selection, the reproductive
lifecycle of the organism, and so on (Ewens, 2004). Fortunately,
many of the differences between these models become negligible
in large populations, and in this case an elegant theoretical
description of the two-allele, single-locus system can be obtained
from the standard diffusion limit (Feller, 1951). The frequency f
of a mutant allele with fitness effect s in a population of size N is
assumed to satisfy the stochastic differential equation

∂ f
∂t

= s [f (1 − f )]  
selection

+


f (1 − f )

N
η(t)  

genetic drift

, (1)

where η(t) is a stochastic noise term that will be defined in
Section 2. This model relates the rate of change in f to the
deterministic action of selection and the random effects of genetic
drift; it is formally equivalent to the more traditional diffusion
equation for the probability distribution of f (Feller, 1951).
Although the full solution to Eq. (1) is quite complicated (Kimura,
1955; Song and Steinrücken, 2012), this diffusion model is simple
enough to admit a number of useful and exact results, including the
well-known formula for theprobability of fixation of a newmutant,

pfix =
2s

1 − e−2Ns
, (2)
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and (in the limit of low mutation rate µ) the average pairwise
heterozygosity,

π = 2
µ
s

  e−2Ns
+ 2Ns − 1

1 − e−2Ns


. (3)

The historical impact of this diffusion model cannot be overstated,
and these simple results played a large role in illuminating both
the qualitative and quantitative effects of genetic drift arising from
the finite size of the population. However, extending these single-
locus results to an explicitly sequence-based setting proves to be
quite challenging when selection is present.

In principle, one can treat the entire genome as a single locus
with each possible genotype represented by a unique allele. A
genome of length Lwould therefore require 2L separate alleles and
a corresponding system of diffusion equations relating the 2L

− 1
independent allele frequencies. This clearly becomes unwieldy for
large genomes since the number of alleles grows exponentially
with L, and the sparse mutational connectivity between the
different sequences and their varying fitnesses removes much of
the desired symmetry from the problem (Ethier and Kurtz, 1987).
Even for a genome with just L = 2 sites, exact solutions can
only be found for a few special cases, and one must often resort
to numerical calculations (Barton and Etheridge, 2004) or Monte-
Carlo simulations (Hill and Robertson, 1966).

A popular alternative approach is to treat each site in
the genome as a separate locus and assume some sort of
quasi-independent evolution among the various loci, so that
the single-locus model in Eq. (1) applies to the marginal
nucleotide frequencies at each site (Sawyer and Hartl, 1992). This
independent-sites approximation, which is exact in the limit of
infinite recombination, reflects a historical perception of linkage
as an infrequent and generally small correction to an otherwise
freely-recombining set of loci, as is often the case for a quantitative
trait with genetic contributions from several distant sites (Barton
and Turelli, 1991; Falconer, 1960; Neher and Shraiman, 2011b).
But given the typical recombination rates in most organisms, this
assumption is likely to break down on local genomic scales, and
effectively asexual selection on particular haplotype blocks may
be a more accurate description (Franklin and Lewontin, 1970;
Slatkin, 1972). Moreover, it has been shown that selection within
these linked regions leads to large deviations from the predictions
assuming independent evolution between the various sites, even
after adjusting for possible reductions in the effective population
size (Bustamante et al., 2001; Charlesworth et al., 1993; Comeron
and Kreitman, 2002; Good and Desai, 2012; Messer and Petrov,
2012). Correctly accounting for the effects of selection on local
genomic scales remains one of the major outstanding problems in
population genetics, and is a necessary prerequisite if we wish to
take full advantage of the increasing availability of DNA sequence
data in order to make inferences about the evolutionary forces
acting within a population (Pool et al., 2010).

Recent advances in this area have employed a third approach –
situated somewhere between the genotypes-as-alleles and sites-
as-loci schemes – in which the distribution of fitnesses in the
population plays a central role (Desai and Fisher, 2007; Goyal
et al., 2012; Haigh, 1978; Hallatschek, 2011; Neher et al., 2010;
Ohta and Kimura, 1973; Park and Krug, 2007; Rouzine et al.,
2003; Tsimring et al., 1996). Although the fitness distribution may
seem to be rather tangential to the sequence-oriented questions
introduced above, this quantity turns out to play an important role
in mediating the effects of linked selection within the population,
and several promising methods predict the behavior of individual
sequences based on their interactions with this population-wide
distribution (Good et al., 2012; Hudson and Kaplan, 1994; Neher
and Shraiman, 2011a; O’Fallon et al., 2010; Walczak et al., 2012;
Zeng and Charlesworth, 2011). Instead of tracking the frequencies

of all possible genotypes or just the marginal frequencies at each
site, this approach requires an explicit model for the frequency of
individuals at each possible fitness, otherwise known as a fitness-
class. Here too, the interactions betweenmutation, recombination,
drift, and selection can be quite complex, and significant progress
has been made only in the case where genetic drift is negligible
compared to these other evolutionary forces. This can often be a
reasonable approximation in many populations, since the effects
of genetic drift are typically less severe for the fitness classes than
for the frequencies of the underlying genotypes.

Nevertheless, even in this fitness-class picture the effects of
genetic drift cannot be excised completely, since they play a crucial
role in the high-fitness ‘‘nose’’ of the fitness distribution that often
controls the behavior in the rest of the population (Brunet et al.,
2008; Desai and Fisher, 2007; Goyal et al., 2012; Hallatschek, 2011;
Neher and Shraiman, 2012). Various ad-hoc methods have been
devised to account for this drift-dominated nose and its relation
to the deterministic behavior in the bulk population, which yield
accurate predictions for simple quantities such as the average
rate of adaptation and the fixation probability of new mutations.
Yet because of their ad-hoc nature, it is not entirely clear when
these approximations are likely to be valid, or whether they
remain appropriate for more complicated quantities of interest.
Furthermore, in populations with weaker selection this separation
between the drift-dominated nose and the deterministic bulk
starts to break down, and the random nature of genetic drift
becomes important throughout the entire fitness distribution.

In the present work, we follow an approach that is orthogonal
to both the weak-drift limit of this fitness-class description as
well as the weak-mutation limit implicit in the standard single-
locus treatment. Rather, we seek a fitness-class description for
a regime with weak selection at a large number of completely
linked sites. Suitably defined, the neutral limit of the population
‘‘fitness distribution’’ is exactly solvable, and the corrections
in the presence of selection can be calculated order by order
as a perturbation series in powers of the selection strength.
The resulting expressions may have relevance to sequence data
obtained from natural populations [particularly in the context of
the nearly-neutral theory of evolution (Ohta, 1992)], but their
primary value is qualitative. The zeroth-order neutral description
offers a valuable window into the stochastic aspects of the
population fitness distribution in the absence of the complicating
effects of selection, while the higher-order terms give the exact
corrections from interference at a large number of linked sites
and help illuminate the previously obscure transition to neutrality.
The exact nature of these selective corrections provides a valuable
check on a number of common heuristic assumptions in the
literature, which should agree with our asymptotic results when
selection becomes weak.

2. Fitness classes and the population fitness distribution

The distribution of fitnesses within the population is itself a
random object which changes in time and reflects the inherent
stochasticity of the evolutionary process. Two populations with
the same genetic composition and the same set of available
mutationswill typically possess different fitness distributions after
evolving independently for the same amount of time, although
these distributions will be related in some statistical sense. Like
the stochastic frequency of a single mutant allele discussed
above, the statistical properties of the fitness distribution can be
described by a generalization of the diffusion model in Eq. (1)
that makes both the large population and long genome limits
explicit. We consider a population of N haploid individuals that
acquire newmutations at a total rateU per generation.We assume
that these mutations occur over a large number of loci, each
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with relatively small contributions to the total fitness, so that
a mutation of effect s arising in an individual with (log) fitness
X increases its fitness to X + s. Furthermore, we assume that
the number of loci is sufficiently large, and epistasis sufficiently
weak, that the set of available mutations can be approximated
by a continuous distribution of fitness effects ρ(s) that remains
constant throughout the relevant time interval.

The random arrival of new mutations and the effects of genetic
drift are treated by a continuous-time stochastic model similar to
the one introduced in Hallatschek (2011). Let f (X, t) denote the
relative frequency of individuals with absolute fitness X at time t ,
normalized so that


dX f (X, t) = 1. In some infinitesimal time

δt , these frequencies are incremented according to the stochastic
update rule

f (X, t + δt) ∝ f (X, t)+ Xf (X, t)δt

+U


ds [f (X − s, t)− f (X, t)] δt

+


f (X, t)δt

N
η(X, t), (4)

where η(X, t) denotes a set of independent Gaussian noise terms
with zero mean and unit variance (Gardiner, 1985), and the
constant of proportionality is chosen to satisfy the population size
constraint

dX f (X, t + δt) = 1. (5)

This yields a familiar Langevin equation for the fitness distribution

∂ f (X)
∂t

=

X − X(t)


f (X)  

selection

+ U


ds ρ(s) [f (X − s)− f (X)]  
mutation

+


dX ′


δ(X ′

− X)− f (X)
 f (X ′)

N
η(X ′)  

genetic drift

, (6)

where X(t) =

dX Xf (X, t) is the mean fitness of the population

(see Fig. 1). Like the diffusion approximation at a single locus,
this stochastic model is thought to describe the universal behavior
that emerges in the limit that N → ∞ and L → ∞, while
the per-site mutation rate µ and the relevant fitnesses X tend
to zero in such a way that the scaled quantities NU ≡ NLµ
and NX completely determine the dynamics. This scaling behavior
provides an important check on our intuition (as well as our
algebra), since it implies that any effects that depend on 1/N , X ,
or Nµ alone are completely negligible in this model unless we
explicitly relax one of these assumptions (e.g., the finite site effects
in Appendix A).

Two of the defining features of this stochastic model arise
from the population size constraint in Eq. (5) that connects Eqs.
(4) and (6): the resulting selection term becomes a nonlinear
function of f (X, t), and the previously simple noise terms acquire
a complicated correlation structure. Such features are inherent
in any model that imposes a population size constraint in this
manner. The only fitnesses that matter are the relative fitnesses
x = X − X(t), which depend not just on the properties of a
particular DNA sequence, but also on the global behavior of all
of the other sequences in the population. Moreover, the action of
genetic drift is correlated among the various fitness classes in order
to respect the constant population size.

Fig. 1. A schematic depiction of the population fitness distribution, f (X, t), which
is obtained by grouping together genotypes with the same absolute fitness X .
Important features of this distribution include the mean fitness X and the standard
deviation σ , which is proportional to the typical fitness difference between two
individuals in the population. We have also highlighted the high-fitness ‘‘nose’’ of
the distribution, where genetic drift continues to dominate even in extremely large
populations.

Yet despite the complex correlation structure of this drift term,
we have constructed our stochastic model so that its average
effect vanishes at any particular instant in time. Thus, we are led
to examine the average profile ⟨f (X, t)⟩, which represents the
expected value of the fitness distribution averaged over many
independent populations. Taking the expectation of both sides of
Eq. (6), we find that this average profile ⟨f (X, t)⟩ is governed by the
deterministic differential equation

∂⟨f (X)⟩
∂t

= X⟨f (X)⟩ −


dX ′ X ′

⟨f (X)f (X ′)⟩

+


ds ρ(s) [⟨f (X − s)⟩ − ⟨f (X)⟩] .

However, this moment equation does not close: the nonlinear
selection term in Eq. (6) implies that the future behavior of ⟨f (X)⟩
does not just depend upon its own value in the present, but also on
the two-point correlation function ⟨f (X)f (X ′)⟩. The time evolution
of this two-point correlation function will in turn depend on the
three-point correlation function, and so on. One must therefore
solve an infinite hierarchy of these moment equations in order
to obtain predictions for the mean behavior. A similar hierarchy
arises for the single-locus diffusion in Eq. (1), but in that case the
simplicity of the drift term permits an exact solution. In contrast,
the lack of closure among the moments of the fitness distribution
is arguably the primary obstacle for a quantitative description
of large numbers of interfering mutations, and many statistical
properties of the fitness distribution remain unknown as a result.

Much of the existing work in this field has essentially focused
on variousways to approximate this correlated selection term. This
is often achieved through some sort of approximate factorization
of the form

⟨(X − X)f (X)⟩ ≈ (X − ⟨X⟩)⟨f (X) ⟩ (7)

so that the statistical aspects of the nonlinearity aremarginalized.1
Since the magnitude of genetic drift is proportional to 1/N ,
one regime where this approximation appears quite naturally
is in the strong-selection limit, N|X − X | ≫ 1, when the
genetic drift term can be neglected in Eq. (6) and all higher
correlations vanish. The canonical example of such a regime is
the deleterious mutation–selection balance attained under strong
purifying selection (Haigh, 1978),which has been intensely studied

1 Strictly speaking, this sort of approximation is often more appropriate when
this simple ensemble average is replaced with some other averaging scheme (see
below) or an alternative measure of the ‘‘typical’’ behavior (Fisher, 2013).
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in the context of Muller’s ratchet (Etheridge et al., 2007; Gessler,
1995; Gordo and Charlesworth, 2000; Higgs and Woodcock,
1995; Jain, 2008; Muller, 1964; Neher and Shraiman, 2012;
Stephan et al., 1993; Waxman and Loewe, 2010) and background
selection (Charlesworth et al., 1993; Gordo et al., 2002; Hudson
and Kaplan, 1994; Nicolaisen and Desai, 2012; Walczak et al.,
2012). Neher and Shraiman (2012) have demonstrated that the
deterministic limit becomes exact in this particular case when
selection is infinitely strong. However, if beneficial mutations
are present, or if some of the deleterious mutations are weakly
selected, then even in this extreme limit the factorization in
Eq. (7) does not hold for all X , since it starts to break down near
the high-fitness ‘‘nose’’ of the distribution (see Fig. 1), where a
relatively small number of individuals have an outsized chance
of taking over the population. Thus, in this strong-selection limit
one often speaks of a division of the population into a drift-
dominated nose (where stochasticity is extremely important) and
a deterministic bulk where Eq. (7) holds. When the distinction
between these regions is sufficiently sharp, a number of highly
successful (although somewhat ad-hoc) approximations have been
developed to treat the stochasticity in the nose and to self-
consistently match this behavior with the deterministic bulk of
the population (Desai and Fisher, 2007; Goyal et al., 2012; Neher
and Shraiman, 2012; Rouzine et al., 2003; Tsimring et al., 1996).
Several alternative approaches are based on a modification of the
stochastic dynamics in Eq. (6), which is chosen in a particular
way so that the nonlinearity in the selection term vanishes by
design (Fisher, 2013; Hallatschek, 2011). These models may be
more appropriate when the boundary between the stochastic nose
and the deterministic bulk is less pronounced, but their relation
(and relevance) to the standard evolutionary model in Eq. (6) must
be justified on an ad-hoc basis.

These methods are by far the most promising candidates for
describing the evolutionary dynamics in a strong-selection regime
relevant to many laboratory evolution experiments, microbial
populations, or other rapidly adapting organisms. Yet fromapurely
theoretical standpoint, they suffer from a major shortcoming in
that they attempt to describe a parameter regime for which
no exact asymptotic description has been found. Although these
methods were devised to approximate this asymptotic behavior,
their correctness (apart from self-consistency) can only be
validated by numerical comparisons to Monte-Carlo simulations
of Eq. (6) for particular parameter values. This can make it
difficult to test the individual assumptions that enter into these
approximations or to compare different approximation methods,
and it offers little direct information about which quantities
or parameter regimes fall outside their domain of validity. On
a more practical level, there may be many populations that
are dominated by a large number of weakly selected mutations
where these strong-selection methods do not apply. In this case,
few quantitative descriptions exist apart from assuming strict
neutrality, and our knowledge of the relevant processes in this
regime is extremely limited.

Thus, while previous approaches have attempted to reconcile
the joint effects of selection and drift by mostly neglecting the
latter, our approach here will be exactly the opposite. Rather
than focus on those regimes where the selection term can be
factored like Eq. (7), we consider the weak-selection limit where
this selection term can be neglected entirely, or at least treated as
a small perturbation. Unlike the strong-selection limit, the zeroth
order solution in this nearly-neutral regime can be treated exactly
and the full statistical behavior can be elucidated, which leads
to a natural (and similarly exact) perturbation expansion in the
presence of selection.

3. The neutral limit

There are a variety of ways we could define the neutral limit
of Eq. (6), but we are interested in one which does not lead to
a trivial description of the resulting ‘‘fitness distribution’’. For
example, there is a naive limit inwhich the fitness effects of all new
mutations have s = 0, which implies that the entire population is
confined to a single ‘‘fitness class’’ with fitness X = 0 for all time,
i.e.

f (X) = δ(X).

However, we can maintain much more of the interesting multi-
locus behavior by ignoring the absolute fitness of each individual
for the moment and concentrating instead on the number of
mutations k that each individual possesses. In this limit, a
population-wide ‘‘mutation number distribution’’ f (k, t) emerges
in the same way that a fitness distribution f (X, t) arises from
Eq. (6). The stochastic dynamics in this case are governed by the
Langevin equation

∂ f (k)
∂t

= Uf (k − 1)− Uf (k)

+


k′

[δkk′ − f (k)]


f (k′)

N
η(k′, t). (8)

These dynamics are similar to the charge-ladder model introduced
by Ohta and Kimura (1973), which was initially created to
model the early electrophoresis measurements of allelic diversity.
This model later played an important role in the development
of the neutral coalescent, which has since largely superseded
it (Kingman, 1976, 1982, 2000; Moran, 1975). Our approach below
will have much in common with this standard neutral result,
although some quantities are more convenient to calculate in one
framework than the other. However, our description in terms of
fitness classes will lead to a natural generalization in the presence
of selection, which is difficult to incorporate into the standard
coalescent model (Neuhauser and Krone, 1997).

The stochastic dynamics in Eq. (8) are free of the nonlinearities
that plagued our earlier analysis of Eq. (6), and the resulting
equation for the average profile ⟨f (k, t)⟩ closes:

∂⟨f (k)⟩
∂t

= U⟨f (k − 1)⟩ − U⟨f (k)⟩.

This differential equation is straightforward to solve, and under the
assumption that all individuals start with zero mutations at time
t = 0, we find that

⟨f (k, t)⟩ =
(Ut)k

k!
e−Ut . (9)

Thus, the mean of this distribution accumulates mutations at
a constant rate U , which agrees with the standard calculation
that assumes that each neutral mutation fixes independently. As
t → ∞, the width of this distribution grows larger and larger, and
in order to conserve probability, ⟨f (k, t)⟩ approaches the trivial
solution

lim
t→∞

⟨f (k, t)⟩ = 0.

A similar observation was made previously in the context of
the charge-ladder model, which reflects the fact that this earlier
model and the one defined by Eq. (8) have no true stationary
distribution. Intuitively, this degenerate behavior is an artifact
of the averaging process we used in order to calculate ⟨f (k, t)⟩.
While the average rate of mutation accumulation is simply the
mutation rate U , the actual rate for any particular population
will tend to fluctuate around this value, and the location k(t)
will become increasingly uncertain with time. By calculating the
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average ⟨f (k, t)⟩ as t → ∞, we are effectively averaging many
independent distributions whose centers are distributed across a
large region of k, and hence the average number of individuals
at any particular k tends to zero. This line of reasoning is not
specific to the neutral limit considered in this section, but is in
fact a general property of any fitness distribution whose absolute
location is subject to stochastic fluctuations.

In all of these cases, the average distribution at long times is
a poor summary of the typical distribution found in a random
population. For example,while thewidth of the average distribution
in Eq. (9) increaseswithout bound, a simple argument fromneutral
coalescent theory shows the averagewidthof the population fitness
distribution has a finite extent as t → ∞. A random pair
of individuals in the population will typically share a common
ancestor T2 ∼ N generations ago, so the difference between the
number of mutations accumulated since the common ancestor is
on the order of NU . We can see this in our current framework
by simply measuring the number of mutations in each individual
relative to the mean number of mutations in the population at
any given time. In particular, we can examine the variance in the
number of mutations within the population, which is defined by

σ 2
k =


k

(k − k)2f (k).

Due to the presence of the k terms within this definition, σ 2
k is not

just a simple linear function of the class sizes f (k), and the rate of
change of the average variance ⟨σ 2

k ⟩ cannot bewritten as a function
of the average class sizes ⟨f (k)⟩ alone. Nevertheless, we can use the
stochastic dynamics in Eq. (8) to show that the differential equation
for ⟨σ 2

k ⟩ does close on itself, and we find that

∂⟨σ 2
k ⟩

∂t
= U −

⟨σ 2
k ⟩

N
.

Again, assuming that all individuals start out with zero mutations
at time t = 0, this equation yields the simple solution

⟨σ 2
k (t)⟩ = NU


1 − e−t/N

≈


Ut if t ≪ N ,
NU if t ≫ N .

Thus, we see that the variance attains an equilibrium value ⟨σ 2
k ⟩ =

NU , as expected from our coalescent arguments, and it does so
on the coalescent timescale T2 ∼ N . For t ≫ N , the population
continues to accumulate mutations at the same steady-state rate
U , but it does so with the relatively constant shape dictated by this
mutation–drift balance (see Fig. 2). On the other hand, for t ≪

N the average variance is essentially given by the deterministic
estimate Ut obtained from Eq. (9). We argued earlier that this
average distribution becomes unreliable when the uncertainty in
the location of the mean becomes comparable to the width of a
typical distribution. Our Langevin framework allows us to make
this argument more explicit, since we can directly show that the
variance in k obeys the differential equation

∂Var(k)
∂t

=
1
N

⟨σ 2
k ⟩,

and hence
Var(k) = Ut − NU


1 − e−t/N

≈


Ut
2


t
N


if t ≪ N,

NU


t
N


if t ≫ N.

Thus, when t ∼ N , the uncertainty in k is on the order of the
variance σ 2

k within a typical population. Beyond this threshold,
the uncertainty in k starts to dominate the width of the average
distribution ⟨f (k, t)⟩. On much longer timescales, the distribution
ofmutationswithin a typical populationwill have a relatively tight
width, ⟨σ 2

k ⟩ = NU , and a mean k which increases at rate U with a
diffusion constant D = U/2 (see Fig. 2).

Fig. 2. The distribution of the number of neutral mutations within the population
after t = 8N generations when NU = 50. The colored bars denote the results of
two independent realizations of the stochastic dynamics in Eq. (8), and the dashed
line is proportional to the average profile ⟨fk(t)⟩ from Eq. (9). [The vertical scale has
been adjusted to improve visibility; by definition all three distributions have unit
area.].

3.1. Higher moments and correlations

Of course, the substitution rate and the steady-state variance
⟨σ 2

k ⟩ can be calculated by other means, without the need for the
complicated machinery of the Langevin equation in Eq. (8). The
real utility of this approach is that it allows us to calculate higher
moments of the distribution of mutations that are inaccessible by
these other methods. Motivated by our discussion of the variance
in mutation number, we consider the whole family of central
moments

Mm =


k

(k − k)mf (k)


,

where by definition M2 = ⟨σ 2
k ⟩ from before. For m > 2, these

moments measure the higher-order features of the distribution
f (k) after controlling for the uncertainty in the mean. Using the
stochastic dynamics in Eq. (8) and rescaling time by τ = t/N ,
it is straightforward to show that the central moments obey the
compact equation

∂Mm

∂τ
=

m
2

 
k

(k − k)2f (k) ·


k

(k − k)m−2f (k)



−mMm + NU
m−2
ℓ=0

m
ℓ


Mℓ, (10)

which we derive in Appendix C. Given the nonlinear term on the
right, this system of equations for Mm does not close for m > 3
unless we also includemore complicated ‘‘replica’’ moments of the
form

Mm1,...,mJ =


J

j=1


k

(k − k)mj f (k, t)


, (11)

where Mm,n ≠ Mm · Mn. A general procedure for obtaining
the equations governing these replica moments is outlined in
Appendix C. At lower orders these dynamics are relatively simple,
and were first analyzed by Higgs and Woodcock (1995). In our
present notation, they showed that

∂M2

∂τ
= NU − M2, (12a)

∂M3

∂τ
= NU − 3M3, (12b)

∂M4

∂τ
= NU + 6NUM2 + 6M2,2 − 4M4, (12c)

∂M2,2

∂τ
= 2NUM2 − 3M2,2 + M4, (12d)
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although one can technically include the fifth order moments
before triple products of the form Mm1,m2,m3 start to appear. This
system of first-order linear differential equations can be solved
with standard Laplace transform methods in order to obtain a full
time-dependent solution. However, if we are merely interested in
the steady-state behavior as t → ∞, then the time derivatives on
the left-hand side vanish and the resulting algebraic system can be
easily solved:

M2 = NU, M4 =
10(NU)2 + NU

2
,

M3 =
NU
3
, M2,2 =

14(NU)2 + NU
6

.

(13)

In addition to these central moments Mm, we could also try to
describe the shape of f (k) through its cumulants Cm, which are
defined by

Cm =

∂mz log


k
ezkf (k)


∂zm


z=0

.

Note that by definition, C2 = M2 and C3 = M3, while C4 =

M4 − 3M2,2. Although the definition of a cumulant is less
intuitive than its corresponding central moment, many statistical
distributions can be described more compactly in terms of their
cumulants.2 Moreover, given that C4 already contains one of the
replica products,M2,2, it could be the case that the replicamoments
in Eq. (10) only arose because we did not write everything in terms
of the cumulants from the beginning.We can check this hypothesis
by deriving an analogous set of equations for the cumulants in
Appendix D, which shows that

∂Cm

∂τ
= NU −


m⃗

m
m⃗

 
j
(2mj − 1)

dim m⃗!
Cm⃗, (14)

where the sum over m⃗ denotes a sum over all integer partitions
of m. Thus, we can see that while the mutation term is much
simpler for the cumulants, replica products are required in this
case as well, and they appear in a much more complicated form
than they do for the central momentsMm. In this respect, both the
cumulants and the central moments provide a rather unnatural
basis for describing the shape of f (k) when genetic drift is taken
into account. At higher order in m, genetic drift starts to mix in
contributions from the replica products, which only become more
numerous asm increases.

Yet while these replica products make calculations of Mm and
Cm more onerous, they provide important information about the
variability of these quantities between independent populations.
For example, the second order product M2,2 can be used to
calculate the variance in the characteristic width σ 2

k from the
relation

Var(σ 2
k ) = M2,2 − M2

2 =
8(NU)2 + NU

6
.

This shows that the long-term uncertainty in σ 2
k remains larger

than its expected value ⟨σ 2
k ⟩ even in the limit that NU → ∞.

Thus, as argued by Higgs and Woodcock (1995), the variance
in the number of mutations within the population is not a
self-averaging quantity, since σ 2

k does not ‘‘settle-down’’ to
some fixed value in large populations as one might naively

2 For example, a Poisson distribution is uniquely characterized by the fact that
Cm = λ for allm, while a normal distribution has Cm = 0 for all m > 2.

expect if the individuals were completely independent. Instead,
the genealogical relationships between individuals create large
fluctuations in the mutational diversity within the population. The
typical lifetime of these fluctuations can be measured from the
autocorrelation function

lim
τ→∞


⟨σ 2

k (τ )σ
2
k (τ +∆τ)⟩ − ⟨σ 2

k (τ )⟩⟨σ
2
k (τ +∆τ)⟩


= Var(σ 2

k )e
−∆τ ,

which implies that these correlations decay in a simple manner on
the coalescent timescale T2 ∼ N .

Continuing the system in Eqs. (12a)–(12d) to central moments
with m > 5 starts to become complicated, since the moment
equations for Mm start to involve more and more of the replica
moments in Eq. (11). Nevertheless, the algebraic structure of these
moment equations is sufficiently simple that the exact solution can
be foundwith the help of a computer. Themost important property
of these equations is already apparent in Eqs. (12a)–(12d): replica
products Mm⃗ with total order


j mj = m only depend on other

products with order ≤m. Thus, at any given order we have a
finite system of linear equations that determine the values of
the moments, and this immediately suggests a simple iterative
algorithm for extracting these solutions. Given values for the
replica moments at order ≤m, we can calculate the moments at
order m + 1 by solving the matrix equation

Am+1 · M⃗m+1 = b⃗(NU, M⃗1, . . . , M⃗m). (15)

Here, M⃗m is the collection of all replica moments with total order
j mj = m, Am is a matrix of constants (independent of NU or

any of the moments), and b⃗ is a vector-valued function of NU and
the lower-order moments. The entries of the matrix Am can be
determined directly by inspection from the system of equations
in Appendix C. The resulting matrix must only be inverted once
for each m, and then the analytical solutions for the various
moments can be obtained by simple matrix multiplication. An
implementation of this iterative algorithm is available from the
authors upon request.

One can in principle use this algorithm to calculate the
moments for arbitrary m, which will be in the form of some
polynomial in NU similar to what we found for the first few
moments in Eq. (13). Typically, we will be interested in the
limiting behavior for large NU , which we can access most easily
by defining the rescaled moments M̃m⃗ = Mm⃗/(

√
NU)m. In the

limit that NU → ∞, the equations for the rescaled moments
become independent of NU , so M̃m can only depend on the order
m. These rescaled moments can be calculated from the same
iterative scheme outlined above, and the results for the first thirty
moments are shown in Fig. 3. For largem, these moments obey the
approximate scaling relation

Mm ∼


m!

mp


(NU)m/2

where the exponent p ≈ 2 can be extracted from the
plot in Fig. 3. Although these central moments grow more
quickly than the corresponding central moments of a Gaussian
distribution, they grow sufficiently slowly that the centered
distribution of mutations remains a light-tailed distribution. This
is in contrast to the analogous neutral limit for Fisher–KPP
waves, where Hallatschek and Korolev (2009) showed that the
propagating front displays a power-law shape due to the periodic
formation of smaller waves at the tip. However, many of these
technical details are beyond the scope of the present paper. The
main point of this discussion for m ≥ 4 is simply that all of the
central moments of this neutral distribution are exactly solvable,
as long as one is willing to devote the time and computing power
necessary to implement the iterative scheme described above.
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Fig. 3. The central moments Mm as a function of m in the limit that NU → ∞.
Symbols denote the exact numerical results calculated using the iterative scheme
outlined in the text form = 2, . . . , 30. The red line denotes the approximate scaling
form,Mm ∼ m!(NU)m/2/mp where p = 1.93.

4. Perturbation theory for selected mutations

While certain properties of f (k)may be interesting in their own
right, previously developed methods like the neutral coalescent
usually offer a simpler andmore direct way to quantify the genetic
diversity at the sequence level. The true utility of this neutral
‘‘fitness distribution’’ is that unlikemany of these earlier coalescent
approaches, it can be easily generalized to calculate the corrections
that arise when selection is present. As an example, suppose the
neutral mutations in the previous section now have a constant
fitness effect s. Selection on these mutations leads to an additional
term +s(k − k) on the right-hand side of the stochastic dynamics
in Eq. (8). Under these modified dynamics, the substitution rate
R = d⟨k⟩/dt for these mutations is now given by
R = U + s · C2,

which now depends on the variance in k in addition to the neutral
accumulation rate U . The variance C2 will in turn depend upon the
skew C3, and so on in the infinite hierarchy of moment equations
mentioned earlier. However, if the strength of selection is weak
and Ns ≪ 1, the contribution to the variance from C3 will be small,
and the variance will be approximately equal to the neutral result
C2 = NU . Thus, by neglecting the selection term in the calculation
of C2, we obtain an approximate expression for the substitution
rate,
R ≈ U (1 + Ns) ,
first introduced by Higgs and Woodcock (1995) using a similar
argument. This expression is valid in the Ns → 0 limit, where the
second term is a small perturbative correction to the neutral result
R = U . In this way, the exact solution for the neutral wave can
therefore serve as a basis for a perturbative analysis of the effects
of selection in increasing powers of Ns.

However, in order to apply this perturbative scheme to
populations with more general distributions of fitness effects [as
described in Eq. (6)], we must define the neutral limit a bit more
precisely. In our analysis above, it was most natural to divide the
population into fitness classes according to the discrete number
of mutations k in each individual. For more general distributions
of fitness effects, it will be most natural to introduce a typical
selection strength s and a continuous variable k such that the
fitness is given by the product X = sk. We can therefore rewrite
ρ(s) as a distribution of ‘‘k-effects’’, ρ(∆k), so that we can hold
the shape of the distribution constant as we modulate the overall
strength of selection s. With these definitions, it is straightforward
to show that the average rate of fitness change v = d⟨X⟩/dt is
given by

v = Us

⟨∆k⟩ +

Ns
NU

· C2


, (16)

while the equation for the cumulants in Eq. (14) becomes

∂Cm

∂τ
= Ns · Cm+1 + NU⟨∆km⟩ −


m⃗

m
m⃗

 
j
(2mj − 1)

dim m⃗!
Cm⃗, (17)

where ⟨∆km⟩ =

d(∆k) (∆k)mρ(∆k) denotes mth moment

of the distribution of fitness effects. Analogous (but slightly
more complicated) equations for the central moments and the
corresponding replica products are derived in Appendix C. These
equations all share a common feature with the general expression
in Eq. (17): themoments at ordermnow include terms that depend
on the moments at orderm+ 1. The resulting system of equations
cannot be solved at any fixed order because it always depends on
the moments at a still-higher order.

While this lack of closure among the moment equations makes
it difficult to obtain a closed-form solution for any particular
moment, it naturally suggests a perturbative approach similar to
the R ≈ U(1 + Ns) approximation above. In particular, we assume
that in the limit Ns → 0, each of the central moments Mm admits
an asymptotic expansion of the form

Mm ∼

∞
j=0

M(j)
m (Ns)

j (Ns → 0), (18)

where M(j)
m is a numerical coefficient that depends only on NU . A

similar expansion is assumed for the replica products in Eq. (11), as
well as the cumulants Cm and their corresponding replica products.
After substituting these expressions into the moment equations
and grouping terms in powers of Ns, we can obtain a generalized
system of equations for the coefficientsM(j)

m . The important feature
of these equations is that unlike the case for the full momentsMm,
the equations for the coefficients M(j)

m close for a given order j and
m. The algebraic properties of these equations are again sufficiently
simple that they only lead to a slightly more complicated version
of Eq. (15):

Am+1 · M⃗(j)
m+1 = b⃗


NU, M⃗(j)

1 , . . . , M⃗
(j)
m


+ c⃗


M⃗(j−1)

m+1


. (19)

Here, A and b⃗ are the same as in the neutral case, and c⃗ is a vector-
valued function of the moments at the next-lowest order in j. Each
of these functions A, b⃗, and c⃗ is the same for all j. Thus, the iterative
procedure outlined for the neutral case can be easily generalized to
calculate the coefficients M⃗(j)

m order-by-order for arbitrarym and j.
An implementation of this algorithm is available from the authors
upon request.

As an alternative to this explicit order-by-order calculation, we
note that the coefficients in the asymptotic expansion in Eq. (18)
are unique (Hinch, 1991), so we can also obtain these coefficients
simply by dropping the selection term in the moment hierarchy at
the desired order, solving the resulting finite system of equations,
and then reexpanding the solution in powers of Ns. Applying this
procedure to the first few orders of Eq. (17) (i.e., the selected
versions of Eqs. (12a)–(12d) listed in Appendix C), we obtain the
first few corrections to the population variance in fitness

M2 = NU⟨∆k2⟩ +


NU⟨∆k3⟩

3


Ns

−


2[NU⟨∆k2⟩]2

3


(Ns)2 + O(Ns)3, (20)

and the corresponding rate of fitness change

v = Us

⟨∆k⟩ + Ns⟨∆k2⟩ +

(Ns)2⟨∆k3⟩
3

−
2[NU⟨∆k2⟩(Ns)2][Ns⟨∆k2⟩]

3


+ O(Ns)4. (21)
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Fig. 4. The scaled substitution rate R as a function of the zeroth-order fitness
variance (Nσ)2 = NU(Ns)2 . Symbols denote the results of forward-time
simulations for NU = 10 (black), NU = 50 (blue), and NU = 300 (red), and the
solid lines give the predictions from Eq. (21). Upper triangles denote populations
with a purely beneficial distribution of fitness effects ρ(∆k) = δ(∆k−1), while the
lower triangles give the corresponding deleterious distribution ρ(∆k) = δ(∆k+1).
Our predictions start to diverge near Nσ = 1, when we expect our perturbation
expansion to break down. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The first three terms in this expansion are exactly what one would
obtain by assuming that the individual sites evolve independently,
in which case the rate of fitness increase would simply be the sum
of the single-locus adaptation rates that can be calculated from Eq.
(2). The fourth term in this expansion represents a fundamentally
new correction that arises solely from the accumulation of selected
mutations over many different sites. This term is proportional to
the variance in fitness within the population, so we see that the
rate of adaptation is reduced in populations with a larger number
of selectedmutations (see Fig. 4) becausemany of these mutations
will be lost to clonal interference before they can fix. Similarly,
in populations which are accumulating deleterious mutations due
to Muller’s ratchet, this interference term leads to an increase
in the rate of Muller’s ratchet (again, see Fig. 4) due to the
increased importance of fluctuations in the high-fitness nose of the
population.

In addition to the mean rate of adaptation, we can also use
this perturbative scheme to calculate the fluctuations in the rate
of adaptation, which have so far been accessible only through
heuristic arguments (Brunet et al., 2006; Desai and Fisher, 2007;
Fisher, 2013; Hallatschek, 2011). Using the Langevin dynamics in
Eq. (6) and the rules of our stochastic calculus, we can construct
similar moment hierarchy for Var(k) and its relatives, the first
few orders of which are given in Appendix E. At long times, we
find that the mean fitness continues to fluctuate diffusively (i.e.,
Var(k) ∼ 2Dt) with a diffusion constant

D =
U⟨∆k2⟩

2


1 +

⟨∆k3⟩
⟨∆k2⟩

Ns −
2NU⟨∆k2⟩(Ns)2

3

+
NU⟨∆k4⟩(Ns)2

3


+ O(Ns)3. (22)

Again, we see that interference between the various lineages
leads to a reduction in the diffusivity of the mean fitness that
is proportional to the variance in fitness within the population.
This leads to a novel prediction in the case of the dynamic
mutation–selection balance discussed in Goyal et al. (2012), where
a balance between beneficial and deleterious substitutions halts
any global fitness change in the population. The results in Eq. (22)
show that even though the average fitness change in these
populations is zero, we still expect the distribution to wander
diffusively around this fixed point, with diffusion constant

D(ϵc) =
U
2


1 + Ns(1 − 2ϵc)−

NU(Ns)2

3


+ O(Ns)3,

where ϵc is the critical ratio of beneficial to deleterious mutations.
This scenario is discussed in more detail in Appendix A.

5. Application to sequence evolution

Our analysis so far has focusedonpopulation-wideproperties of
the fitness distribution and important aspects of the evolutionary
dynamics such as the rate of adaptation. In the introduction
however, we were primarily interested in predicting evolutionary
fates and diversity at the sequence level, which we have so
far neglected. In the present section, we will demonstrate how
this fitness-class description can also provide a window into the
evolutionary dynamics of sequenceswithin a particular population.

5.1. Fate of a focal lineage

As an example, we consider the fate of some clonal lineage
within the population that has an initial frequency p and fitness
X0 = sk0 at time t = 0. This lineage could consist of a group
of individuals that share a common point mutation at a particular
site, or it could alternatively represent some fluorescently labeled
‘‘marker population’’whose dynamicswewish to follow.Of course,
if subsequent mutations could be neglected then the fate of this
lineage could be predicted using the ordinary single-locus model
in Eq. (1). What makes this problem so difficult in general is that
we must account for additional mutations in the focal lineage
as well as those in the background population. Each of these
two ‘‘subpopulations’’ can develop substantial variation in fitness
not unlike the fluctuating distributions analyzed in the previous
section. Now in addition to tracking the fitness of each individual
in the population, we must also keep track of whether these
individuals are descended from this particular lineage or from
the background population. We can accomplish this by dividing
the fitness classes f (X, t) into two classes f1(X, t) and f0(X, t)
which contain individuals descended from the focal lineage and the
background population respectively. This division requires a small
modification to our original dynamics in Eq. (6):

∂ fi(X)
∂t

= (X − X)fi(X)+ U


ds ρ(s) [fi(X − s)− fi(X)]

+


j,X ′


δijδX,X ′ − fi(X)

 fj(X ′)

N
ηj(X ′). (23)

One can verify that these dynamics reduce to the classic model in
Eq. (1) if further fitness-alteringmutations can be neglected in both
lineages. With these new dynamics, we can introduce a new set of
‘‘focal’’ moments

Fm =


dk (k − k)mf1(k, t)


,

that are specific to the focal lineage, while the population-wide
central moments Mm can be defined the same way as before. The
lowest focal moment F0(t) represents the average total fraction of
the population that is descended from the focal lineage (e.g., the
frequency of a particular SNP within the population). At long
times, one of two things can happen: either the focal lineage is
outcompeted by the background and


dk f1(k, t) = 0, or its

descendants take over the population and

dk f1(k, t) = 1. Thus,

the probability of fixation is given by

pfix = lim
t→∞

F0(t). (24)

Using the dynamics in Eq. (23) and the rules of our stochastic
calculus, we obtain an additional moment hierarchy for the focal
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moments Fm. As we show in Appendix F, this again requires us to
consider generalized replica products of the form

Fm⃗;n⃗ =


Jm
j=1


dk (k − k)mj f1(k, t)



×

Jn
j=1


i


dk (k − k)nj fi(k, t)


(25)

where the m indices denote moments specific to the focal lineage
and the n indices denote the population-wide moments discussed
earlier. The first few orders of the moment hierarchy for F0 are
listed in Appendix F. We are interested in the limiting behavior
at long times, and this is most easily obtained via the Laplace
transformed moments F̃m⃗;n⃗(z) =


e−zτ Fm⃗;n⃗(τ ) dτ , which satisfy

the asymptotic relation

F0(τ ) ∼ F0(0)+ Ns · F̃1(1/τ), (τ → ∞).

After transforming the first few equations in themoment hierarchy
and truncating the selection terms at order O(Ns)4, we find that

pfix = F0(0)+ NsF1(0)+
(Ns)2

3


F2(0)− F0;2(0)


−
(Ns)3

3


F1;2(0)+ NU⟨∆k2⟩


+ O(Ns)4.

For a lineage created by a spontaneous mutation, the initial
frequency is just p = 1/N , so the initial conditions for the various
moments are given by

Fm(0) =
1
N


k0 − (k)bg

m
+ O(N−2),

Mm(0) = (Mm)bg + O(N−1).

Here (k)bg and (Mm)bg denote the mean fitness and the central
moments of the background population, whose averages will
coincide with the steady-state moments derived in the previous
section. The initial fitness X0 = sk0 for the mutant lineage
is obtained as a random draw from the background fitness
distribution f0(X), plus the fitness effect s∆k of the mutation itself.
Averaging over the possible fitness backgrounds that thismutation
could have arisen on, we find that

Fm(0) =
1
N

m
ℓ=0

m
ℓ


(∆k)ℓMm−ℓ + O(N−2),

Mm(0) = Mm + O(N−1).

The fixation probability for a spontaneousmutation with effect∆k
is therefore given by

pfix(∆k) =
1
N


1 + Ns∆k +

(Ns∆k)2

3

−
2[NU⟨∆k2⟩(Ns)2][Ns∆k]

3


+ O(Ns)4. (26)

Again, we see that the first three terms are identical to the single-
locus result in Eq. (2). We obtain the lowest-order ‘‘interference
correction’’ in the fourth term, which reduces the probability
of fixation of a beneficial mutation in a way that is directly
proportional to the average variance in fitness within the
population at the time of themutation. For a deleterious mutation,
this correction term actually increases the fixation probability
because the mutant could find itself on an anomalously fit
background (thus mitigating some of the effect of the deleterious
mutation). We recover the standard neutral fixation probability
pfix = 1/N when∆k = 0.

Noting the similarity between the fixation probability in Eq.
(26) and the rate of adaptation in Eq. (21), we see that the relation

v =


NU · s∆k · pfix(∆k) · ρ(∆k) d(∆k)

holds at least through the first few orders in Ns. This relation has
formed the basis for several studies of the evolutionary dynamics
under strong selection (Good et al., 2012; Hallatschek, 2011; Neher
et al., 2010), with the additional ‘‘mean-field’’ ansatz

pfix(∆k) ≈


dx ⟨f (x − s∆k)⟩ · pfix(x|⟨f (x)⟩). (27)

Here, pfix(x|⟨f (x)⟩) denotes the fixation probability for a new
mutation with relative fitness x, given that the centered fitness
distribution of the rest of the population is ⟨f (x)⟩. However, we
see that in the present regime, this mean-field ansatz is not quite
correct. Instead, we require the slightly more complicated average

pfix(∆k) ≈


dx ⟨f (x − s∆k) · pfix(x|f (x))⟩, (28)

which jointly considers the fluctuations in the fitness background
of the mutant as well as the fluctuations in the fitnesses of
its competing lineages. Like the other correlated quantities we
have considered in the present work, this average more or less
decouples in the strong selection limit Ns → ∞, and we recover
the ‘‘mean-field’’ ansatz in Eq. (27). But in the weak selection
regime considered here, these correlated fluctuations start to
become more important, and Eq. (28) is required in order to
correctly account for the population-level dynamics.

5.2. Diversity at a focal site

In addition to predicting the ultimate fate of a sequence, these
focal lineage dynamics can also be used to predict the average
heterozygosity at a particular site along the genome and therefore
the overall levels of sequence diversity in the population. We
consider a particular site within the genome with a per-site
mutation rate µ and scaled fitness effect ∆k. This site will be
polymorphic in a randomly sampled pair of individuals if and only
if (1) this site mutated at some time t in the past and (2) exactly
onemember of the pair was drawn from themutant lineage, which
has size


dk f1(k, t) in the present. After averaging overall possible

mutation times (and taking note of the fact that the backward-time
mutation process is Poisson), we find that

π =


∞

0
dt Nµe−Nµt

× 2


dk f1(k)


1 −


dk f1(k)


.

In the infinite-sites limit where Nµ → 0, this yields the well-
known relation

π = 2Nµ


∞

0
NH(τ )dτ ,

where we have defined the heterozygosity function

H(τ ) =


dk f1(k, t)


1 −


dk f1(k, t)


= F0(τ )− F0,0(τ ).

Again, we can use the dynamics in Eq. (23) to construct a similar
hierarchy ofmoment equations for the heterozygosity, the first few
orders of which are listed in Appendix F. Truncating the hierarchy
and solving the Laplace transformed equations, we find that

π = 2Nµ

1 +

Ns∆k
3

−
2NU⟨∆k2⟩(Ns)2

9


+ O(Ns)3. (29)
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Again, the first two terms in this expansion are equivalent to the
single-locus results in Eq. (3). At second order in Ns, we obtain
the lowest-order correction due to interference at neighboring
sites, which reduces the diversity at a particular site according
to the variance in fitness within the population. This reduction
in diversity is seen even at putatively neutral or synonymous
sites that are not otherwise selected on their own, and this helps
explain why the interference corrections enter at a lower order
here than they did for pfix and v above. It is clear that the lowest
order interference corrections must couple to the variance in
fitnesswithin the population,which is alreadyO(Ns)2. Interference
corrections for pfix require an additional factor of Ns arising from
the fitness effect of the mutation itself, since it is required that
these corrections vanish when the mutation itself is neutral.
In contrast, no such requirement is imposed on the diversity
at neutral sites, which explains the stronger interference effect
observed in Eq. (29).

6. Discussion

Although natural selection acts on the genome as a whole,
the effects of selection at a large number of linked sites are only
beginning to be characterized. Recent studies have identified the
distribution of fitnesses within the population as a key mediator
for these effects, but our understanding of this distribution remains
limited to a few special cases where the strength of selection
is strong and genetic drift is correspondingly weak. Here, we
have introduced a general method for analyzing the effects of
selection at many linked loci, which incorporates linkage and
drift exactly while treating the global strength of selection as a
perturbative correction. This framework allows us to investigate
the stochastic behavior of the fitness distribution in a regimewhere
the fluctuations due to drift are especially strong, and it fills an
important gap in our theoretical understanding of linked selection
in the approach to the neutral limit.

This perturbative approach, which builds on earlier work
by Higgs and Woodcock (1995), bears a superficial resemblance
to a number of other studies of weak selection that also utilize
series expansions in powers of Ns. Chief among these is Kimura’s
classic solution for the time-dependent diffusion equation in Eq.
(1), although other examples arise in the quantitative genetics
literature (Bürger, 1991; Nagylaki, 1993; Turelli and Barton, 1990).
However, these previous studies differ from ours in a crucial way,
since they assume that genetic linkage between sites plays aminor
or nonexistent role. Kimura’s solution concerns the frequency of
a selected allele at a single genetic locus, and it is limited to
weak selection only because of the difficulty in obtaining the full
probability distribution of this frequency. However, if one is only
interested in derived quantities like the fixation probability or
the average diversity, the simpler formulas in Eqs. (2) and (3)
are valid for the entire range of selection strengths. Similarly,
weak selection analyses in the quantitative genetics literature
typically assume that linkage is weak compared to the strength
of selection, so that the various sites in the genome evolve more
or less independently. In contrast, our analysis here focuses on a
regime where interference between selected mutations is explicit,
and this allows us to investigate many of the effects of linked
selection that are absent from these earlier models.

The evolution of the fitness distribution described by Eq. (17) is
also reminiscent of the deterministic cumulant equations,

∂Cm

∂t
= s · Cm+1 + U⟨sm⟩,

which are often used to describe the dynamics of ‘‘infinitely large’’
or otherwise strongly-selected populations (Bürger, 1991; Desai
and Fisher, 2011; Goyal et al., 2012; Rouzine et al., 2008). Our

present analysis shows that in the presence of genetic drift, these
deterministic dynamics are modified according to

∂Cm

∂t
= s · Cm+1 + U⟨sm⟩ +


replica products

N
,

so that Cm picks up contributions from all other replica products
with an overall constant of proportionality set by N−1. The only
moment that remains unmodified is the mean fitness ⟨X⟩, which
continues to evolve according to Fisher’s fundamental theorem of
natural selection, ∂t⟨X⟩ = U⟨s⟩ + s2 · C2, independent of the
relative strengths of drift and selection. Our present analysismakes
it clear that the robustness of this classic result arises from the
linear nature of ⟨X(t)⟩. Higher moments of the fitness distribution
involve multiple factors of f (X, t) which are more sensitive to the
fluctuations induced by drift or rare mutational events.

As a quantitative theory, the present framework suffers from
several shortcomings that may limit its direct applicability to
data from natural populations. Our perturbative approach gives
predictions for various quantities in terms of an asymptotic series
in the limit that Ns → 0, which means that for a fixed number
of terms in this series, the resulting formulas will only become
valid once Ns is sufficiently small. Moreover, these asymptotic
expressions are nonuniform as a function of the mutation rate NU ,
and in general for larger mutation rates we require ever smaller
values of Ns for our expressions to remain accurate. In reality,
these asymptotic series could be more accurately described as an
expansion in powers of the typical fitness variance Nσ ≈ Ns

√
NU ,

valid in the limit that Nσ . 1.
It remains an open question exactly what values of Nσ

are relevant for natural populations. Indeed, one of the major
motivating factors behind this quantitative approach to linked
selection is to eventually use these theoretical tools to infer Nσ
directly from DNA polymorphism data in sampled populations.
Because the vast majority of new mutations are thought to be
either neutral or weakly deleterious, there has been speculation
that evolution at the sequence level is dominated by these ‘‘nearly-
neutral’’ mutations with Ns . 1 (Ohta, 1992), although it is
unclear whether these selection coefficients lead to an Nσ that
is sufficiently small for our results to apply. In principle, the
range of applicability of our expressions can be improved by
including more terms in the expansion, but there is typically an
upper limit to the radius of convergence that can be achieved this
way (Hinch, 1991). However, because we have outlined a method
for calculating successively higher-order terms programmatically,
series improvement methods could potentially be used to extend
the radius of convergence, even forNσ > 1 (Song and Steinrücken,
2012; VanDyke, 1974). This constitutes an interesting direction for
future work.

While the experimental applicability of these perturbation
methods may be limited, they nevertheless provide a valuable
qualitative window into the effects of selection at many linked
sites, and the exact nature of the selective corrections allows us to
address a number of longstanding assumptions in the population
genetics literature. Chief among these is the independent-
sites assumption that is frequently used to model selection at
individual sites along the genome. Somewhat surprisingly,wehave
demonstrated here that this assumption is valid not only in the
purely neutral case, but also frequently through the first-order
selective correction. At higher-orders, however, we start to obtain
terms that depend on NU , and more generally, the variance in
fitness maintained within the population. These terms represent
corrections that arise solely from the interactions between the
selected sites, and cannot be predicted from any single-locus
theory.

Of course, the standard assumption is not that linked sites
evolve in this strictly independent fashion, but that they evolve
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independently at a reduced effective population size Ne, which is
supposed to encapsulate the effects of selection at neighboring
sites (Hill and Robertson, 1966). However, several recent studies
have begun to challenge this assumption (Comeron and Kreitman,
2002; Good and Desai, 2012; Santiago and Caballero, 1998), often
on the grounds that a different Ne must be defined for every
quantitywewish to predict. This shortcoming is apparent fromour
present analysis as well, and our analytical corrections provide an
explicit demonstration.

The effective population size is most commonlymeasured from
the diversity at putatively neutral or synonymous sites. To lowest
order in Ns, our analysis of the pairwise heterozygosity yields a
corresponding effective population size

Nπe = N

1 −

2NU(Ns)2

9


, (30)

which is reduced in the presence of selection as expected.
To lowest order, this same Ne correctly predicts the reduction
of heterozygosity at selected sites as well. Alternatively, we
could define Ne by measuring the divergence (i.e., frequency of
nucleotide substitutions) at various sites under selection, which
depends on the fixation probability of a new mutant. To lowest
order in Ns, this yields an effective population size

Npfix
e = N


1 −

2NU(Ns)2

3


, (31)

which is also reduced by selection at linked sites, but at slightly
faster rate than in Eq. (30). Thus, we require a different Ne
to account for linkage depending upon whether we wish to
predict π , pfix, or some other sequence-based statistic. While the
effective population size can still be used in the technical sense
on a per-quantity basis, these results imply that its predictive or
explanatory power is greatly reduced, and that the effects of linked
selection are more complicated than a simple increase in genetic
drift would suggest.

In this way, the selective corrections obtained here can
be extremely useful from a model-building standpoint, even
when we wish to ultimately apply these models in regions
where the perturbative approach breaks down. These corrections
are straightforward to calculate for any quantity with a well-
defined neutral limit, and because they are exact, any other
model describing weakly selected mutations should recover these
expressions as Ns → 0. Many aspects of natural selection at the
sequence level remain poorly understood, and exact results are
few and far between. It is our hope that the methods outlined in
the present work can be used as a stepping-stone to identify and
evaluate those approximations which will lead to further progress
on this important problem.
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Appendix A. Finite site effects

In the main text, we worked exclusively in the large-genome
limit, where the number of sites was so large (and the per-site
mutation rate so low) that we could focus on an intermediate
asymptotic regime where back mutations could be neglected,

and the mutation rate and distribution of fitness effects was
independent of the previous mutations within a particular
genome. In the present section we now consider what happens
whenwe start to relax these assumptions. In particular, we assume
that the genome has some finite size L and that the per-site
mutation rates are now sufficiently large that the scaled product
Nµ at each site is finite. For simplicity, we also assume a constant
fitness effect for mutations at each site. This is similar to themodel
analyzed in Woodcock and Higgs (1996) and Rouzine et al. (2003).

In this case, the population can still be partitioned according
to the number of mutations k = 0, . . . , L in each individual,
but now we must account for the fact that the distribution of k-
effects depends on k in addition to the fitness. An individual with k
mutations canmutate at another site at rateµ(L−k), inwhich case
k → k + 1. This individual can also experience a back-mutation at
one of its k mutated sites at rate µk, in which case k → k − 1.
The total rate for one of these two events to happen is of course
just U = µL. Thus, the fitness classes f (k) evolve according to the
stochastic dynamics
∂ f (k)
∂τ

= Ns(k − k)f (k)+ Nµ(L − k + 1)f (k − 1)

+Nµ(k + 1)f (k + 1)− NµLf (k)

+


k′

[δkk′ − f (k)]

f (k′)η(k′). (A.1)

In contrast to the L → ∞ case analyzed in the main text, the
behavior of the average profile ⟨f (k)⟩ in the neutral limit no longer
degenerate, and we find that

lim
τ→∞

⟨f (k, τ )⟩ =


L
k


2−L. (A.2)

This is just a binomial distribution with mean L/2 and variance
L/4, which is consistent with the intuition that the population at
long times consists of individualswith independent and identically
distributed mutations along the L sites in the genome. Although
there is no longer any infinite-width ‘‘red-flag’’ to suggest that
fluctuations may play an important role here, the absence of any
Nµ dependence in Eq. (A.2) is suspicious, since we would expect
that the typicalwidth of the distribution should vanish asNµ → 0.

Thus, we are lead to consider the behavior of the mean ⟨k⟩
and the central momentsMm that we analyzed in the infinite-sites
model. Using the dynamics in Eq. (A.1) it is straightforward to show
that
∂⟨k⟩
∂τ

= NsM2 + Nµ


k

[k(L − k + 1)f (k − 1)+ k

+ 1f (k + 1)− Lf (k)]



= NsM2 + NµL


1 −

2k
L


, (A.3)

so that in the neutral limit the population reaches muta-
tion–reversion balance when the average number of mutations in
each genome is ⟨k⟩ = L/2, just like the average profile in Eq. (A.2).
We also see that this equilibrium point is reached on a timescale
teq ∼ 1/2µ. For the central moments Mm, it is straightforward to
show that the equations become

∂Mm

∂τ
= NµL

m−2
ℓ=0

m
ℓ


Mℓ +

m
2


M2,m−2

−mMm + Ns

Mm+1 − mM2,m−1


− 2mNµMm − Nµ

m−2
ℓ=0

m
ℓ

 
Mℓ+1 + ⟨kMℓ⟩


×

1 + (−1)m−ℓ+1 , (A.4)
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where the last two terms arise from the k-dependent mutation
rates. The first few orders of the moment hierarchy are given by

∂M2

∂τ
= NµL − [1 + 4Nµ]M2 + NsM3, (A.5a)

∂M3

∂τ
= Nµ


L − 2⟨k⟩


− 3 [1 + 2Nµ]M3

+Ns

M4 − 3M2,2


, (A.5b)

∂M4

∂τ
= NµL + [6NµL − 8Nµ]M2 + 6M2,2

− 4 [1 + 2Nµ]M4 + O(Ns), (A.5c)

∂M2,2

∂τ
= 2NµLM2 − [3 + 8Nµ]M2,2 + M4 + O(Ns). (A.5d)

Thus, in the neutral limit, the actual variance in k within the
population is given by

M2 =
NµL

1 + 4Nµ
, (A.6)

which only approaches the deterministic value of L/4whenNµ ≫

1. For smaller per-site mutation rates, the width of the fitness
distribution can be much smaller than this, and for Nµ ≪ 1 it
approaches the infinite-sites limit M2 = NµL that we analyzed
in the main text. We can apply our perturbative approach to this
moment hierarchy as well, which shows that when the mutants
are weakly beneficial the equilibrium value of ⟨k⟩ is given by

⟨k⟩ =
L
2


1 +

Ns
1 + 4Nµ

−
2Ns
3


Ns

1 + 4Nµ

2

×


NµL +

1
2 + 4Nµ+ 16(Nµ)2

3 +
34
3 Nµ+

88
3 (Nµ)

2 +
64
3 (Nµ)

3


+ O(Ns)4. (A.7)

Following Woodcock and Higgs (1996) and Goyal et al. (2012), we
define ϵc to be the fraction of all the possible mutations that are
beneficial at this equilibrium point, or

ϵc =
(L − ⟨k⟩)µ

Lµ
= 1 −

⟨k⟩
L
. (A.8)

This allows us to rewrite Eq. (A.7) in terms of this critical ratio as

ϵc =
1
2


1 −

Ns
1 + 4Nµ

+
2Ns
3


Ns

1 + 4Nµ

2

×


NµL +

1
2 + 4Nµ+ 16(Nµ)2

3 +
34
3 Nµ+

88
3 (Nµ)

2 +
64
3 (Nµ)

3


+ O(Ns)4. (A.9)

In the limit that Nµ → 0 and L → ∞ with NU = NµL fixed, we
recover the infinite sites prediction

ϵc =
1
2


1 − Ns +

(Ns)3

3
+

2NU(Ns)3

3


+ O(Ns)4, (A.10)

which provides a more accurate expression for the critical fraction
as Ns → 0 compared to the corresponding expression in Goyal
et al. (2012).

Appendix B. Stochastic calculus

In this section, we outline the stochastic (Itô) calculus that is
used to derive moment equations from the stochastic dynamics in
Eqs. (1), (6) and (8). For concreteness, wewill restrict our attention
to the neutral dynamics in Eq. (8), but these results will apply
more generally. Letφ({fk}) be some arbitrary function of the fitness

classes, fk(t). We wish to find an expression for the time-evolution
of the mean ⟨φ({fk})⟩ using the definition

∂⟨φ({fk})⟩
∂t

= lim
δt→0

⟨φ({fk(t + δt)})⟩ − ⟨φ({fk(t)})⟩
δt

. (B.1)

The dynamics in Eq. (8) are essentially just a shorthand notation
for calculating fk(t + δt) conditioned on fk(t). Taking care to note
that the drift term in Eq. (8) is of the Itô form, the dynamics in Eq.
(8) imply that

fk(t + δt) = fk(t)+ δt [Uf (k − 1, t)+ Uf (k, t)]

+
√
δt


1

√
N


k′

[δkk′ − f (k, t)]

f (k′, t)η(k′, t)


. (B.2)

The value of φ({fk(t + δt)}) can then be found by Taylor expansion
in powers of δt . Ifφ({fk}) is just a singleton functionφ({fk}) = fk(t),
then

⟨φ({fk(t + δt)})⟩ = ⟨fk(t)⟩ + δt ⟨Uf (k − 1, t)+ Uf (k, t)⟩ (B.3)

= ⟨fk(t)⟩ + δt

∂ fk
∂t


det


, (B.4)

where (∂ fk/∂t)det is simply the deterministic part of the dynamics
in Eq. (8). On the other hand, if φ({fk}) is a pairwise product of the
form

φ({fk}) = fk1(t)fk2(t), (B.5)

then things start to become more complicated. Organizing all the
terms in powers of δt , we see that

fk1(t + δt)fk2(t + δt)

= fk1 fk2 + δt


Ufk1−1 − Ufk1


fk2 + fk1


Ufk2−1 − Ufk2


+

1
N


j1,j2


δk1,j1 − fk1

 
δk2,j2 − fk2


fj1 fj2ηj1ηj2


+

√
δt O(η). (B.6)

The term proportional to
√
δt is linear in η, so upon averaging this

term vanishes. The term proportional to δt also contains a term
involving η, but this time as a quadratic function rather than a
linear function, which yields

j1,j2


δk1,j1 − fk1

 
δk2,j2 − fk2


fj1 fj2ηj1ηj2



=


j


δk1,j − fk1

 
δk2,j − fk2


fj


(B.7)

=

δk1,k2 − fk2


fk1 , (B.8)

where we have used the fact that the ηk are uncorrelated for
different k. Thus, taking the average of Eq. (B.6), we obtain

∂⟨f (k1, t)f (k2, t)⟩
∂t

=


f (k1, t)


∂ f (k2, t)
∂t


det


+


∂ f (k1, t)
∂t


det

f (k2, t)


+
1
N

⟨f (k1, t) ⋆ f (k2, t)⟩, (B.9)

where we have defined a new operation ⋆ such that

f (k1, t) ⋆ f (k2, t) ≡

δk1,k2 − fk2


fk1 . (B.10)
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This is the generalized product rule of the Itô calculus, which arises
from the combination of two

√
δt terms in the expansion of the

Langevin equation. More complicated functions of the fk can be
analyzed recursively with the help of the sum and product rules

∂⟨φ(f )+ ψ(f )⟩
∂t

=


∂φ(f )
∂t


+


∂ψ(f )
∂t


(B.11)

and
∂⟨φ(f )ψ(f )⟩

∂t
=


∂φ(f )
∂t

ψ(f )

+


φ(f )

∂ψ(f )
∂t


+

1
N

⟨φ(f ) ⋆ ψ(f )⟩, (B.12)

where ⋆ is defined in terms of the underlying fitness classes fk and
satisfies additivity and the distributive property. As an example,
we have

k ⋆ f (k, t) =


k′

k′

f (k, t) ⋆ f (k′, t)


(B.13)

=


k′

k′

δ(k − k′)− f (k)


f (k′) (B.14)

= (k − k)f (k, t), (B.15)

and

k ⋆ k =


k

k[k ⋆ f (k, t)] (B.16)

=


k

k(k − k)f (k, t) (B.17)

=


k

(k − k)2f (k, t). (B.18)

These rules can be used to rapidly generate equations of motion
for the generalized momentsMm⃗, Cm⃗, and Fm⃗;n⃗ analyzed in the text
(see Appendices C, D and F).

Appendix C. Central moments

In this section, we use the rules of the stochastic calculus in
Appendix B to derive equations of motion for the mean ‘‘fitness’’

k =


dk kf (k, t) (C.1)

and the central moments

Mm =


dk (k − k)mf (k, t)


. (C.2)

Without loss of generality, we will restrict our attention to the full
dynamics in Eq. (6), which can be rewritten in terms of the scaled
parameters as
∂ f (k)
∂τ

= Ns(k − k)f (k)+ NU


d(∆k) ρ(∆k) [f (k −∆k)− f (k)]

+


dk′


δ(k′

− k)− f (k)


f (k′)η(k′). (C.3)

Directly from the Langevin equation, we can see that

∂⟨k⟩
∂τ

=


dk k


f (k, τ )
∂τ


=


dk k


NU


d(∆k) ρ(∆k) [f (k −∆k)− f (k)]

+ Ns(k − k)f (k)


= NU⟨∆k⟩ + Ns · M2. (C.4)

For the central moments Mm, we can use the product rule in
Eq. (B.12) to show that

∂Mm

∂τ
=


dk (k − k)m

∂ f (k)
∂t

− m


dk (k − k)m−1f (k)

∂k
∂τ



+


−m


dk (k − k)m−1 k ⋆ f (k)

+

m
2

 
dk (k − k)m−2f (k)


k ⋆ k


, (C.5)

or

∂Mm

∂τ
= NU

m−2
ℓ=0

m
ℓ


⟨∆km−ℓ

⟩Mℓ

+

m
2


M2,m−2 − mMm + Ns


Mm+1 − mM2,m−1


. (C.6)

This equation can also be rewritten in terms of the scaledmoments
M̃m = Mm/(NU⟨∆k2⟩)m/2 in order to remove the zeroth order
dependence on the variance of f (k). This yields

∂M̃m

∂τ
=

m−2
j=0


m
2+j


⟨∆k2+j

⟩

⟨∆k2⟩
M̃m−ℓ−2

(NU⟨∆k2⟩)j/2
+

m
2


M̃2,m−2

−mM̃m + Nσ

M̃m+1 − mM̃2,m−1


, (C.7)

where Nσ ≡ NU⟨∆k2⟩(Ns)2 is the zeroth order estimate of the
variance in fitness within the population. Thus, in the limit that
NU → ∞, this reduces to

∂M̃m

∂τ
=

m
2


M̃m−2 +

m
2


M̃2,m−2 − mM̃m

+Nσ

M̃m+1 − mM̃2,m−1


,

which only depends on the underlying distribution of fitness
effects through the scaled parameter Nσ .

In order to obtain equations of motion for the generalized
products Mm1,...,mJ , we can again appeal to the product rule in Eq.
(B.12) which shows that (with some abuse of notation)

∂Mm,n

∂τ
=


∂Mm

∂τ
Mn


+


Mm

∂Mn

∂τ


+ ⟨Mm ⋆Mn⟩. (C.8)

This requires us to compute the higher-order ‘‘star products’’

k ⋆Mm =


dk (k − k)m[k ⋆ f (k, t)] − mMm−1(k ⋆ k)

= Mm+1 − mM2,m−1 (C.9)

and

Mm ⋆Mn =


dk1 dk2 (k1 − k)m(k2 − k)[f (k1) ⋆ f (k2)]

−mMm−1


dk (k − k)n[k ⋆ f (k)]

− nMn−1


dk (k − k)m[k ⋆ f (k)]

+mn(k ⋆ k)Mm−1Mn−1

= Mm+n − Mm,n − mMm−1,n+1 − nMm+1,n−1

+mnM2,m−1,n−1. (C.10)

Combining these formulas with the dynamics in Eq. (C.6), we can
easily write down the first few equations in the moment hierarchy
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for Mm, several of which were previously obtained by Higgs and
Woodcock (1995) and Etheridge et al. (2007):

∂M2

∂τ
= NU⟨∆k2⟩ − M2 + NsM3, (C.11a)

∂M3

∂τ
= NU⟨∆k3⟩ − 3M3 + Ns


M4 − 3M2,2


, (C.11b)

∂M4

∂τ
= NU⟨∆k4⟩ + 6NU⟨∆k2⟩M2 + 6M2,2

− 4M4 + Ns

M5 − 4M2,3


, (C.11c)

∂M2,2

∂τ
= 2NU⟨∆k2⟩M2 + M4 − 3M2,2 + 2NsM2,3, (C.11d)

∂M5

∂τ
= NU⟨∆k5⟩ + 10NU


⟨∆k3⟩M2 + ⟨∆k2⟩M3


+ 10M2,3 − 5M5 + O(Ns), (C.11e)

∂M2,3

∂τ
= NU


⟨∆k3⟩M2 + ⟨∆k2⟩M3


− 8M2,3

+M5 + O(Ns). (C.11f)

Higher orders start to include contributions from replica moments
with more than two terms, and the corresponding equations
of motion are slightly more complicated. Nevertheless, these
dynamics can be obtained by repeated application of the product
rule in Eq. (B.12) using the expressions we have already derived.
This yields the general formula

∂Mm⃗

∂τ
=

dim m⃗
j=1


NU

mj−2
ℓ=0

mj

ℓ


⟨∆kmj−ℓ⟩Mm⃗+(ℓ−mj)êj

+

mj

2


M2,m⃗−2êj − mjMm⃗ + Ns


Mm⃗+êj − mjM2,m⃗−êj



+

dim m⃗
j=1

dim m⃗
i>j


Mm⃗+mi(êj−êi) − Mm⃗ − mjMm⃗−êj+êi

−miMm⃗+êj−êi + mjmiM2,m⃗−êj−êi


, (C.12)

where êj denotes the jth ‘‘unit vector’’, which has a 1 in entry j and
a zero everywhere else.

Appendix D. Cumulants

In this section, we derive a hierarchy of equations for the
cumulants of the fitness distribution, which provide an alternative
representation of the central moment hierarchy derived in
Appendix C. The cumulants Cm are most easily defined in terms of
the cumulant generating function

g(z) = log


dk ezkf (k)

, (D.1)

using the relation

Cm =
∂m⟨g(z)⟩
∂zm


z=0
. (D.2)

Formore general replica products Cm⃗, the corresponding definition
is simply

Cm1,...,mJ =


J

i=1

∂mig(z)
∂zmi


z=0


. (D.3)

Using the rules of the stochastic calculus in Appendix B, we can
try to derive an equation of motion for the average cumulant
generating function ⟨g(z)⟩. This yields

∂⟨g(z)⟩
∂τ

=


dk ezk ∂ f (k)

∂τ
dk ezkf (k)


−

1
2


dk dk′ezkezk

′

f (k) ⋆ f (k′)
dk ezkf (k)

2

,

= Ns


dk ezk(k − k)f (k)

dk ezkf (k)



+NU


d(∆k) ρ(∆k)


dk ezk[f (k −∆k)− f (k)]
dk ezkf (k)



−
1
2

 
dk e2zkf (k)
dk ezkf (k)

2 −


dk ezkf (k)

 
dk′ ezk

′

f (k′)



dk ezkf (k)

2

,

= Ns
∂⟨g(z)⟩
∂z

− Ns⟨k⟩ + NU


d(∆k) ρ(∆k)

ez∆k

− 1


−
1
2


eg(2z)−2g(z)

− 1

. (D.4)

Thus, we see that because of the last termon the right, the equation
for ⟨g(z)⟩ does not close. Nevertheless, we will still be able to use
Eq. (D.4) to obtain equations of motion for the cumulants Cm by
expanding in powers of z. For instance, expanding the left side of
Eq. (D.4) yields the power series

∂⟨g(z)⟩
∂τ

=

∞
m=1

zm

m!

∂Cm

∂τ
, (D.5)

so the equation of motion for Cm can be obtained by examining the
mth power of z on the right side. The first three terms on the right
are simple. These yield

Ns
∂⟨g(z)⟩
∂z

= Ns
∞

m=0

zm

m!
Cm+1, (D.6)

Ns⟨k⟩ = O(z0), (D.7)

NU


d(∆k) ρ(∆k)

ez∆k

− 1


= NU
∞

m=1

zm

m!
⟨∆km⟩. (D.8)

The last term on the right is slightly more difficult, but can be
attacked by recursive applications of exponential, binomial, and
Taylor series:


eg(2z)−2g(z)

− 1

=


∞
J=1

1
J!


∞
k=1

(2z)m − 2zm

m!

∂mg(z)
∂zm

J
,

=

∞
J=1

∞
m1=1

· · ·

∞
mJ=1

2Cm1,...,mJ

J!


z

i
mi
 J

i=1


2mi−1

− 1
mi!


,

=

∞
m=0

zm

m!


m⃗

2Cm⃗

(dim m⃗)!

m
m⃗

 dim m⃗
i=1


2mi−1

− 1

, (D.9)

where


m⃗ denotes a sum over all partitions ofm and dim m⃗ is the
number of entries in m⃗. Combining these series expansions and
equating like powers of z, we see that the cumulants satisfy the
compact equation

∂Cm

∂τ
= Ns · Cm+1 + NU⟨∆km⟩

−


m⃗

m
m⃗

 
i
(2mi−1

− 1)

(dim m⃗)!
Cm⃗. (D.10)
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Thus, we see that just like the central moments above, the equa-
tions of motion for the cumulants also involve the corresponding
replica products Cm⃗ for sufficiently largem. In order to obtain equa-
tions of motion for these replica products, it remains for us to eval-
uate Cm ⋆ Cn so that we can utilize the product rule in Appendix B.
This can be done using a similar power series approach,making use
of the identity

g(x) ⋆ g(y) =

∞
m=1

∞
n=1

xmyn

m!n!
Cm ⋆ Cn. (D.11)

Using the rules of the stochastic calculus in Appendix B, we can
show that

g(x) ⋆ g(y) =


dk dk′exkeyk

′

f (k) ⋆ f (k′)

(

dk exkf (k))(


dk′ eyk′ f (k′))

,

= exp [g(x + y)− g(x)− g(y)] − 1,

=

∞
J=1

1
J!


∞
k=1

Ck

k!

k−1
ℓ=1


k
ℓ


xℓyk−ℓ

J

,

=

∞
J=1

1
J!

∞
k1=1

· · ·

∞
kJ=1

k1−1
ℓ1=1

· · ·

kJ−1
ℓJ=1

Ck⃗


x

ℓiy


ki−


ℓi


×

J
i=1


ki
ℓi


ki!

,

=


m,n

xmyn

m!n!


k⃗

 n+m
k⃗

 n+m
m

 A(k⃗,m)

(dim k⃗)!
Ck⃗


, (D.12)

where


k⃗ denotes a sum over all partitions of m + n and A(k⃗,m)
is a counting factor defined by

A(k⃗,m) =


ℓ1,...,ℓJ
0<ℓi<ki
ℓi=m


i


ki
ℓi


. (D.13)

Thus, we conclude that

Cm ⋆ Cn =


k⃗

 n+m
k⃗

 n+m
m

 A(k⃗,m)

(dim k⃗)!
Ck⃗, (D.14)

and a similar calculation shows that

k ⋆ Cm = Cm+1. (D.15)

The equations of motion for general replica products Cm⃗ can then
be obtained by combining Eqs. (D.10) and (D.14) with the product
rule derived in Eq. (B.12).

Appendix E. Fluctuations in the mean fitness

In this section, we use the rules of the stochastic calculus in
Appendix B to derive equations of motion for the fluctuations in
the mean fitness of the population,

Var(k) = ⟨k
2
⟩ − ⟨k⟩2. (E.1)

Starting from the product rule in Eq. (B.12), we have

∂Var(k)
∂τ

=


2k
∂k
∂τ


+ ⟨k ⋆ k⟩ − 2⟨k⟩

∂⟨k⟩
∂t

,

= C2 + 2Ns · Cov(k, C2), (E.2)

wherewe have substituted our expressions for ∂τ k and k⋆k derived
above. Thus, we see that selection couples the variance in the

mean fitness to its covariance with the central cumulants. Using
our previously derived results, we can derive the general formula

∂Cov(k, Cm)

∂τ
=


∂k
∂τ

Cm


+


k
∂Cm

∂τ


+ ⟨k ⋆ Cm⟩

−
∂⟨k⟩
∂τ

Cm − k
∂Cm

∂τ
,

= Cm+1 + Ns

Cov(k, Cm+1)+ Cov(C2, Cm)


−


m⃗


i
(2mi−1

− 1)

(dim m⃗)!

m
m⃗


Cov(k, Cm⃗). (E.3)

The first few orders of the moment hierarchy are therefore given
by

∂Var(k)
∂τ

= C2 + 2NsCov(k, C2), (E.4a)

∂Cov(k, C2)

∂τ

= −Cov(k, C2)+ C3 + Ns

Var(C2)+ Cov(k, C3)


, (E.4b)

∂Cov(k, C3)

∂τ
= −3Cov(k, C3)+ C4 + O(Ns). (E.4c)

Appendix F. Focal lineage moments

In this section, we use the rules of the stochastic calculus in
Appendix B to derive equations of motion for the focal lineage
moments

Fm =


dk (k − k)mf1(k, t)


(F.1)

discussed in the main text. Starting from the product rule in Eq.
(B.12), we have

∂Fm
∂τ

=


dk (k − k)m

∂ f1(k)
∂t

− m


dk (k − k)m−1f1(k)

∂k
∂τ



+


−m


dk (k − k)m−1 k ⋆ f1(k)

+

m
2

 
dk (k − k)m−2f1(k)


k ⋆ k


. (F.2)

In order to progress further, we must extend the ⋆ operation to
the case where the fitness classes fi(k, t) are labeled according to
which lineage they descend from. It is a straightforward matter to
show that

fi1(k1, t) ⋆ fi2(k2, t) =

δi1 i2δ(k1 − k2)− fi2(k2)


fi1(k1). (F.3)

Thus, we have

k ⋆ f1(k, t) =


i


dk′ k′

[fi(k′, t) ⋆ f1(k, t)],

=


i


dk′ k′


δ(k − k′)δi1 − f1(k, t)


fi(k′, t),

= (k − k)f1(k, t), (F.4)

and we can immediately conclude that

∂Fm
∂τ

= NU
m−2
ℓ=0

m
ℓ


⟨∆km−ℓ

⟩Fℓ

+

m
2


Fm−2;2 − mFm + Ns


Fm+1 − mFm−1;2


. (F.5)
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In order to derive the equations of motion for the general products
Fm⃗;n⃗ considered in the text, we simply need to calculate ⋆ products
of the form Fm ⋆Mn and Fm ⋆ Fn. Starting from

k ⋆ Fm = −mFm−1(k ⋆ k)+


dk (k − k)m[k ⋆ f1(k, t)],

= Fm+1 − mFm−1;2, (F.6)

we can easily see show that

Fm ⋆Mn = mnFm−1Mm−1[k ⋆ k]

+


i


dk1 dk2 (k1 − k)m(k2 − k)n[f1(k1) ⋆ fi(k2)]

−mFm−1


i


dk (k − k)m[k ⋆ fi(k)]

− nMn−1


dk (k − k)m[k ⋆ f1(k)],

= Fm+n − Fm;n − mFm−1;n+1 − nFm+1;n−1

+mnFm−1;n−1,2, (F.7)

and

Fm ⋆ Fn =


dk1 dk2 (k1 − k)m(k2 − k)n[f1(k1) ⋆ f1(k2)]

−mFm−1


dk (k − k)n[k ⋆ f1(k)]

− nFn−1


dk (k − k)m[k ⋆ f1(k)] + mnFm−1Fn−1[k ⋆ k],

= Fm+n − Fm,n − mFm−1,n+1 − nFm+1,n−1 + mnFm−1,n−1;2. (F.8)

The equations of motion for generalized products with more than
two terms follow from the product rule in Eq. (B.12). Using these
formulas, we can derive the first few equations in the moment
hierarchy for F0:

∂F0
∂τ

= NsF1, (F.9a)

∂F1
∂τ

= −F1 + Ns

F2 − F0;2


, (F.9b)

∂F2
∂τ

= NU⟨∆k2⟩F0 + F0;2 − 2F2 + Ns

F3 − 2F1;2


, (F.9c)

∂F0;2
∂τ

= NU⟨∆k2⟩F0 + F2 − 2F0;2 + Ns

F1;2 + F0;3


, (F.9d)

∂F3
∂τ

= NU⟨∆k3⟩F0 + 3NU⟨∆k2⟩F1 − 3F3 + 3F1;2 + O(Ns), (F.9e)

∂F0;3
∂τ

= NU⟨∆k3⟩F0 + F3 − 4F0;3 − 3F1;2 + O(Ns), (F.9f)

∂F1;2
∂τ

= NU⟨∆k2⟩F1 + F3 − F0;3 − 3F1;2 + O(Ns), (F.9g)

as well as the corresponding moment hierarchy for the heterozy-
gosity H:

∂H
∂τ

= −H + Ns

F1 − 2F0,1


, (F.10a)

∂(F1 − 2F0,1)
∂τ

= −3

F1 − 2F0,1


+ Ns


F2 − 2F0,2 − F0;2


+Ns


2F0,0;2 − 2F1,1


, (F.10b)

∂F0,2
∂τ

= NU⟨∆k2⟩ (F0 − H)+ F2 + F0,0;2 − 3F0,2 − 2F1,1
+O(Ns), (F.10c)

∂F0,0;2
∂τ

= NU⟨∆k2⟩ (F0 − H)+ F0;2 − 4F0,0;2
+ 2F0,2 + O(Ns), (F.10d)

∂F1,1
∂τ

= −3F1,1 + F2 − 2F0,2 + F0,0;2 + O(Ns). (F.10e)

For arbitrary replica moments Fm⃗;n⃗, we can use the product rule in
Eq. (B.12) to derive a general formula similar to Eq. (C.12) for the
central moments. This yields

∂Fm⃗;n⃗

∂τ
=

dim m⃗
j=1


NU

mj−2
ℓ=0

mj

ℓ


⟨∆kmj−ℓ⟩Fm⃗+(ℓ−mj)êj;n⃗

+

mj

2


Fm⃗−2êj;2,n⃗ − mjFm⃗;n⃗ + Ns


Fm⃗+êj;n⃗ − mjFm⃗−êj;2,n⃗



×

dim n⃗
j=1


NU

nj−2
ℓ=0

nj

ℓ


⟨∆knj−ℓ⟩Fm⃗;n⃗+(ℓ−nj)êj

+

nj

2


Fm⃗;2,n⃗−2êj − njFm⃗;n⃗ + Ns


Fm⃗;n⃗+êj − njFm⃗;2,n⃗−êj



+

dim m⃗
j=1

dim m⃗
i>j


Fm⃗+mi(êj−êi);n⃗ − Fm⃗;n⃗ − mjFm⃗−êj+êi;n⃗

−miFm⃗+êj−êi;n⃗ + mjmiFm⃗−êj−êi;2,n⃗


+

dim n⃗
j=1

dim n⃗
i>j


Fm⃗;n⃗+ni(êj−êi) − Fm⃗;n⃗ − njFm⃗;n⃗−êj+êi

− niFm⃗;n⃗+êj−êi + njniFm⃗;2,n⃗−êj−êi


+

dim m⃗
j=1

dim n⃗
i=1


Fm⃗+ni êj;n⃗−ni êi − Fm⃗;n⃗ − mjFm⃗−êj;n⃗+êi;

− niFm⃗+êj;n⃗−êi + mjniFm⃗−êj;2,n⃗−êi


. (F.11)

We can collect all of the Fm⃗;n⃗ terms on the right side to obtain the
single term

−


j

mj +


j

nj +


dim m⃗ + dim n⃗

2


Fm⃗;n⃗. (F.12)

Otherwise all of the terms on the right hand side are unique
(unless there are duplicate entries in m⃗ or n⃗). A Python script
that programmatically outputs these equations in a form suitable
for import into Mathematica is available from the authors upon
request.
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