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ABSTRACT Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid
amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of
sequence evolution. Here, we analyze the interactions between beneficial “driver”mutations and linked deleterious “passengers” during the
course of adaptation. We derive analytical expressions for the substitution rate of a deleterious mutation as a function of its fitness cost, as
well as the reduction in the beneficial substitution rate due to the genetic load of the passengers. We find that the fate of each deleterious
mutation varies dramatically with the rate and spectrum of beneficial mutations and the deleterious substitution rate depends nonmonotoni-
cally on the population size and the rate of adaptation. By quantifying this dependence, our results allow us to estimate which deleterious
mutations will be likely to fix and how many of these mutations must arise before the progress of adaptation is significantly reduced.

RECENT years have witnessed an increased interest in the
evolutionary dynamics of rapid adaptation. Once regarded

as an obscure limit of population genetics, this regime has since
been observed in a variety of empirical settings, from labora-
tory evolution experiments (Barrick et al. 2009; Lang et al.
2013) to natural populations of pathogenic viruses (Strelkowa
and Lässig 2012), bacteria (Lieberman et al. 2014), and cer-
tain cancers (Nik-Zinal et al. 2012). In these populations, nat-
ural selection plays a central role in driving beneficial variants
to fixation, and significant theoretical and empirical effort has
been devoted to the study of these beneficial mutations and
the dynamics by which they spread through the population
(see Sniegowski and Gerrish 2010 for a review). Yet even in
the most rapidly adapting populations, the vast majority of
new mutations are neutral or deleterious, and much less is
known about how these variants influence (or are influenced
by) adaptation in nearby regions of the genome. As a result,
even the most basic questions about this process remain un-
answered. How deleterious must a mutation be before it is
effectively purged by selection? Which deleterious mutations
have the largest influence on the spread of the adaptive mu-
tations? And how do the answers to these questions depend

on the size of the population and the spectrum of beneficial
mutations? These questions are the focus of the present study.

In the absence of other mutations, the fate of a deleterious
variant is determined by the interplay between natural selection
and genetic drift. Selection purges harmful variants from the
population on a timescale inversely proportional to the fitness
cost, sd, of the deleterious mutation. Meanwhile, random fluctu-
ations from genetic drift can drive these variants to fixation,
which requires a time proportional to the effective population
size, Ne. Deleterious mutations with sd � N21

e will be purged
long before they can fluctuate to high frequency, while mutations
with sd � N21

e will barely feel the effects of selection before they
fix. The presence of this “drift barrier” at s*d � N21

e has long been
recognized (Kimura 1968; King and Jukes 1969; Ohta 1973). It
suggests that fewer deleterious mutations will accumulate in
larger populations and that those that do fix will have a smaller
effect on fitness. However, even a small number of beneficial
mutations can change this picture considerably.

When beneficial mutations are available, natural selection
must purge deleterious variants and amplify beneficial muta-
tions simultaneously. These forces can conflict with each other
in closely linked regions of the genome, leading to a second
source of stochasticity known as genetic draft (Gillespie 2000).
Thus, provided that the cost of a deleterious mutation is not
too high, it can hitchhike to high frequency with a beneficial
“driver” mutation that happens to arise on the same genetic
background (Maynard Smith and Haigh 1974). The fixation of
these deleterious “passengers” imposes a direct cost on the
fitness of the population, which can be ameliorated only by
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future compensatory mutations. Deleterious mutants also im-
pose an opportunity cost on the fitness of the population
when they hinder the fixation of driver mutations that arise
on poor genetic backgrounds (Charlesworth 1994; Peck
1994). Thus, even when they are not destined to fix, segre-
gating deleterious variants still contribute to an overall mu-
tation load, which reduces the fraction of available genetic
backgrounds where adaptation can proceed unhindered.

Together, deleterious passengers and the mutation load
can dramatically reduce the rate of adaptation and, in ex-
treme cases, can even lead to fitness decline (Silander et al.
2007) and mutational meltdown (Gabriel et al. 1993). Con-
versely, even a small number of beneficial mutations can bias
the spectrum of deleterious mutations that accumulate during
the course of evolution (Schiffels et al. 2011). These interac-
tions between adaptation and constraint have been the sub-
ject of extensive theoretical study (Charlesworth 1994; Peck
1994; Barton 1995; Orr 2000; Johnson and Barton 2002;
Bachtrog and Gordo 2004; Desai et al. 2007; Hartfield and
Otto 2011; Jiang et al. 2011; Schiffels et al. 2011; Goyal et al.
2012; McFarland et al. 2014), but many aspects of this pro-
cess remain poorly characterized. In particular, theory still
struggles to account for observed variation in the fitness
effects of new mutations and how these disparate mutations
combine to determine overall levels of hitchhiking and the
genetic load. This gap in our understanding is especially prob-
lematic for the largest and most rapidly adapting populations,
where multiple beneficial driver mutations compete for fixa-
tion at the same time. As we will see, these populations ac-
tually accumulate more deleterious mutations, even as they
become more efficient at finding and fixing adaptive variants.
It is therefore unsurprising that deleterious passengers are
thought to play an important role in the adaptive process
(Pybus et al. 2007; Covert et al. 2013; McFarland et al.
2013; Łuksza and Lässig 2014).

In this article, we study the effects of deleterious passen-
gers in a simple model of widespread adaptation. We employ
a perturbative approach, leveraging a recent mathematical
description of adaptation in the absence of deleterious
mutations (Good et al. 2012; Fisher 2013). This enables us
to obtain simple analytical predictions for genomic substitu-
tion rates across a broad range of beneficial and deleterious
fitness effects. In particular, we find that the maximum cost of
a passenger is inversely proportional to the coalescence time-
scale, Tc, over which the fates of new common ancestors are
determined. This constitutes a natural generalization of the
traditional drift barrier in the presence of widespread genetic
draft, where the population-size dependence of Tc can be
dramatically altered. We end by discussing the relevance of
these findings for recent microbial evolution experiments and
comment on directions for future work.

Model

We consider a population of N nonrecombining haploid indi-
viduals that accumulate mutations at a per genome rate U.

We assume an infinite-sites model, in which the fitness
effect of each mutation is drawn from a distribution of
fitness effects, r(s), that remains constant over the rele-
vant time interval. We further partition the distribution
of fitness effects (DFE) into its beneficial and deleterious
components,

UrðsÞ ¼
�
UbrbðsÞ if   s. 0;
Udrdð2sÞ if   s, 0;

(1)

where Ub and Ud denote the per-genome rates of beneficial
and deleterious mutations, respectively. For concreteness,
we primarily focus on a simplified “two-effect” DFE,

UrðsÞ ¼ Ubdðs2 sbÞ þ Uddðsþ sdÞ; (2)

where beneficial and deleterious mutations each have a charac-
teristic fitness effect. In a later section, we show how our
analysis can be extended to more general distributions, provided
that Ubrb(s) and Udrd(s) satisfy certain technical conditions.

These assumptions define a simple model of sequence
evolution with a straightforward computational implemen-
tation. We wish to use this model to study the impact of
deleterious mutations on the long-term genetic composition
of the population, which is determined by the average
substitution rate, R(s), of new mutations as a function of
their fitness effect. In particular, we wish to quantify the
relative contributions from beneficial and deleterious muta-
tions. For the simple two-effect DFE in Equation 2, this is
uniquely determined by the total beneficial and deleterious
substitution rates, Rb = R(sb) and Rd = R(2sd). However, for
more general DFEs, there is some ambiguity in how we
define the net contribution from beneficial and deleterious
mutations. For example, the raw substitution rates

RN
0 RðsÞds

and
RN
0 Rð2sÞds tend to be dominated by neutral or nearly

neutral mutations, which have a negligible impact on the
fitness of the population. To avoid this bias, we focus on
the weighted substitution rates,

Rb ¼
Z N

0

s
sb

� RðsÞds; Rd ¼
Z N

0

s
sd

� Rð2sÞds; (3)

where sb ¼
RN
0 srbðsÞds and sd ¼ RN0 srdðsÞds represent the

average fitness effects of the underlying DFE. For the two-
effect DFE in Equation 2, Rb and Rd coincide with the raw
rates of sequence evolution, as desired. For more general
DFEs, the substitution rate of each mutation is weighted
by its contribution to the total fitness of the population, so
that the total rate of adaptation is simply v ¼ sbRb 2 sdRd:

Heuristic Analysis and Intuition

Before we perform any explicit calculations, it is useful to
consider the dynamics of deleterious mutations from a heu-
ristic perspective. This allows us to identify many of the
relevant fitness scales and helps build intuition for the more
detailed calculations below. Our discussion resembles the
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traditional drift-barrier argument from the Introduction, but
it applies for a much broader range of populations where
drift is no longer the dominant evolutionary force.

Deleterious mutations can be classified into two funda-
mental regimes, depending on the substitution rates of the
mutations involved. Sufficiently weakly selected mutations
accumulate nearly neutrally (Rd � Ud), while sufficiently
strongly selected mutations rarely fix (Rd � 0). The transition
between these two regimes occurs for some characteristic cost
s*d; which can be estimated from the fundamental timescales
of the system. When a deleterious mutation arises, it origi-
nates on a particular genetic background, and it competes
with this background lineage until one of them is driven to
extinction. If the fitness of the background is sufficiently high,
then the deleterious mutation may increase in frequency in
the short term. Yet on average, the frequency of the mutant
relative to its background decays exponentially at rate sd (see
Figure 1). Thus, deleterious mutations are typically purged by
selection on a characteristic timescale Td � s21

d :

The fixation of these mutations is governed by the un-
derlying coalescent process. At each site in the genome, exactly
one of the present-day individuals will grow to become an
ancestor to the entire population. We let Tc denote the char-
acteristic timescale over which the fates of new common ances-
tors are determined. This does not imply that new common
ancestors have fixed within Tc generations, but only that their
chances of extinction are negligible beyond this point (see
Figure 1). As we demonstrate below, Tc is closely related to
the coalescent timescale that determines the levels of neutral
diversity in the population. When the genealogy of the popu-
lation is dominated by drift, Tc is simply proportional to the
population size (Tc � 2N), but in general Tc can vary in an
arbitrary way with the underlying parameters. A deleterious
mutation can fix only if it arises in a future common ancestor
and evades natural selection for Tc generations. If Td � Tc,
selection will typically purge the deleterious variant before its
descendants reach fixation, while mutations with Td � Tc will
barely feel the effects of selection before they fix. This implies
that the crossover between effectively neutral (Rd � Ud) and
effectively lethal (Rd � 0) substitution rates must occur for
s*d ¼ cT21

c ; where c is an O(1) constant.
So far, we have considered two classes of deleterious mu-

tations: those that fix and those that do not, with a transition
between the two regimes at s*d � T21

c : In an adapting popula-
tion, there is also a third class of deleterious mutations: those
that are most likely to hinder the spread of the beneficial
variants, regardless of whether or not they fix. The typical cost
of these maximally interfering mutations can be estimated
from a similar timescale argument. Here, the relevant time-
scale is not Tc but rather the characteristic time Tb over which
the fate of a beneficial mutation is determined (see Figure 1).
When the fates of beneficial mutations are controlled by ge-
netic drift, Tb is simply the drift time of the beneficial mutation
(Tb � 1/sb), but in general Tb can be an arbitrary function of
the underlying parameters. For a deleterious mutation to hin-
der the fixation of a beneficial variant, it must fix (or nearly fix)

within the beneficial lineage and begin to feel the effects of
selection within Tb generations. These conditions are jointly
satisfied when Tb � Td, so the maximally interfering mutations
have syd ¼ bT21

b ; where b is another O(1) constant.
Thus, without performing any explicit calculations, we

see that a simple heuristic argument is sufficient to determine the
relevant deleterious fitness effects in terms of the fundamental
timescales of the system. In the following sections, we rederive
these results more rigorously with explicit calculations of Rb and
Rd in several different parameter regimes. Although these calcu-
lations are somewhat less general than the heuristic argument
above, they allow us to predict the quantitative nature of the
transitions near s*d and syd in addition to the location of the tran-
sitions themselves. Perhaps more importantly, these calculations
provide explicit expressions for Tc and Tb in terms of the under-
lying parametersN andUr(s), which enables us to estimate when
deleterious passengers are likely to be important in practice.

Analysis

Although our model is simple, it can be difficult to analyze
the evolution of a tightly linked genome directly at the
sequence level. The fate of any particular variant is strongly
influenced by additional mutations (particularly beneficial
driver mutations) that segregate in the same genetic back-
ground, as well as by competing mutations that arise elsewhere
in the population. Keeping track of the arrival times and
haplotype structure of these mutations can rapidly become
unwieldy when the genome contains more than a handful
of selected sites.

Fortunately, previous work has shown that many of these
difficulties can be avoided by utilizing an intermediate level
of description, where the distribution of fitnesses within the
population plays a central role (Haigh 1978; Tsimring et al.
1996). Instead of tracking individual genotypes, we focus on
the total fraction of the population, f(X, t), with (log) fitness
X. We can then write down a consistent set of equations
governing the evolution of the fitness distribution without
reference to the underlying genotypes. Similarly, the fate of
a new mutation can be recast as a competition between the
fitness distribution of its descendants and that of the back-
ground population (see Appendix A). This leads to a dramatic
simplification in large populations, since the distribution of
fitnesses can be highly predictable even when sequence evo-
lution is highly stochastic.

The dynamics of the fitness distribution and the fates of
individual mutations have been well characterized in the
absence of deleterious mutations (Neher et al. 2010; Hallatschek
2011; Neher and Shraiman 2011; Good et al. 2012; Fisher
2013). Thus, rather than looking for an exact solution in the
deleterious case, we utilize a perturbative approach, focusing
only on the leading-order corrections to the substitution rate
in the limit that Ud / 0. This strategy allows us to exploit our
existing knowledge of the evolutionary dynamics in the ab-
sence of deleterious mutations. In particular, it implies that
the fundamental fitness scales s*d � T21

c and syd � T21
b can be
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estimated from previously derived formulas in theUd/ 0 limit.
Although this limit may seem unrealistic (given that deleterious
mutations are at least as common as their beneficial counter-
parts), these leading-order expressions will turn out to be sur-
prisingly accurate in large populations, even when Ud � Ub.
This accuracy is due to the fact that the coupling constant in the
perturbative expansion is controlled by the fitness differences in
the population, rather than by Ub. These fitness differences are
often much larger than Ub for many biologically relevant
parameters (Desai and Fisher 2007), so the total perturba-
tive correction can be small even when Ud � Ub. In the
following analysis, we distinguish between different adap-
tive regimes, depending on the frequency of strongly ben-
eficial driver mutations, which can dramatically influence
the timescales Tc and Tb.

No driver mutations

We start by reviewing the simplest case, where beneficial
driver mutations can be neglected. This assumption applies
not only when Ub = 0, but also in small populations where
drivers fix less frequently than neutral coalescence events
(N Rb � 1). Both conditions are sufficient to ensure that
the coalescent timescale is dominated by genetic drift
(Tc � N). In the absence of deleterious mutations, there
is no fitness diversity within the population [i.e., f0(X, t) �
d(X)]. To leading order, the fate of a particular individual is
determined solely by the balance between selection and
drift, and the fixation probability is given by the standard
formula

pfixðXÞ �
2X

12 e22NX þOðUdÞ; (4)

where X denotes the fitness of the individual (Fisher 1930;
Wright 1931). The deleterious substitution rate trivially fol-
lows by averaging over the potential fitness backgrounds of
new deleterious mutations:

Rd ¼ NUd

Z
f0ðXÞ pfix ðX2 sdÞdX � 2NUdsd

e2Nsd 2 1
: (5)

Thus, we recover the well-known result that deleterious
mutations accumulate neutrally when sd � 1/2N and are
exponentially suppressed when sd � 1/2N. As we argued on
heuristic grounds above, the transition between these two
extremes occurs at s*d � 1=2N; when the lifetime of a delete-
rious mutation (Td � 1/sd) is on the order of the neutral
coalescence time (Tc � N).

Of course, the substitution rate in Equation 5 eventually
breaks down for large values of Ud, when many deleterious
mutations segregate in the population simultaneously. Inter-
ference between these mutations can drive additional mutants
to fixation via Muller’s ratchet (Muller 1964), thereby accel-
erating the rate of sequence evolution. Yet while the ratchet
can alter both the functional form of Equation 5 and the lo-
cation of the transition to neutrality, it preserves the monotone
dependence of these quantities on the population size (see
Appendix C). Thus, in the absence of drivers, both the number
of deleterious substitutions and the fitness effects of these
mutations tend to decrease in larger populations (Figure 2A).

In the following sections, we assume for simplicity that
the population size is large enough that none of the deleterious
mutations would fix due to drift alone (Nsd � 1). This is a rea-
sonable assumption for most microbial evolution experiments,
where the effective population sizes are on the order of 105 or
greater (Kawecki et al. 2012). This also allows us to focus on
true passenger mutations, which could never fix without the
help of a beneficial driver. (For an analysis of the opposite re-
gime, see McFarland et al. 2014.) As we demonstrate below,
these passenger mutations display a qualitatively different de-
pendence on the population size than Equation 5 would predict.

Rare driver mutations

In larger populations, beneficial drivers substitute sufficiently
often that the coalescence timescale is dominated by the
sweep time of a beneficial mutation. In this case, we still
expect deleterious mutations to accumulate neutrally when
sd � T21

c ; but this threshold is no longer tied to the inverse
population size. Again, it is useful to begin with the simplest
case, where beneficial mutations are sufficiently rare that
they fix independently. This requires that the waiting time
for a successful driver [Twait � 1/(2NUbsb)] is much longer
than its fixation time ½Tfix � ð2=sbÞlogð2NsbÞ�; so that the co-
alescent timescale is given by Tc � Twait. The effects of dele-
terious mutations in this “rare driver” regime have been
studied by a number of previous authors (Charlesworth
1994; Peck 1994; Orr 2000; Johnson and Barton 2002). This
earlier work primarily focuses on the reduction in the bene-
ficial substitution rate, with analytical results available in the
limiting case where sd . sb. Here, we generalize these results
and derive simple analytical formulas for Rb and Rd that are
valid across the full range of deleterious fitness costs. These
formulas can then be contrasted with their counterparts in
the multiple-driver regime below.

In the absence of deleterious mutations, a population in
the rare driver regime is typically fixed for a single genotype
(i.e., the last successful driver) whose fitness can be taken to

Figure 1 A schematic depiction of the fundamental evolutionary timescales.
A deleterious variant (del) is purged relative to its background on a character-
istic timescale Td. The fate of a future common ancestor is determined on
a characteristic timescale Tc, and the fate of a beneficial mutation is deter-
mined over a characteristic timescale Tb.

1186 B. H. Good and M. M. Desai



be X = 0. Deleterious mutations create variation around this
genotype, which is temporarily depleted when the next driver
sweeps to fixation (Figure 3). In the time period between
sweeps, the distribution of fitness is governed by the deter-
ministic dynamics,

@t fðXÞ ¼ ðX2XÞf ðXÞ þ Ud½ f ðX þ sdÞ2 f ðXÞ�; (6)

where X ¼ R X   fðXÞdX denotes the mean fitness of the popu-
lation (Haigh 1978). The solution to this equation, subject to
the initial condition fðX; 0Þ � dðXÞ; can be obtained via stan-
dard methods (Johnson 1999; Etheridge et al. 2007; Desai
and Fisher 2011). The leading-order contribution is given by

f ðX; tÞ �

8>>>>><
>>>>>:

12
Ud

sd

�
12 e2sdt

�
if   X ¼ 0;

Ud

sd

�
12 e2sdt

�
if   X ¼ 2 sd;

0 else;

(7)

where we have neglected terms of order OðU2
dÞ  or greater:

At long times (t � 1/sd), this distribution approaches the
standard mutation–selection balance, f(2sd) � Ud/sd, but it
is possible that the next driver will occur before this equi-
librium is reached (Johnson and Barton 2002). The waiting
time for the next successful driver is exponentially distrib-
uted with mean Tc � 1/(2NUbsb), so the average fraction of
deleterious individuals at the time of the next sweep is

f ð2sdÞ ¼
Ud

2NUbsb þ sd
¼ Ud

sd

�
Tcsd

1þ Tcsd

�
: (8)

This reduces to the standard mutation–selection balance
when sd � T21

c : Previous studies often neglect this relaxation
phase, since they focus on deleterious fitness effects with
sd≳sb � T21

c : But based on our heuristic discussion, we expect
that most of the successful passenger mutations will have
sd≲T21

c ; where the deviations from mutation–selection bal-
ance in Equation 8 start to become important. Indeed, as we
will see below, it is exactly this time-dependent behavior that
drives most of the deleterious hitchhiking in these populations.

When the next driver mutation does arise, it can drag a
deleterious passenger to fixation in one of two ways. The
deleterious mutation can arise before the driver mutation,
so that the driver originates directly in a deleterious back-
ground. These passenger-first events occur at rate NUb f(2sd)
pfix(sb 2 sd). Alternatively, the deleterious mutation can arise
after the driver and fix within the driver lineage while it is
still rare. In Appendix C, we show that these driver-first events
occur at rate NUbðUd=sbÞpfixðsb 2 sdÞ: When sd � T21

c ; this
rate is much smaller than the passenger-first scenario above,
but it becomes comparable in magnitude when sd � sb.
Combining these two expressions, we find that the total
deleterious substitution rate is given by

Rd �

8><
>:

Ud

h
12 ðsd=sbÞ2

i
1þ ðsd=2NUbsbÞ

if   sd , sb;

0 else:

(9)

A similar expression was derived by Schiffels et al. (2011),
using a different method of analysis. The substitution rate in
Equation 9 approaches the neutral limit when sd � 2NUbsb
and decays as a power law when sd � 2NUbsb. This power-
law decay is significantly slower than the exponential falloff
in Equation 5 (Figure 2) and cannot be recast as a simple
reduction in effective population size. Thus, even when del-
eterious mutations would never drift to fixation on their
own, frequent drivers can still cause these variants to accu-
mulate like neutral mutations. Note that the time-dependent
fitness distribution in Equation 7 played a crucial role in the
emergence of this effectively neutral regime. Once the fit-
ness distribution has reached mutation–selection balance,
hitchhiking is already reduced by a factor of NUb � 1. In
agreement with our heuristic argument, the border of the
effectively neutral regime is located at s*d � 2NUbsb; when
the lifetime of a deleterious mutation (Td � 1/sd) is on the
order of the coalescence time (Tc � Twait). However, in con-
trast to the nonadapting case, s*d is now an increasing function
of the population size. This implies that more deleterious
mutations will accumulate in larger and more rapidly adapt-
ing populations and that the average cost of each passenger
will increase as well (Figure 2B).

To calculate the total rate of sequence evolution and the
rate of adaptation, we must also understand how deleteri-
ous mutations influence the fixation of the drivers. In the

Figure 2 The deleterious substitution rate in the limit that beneficial
driver mutations are rare. Symbols represent simulations of a two-effect
DFE for fixed Ub = 1029, sb = 1022, and Ud = 1024, with sd tuned
between 1025 and 1022. In the top panel, the red lines give the drift-
dominated predictions from Equation 5, while the bottom panel shows
the sweep-dominated predictions from Equation 9.
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absence of deleterious mutations, drivers substitute at rate
Rb = 2NUbsb, and deleterious mutations will reduce this rate
by decreasing the effective fitness advantage of the drivers.
Part of the reduction in driver fitness arises from the fixation
of deleterious passengers within the driver lineage before it
completes its sweep. This can occur via either of the two
hitchhiking scenarios (passenger-first hitchhiking or driver-
first hitchhiking) described above. Deleterious mutations
can also influence the fates of unloaded drivers through
the time-varying mean fitness in Equation 7. The correspond-
ing reduction in Rb is somewhat more difficult to obtain com-
pared to the deleterious substitution rate, since Rb depends
on nonequilibrium properties of f(X, t) that are not captured
by the simple average in Equation 8. Nevertheless, since the
fate of a driver mutation is determined while it is at low
frequency, the reduction in Rb can still be obtained using
standard branching-process techniques (Johnson and Barton
2002). We carry out this calculation in Appendix C and find
that the leading-order reduction in Rb is given by

Rb ¼

8>>><
>>>:

2NUb

�
sb2

Udsd
sb

� sd
2NUbsb þ sd

�
if   sd , sb;

2N
�
12

Ud

sd

�
Ubsb else:

(10)

Most of the interesting reduction occurs for sd � T21
c ; when

the fractional change in Rb becomes independent of Tc. In
other words, these deleterious mutations have all reached
mutation–selection balance by the time that the next driver
arises. When sd , sb, Equation 10 has a simple interpretation
as a reduction in the establishment probability of each driver
due to the deleterious passengers that accumulate during
the establishment time, Test � s21

b : These “tunneling” events
are crucial for obtaining the proper sd dependence in Equation
10; traditional arguments based on the mutation load (Kimura
and Maruyama 1966) would otherwise suggest that Rb is in-
dependent of sd. In the opposite case where sd . sb, we recover
the well-known “background selection” (Charlesworth 1994)
or “ruby in the rough” (Peck 1994) behavior observed in pre-
vious studies. In this case, loaded drivers can never fix, and
Equation 10 can be interpreted as a reduction in the effective
population size equal to the fraction of mutation-free individ-
uals in the population.

These results show that the largest reduction in Rb occurs
for syd � sb; which is much larger than the size of a typical
passenger mutation ðs*d � 2NUbsbÞ: In other words, the max-
imally interfering mutations rarely hitchhike to fixation (Rd �
0). The disparity between these two scales can be explained in
terms of the heuristic argument above. When drivers are rare,
the fates of beneficial mutations are primarily influenced by
drift. The driver fates are therefore determined during the drift
time, Tb � s21

b ; which is much shorter than both the fixation
time of a driver ½Tfix ¼ ð2=sbÞlogð2NsbÞ� and the waiting time
between sweeps [Twait � 1/(2NUbsb)]. This will change dra-
matically in the multiple-driver regime below.

Multiple-driver mutations

As the population size increases, the waiting time between
drivers is eventually dwarfed by the time that it takes each
driver to fix. Multiple drivers will segregate in the popula-
tion at the same time, and these mutations will interfere
with each other as they compete for fixation. In this clonal
interference regime, drivers and passengers are both domi-
nated by the effects of genetic draft, and coalitions of mul-
tiple drivers are often required to drive a lineage to fixation
(Rouzine et al. 2003; Desai and Fisher 2007). Recent empir-
ical work in microbial populations suggests that this regime
is likely to be the rule rather than the exception (De
Visser et al. 1999; Miralles et al. 1999; Perfeito et al. 2007;
Batorsky et al. 2011; Miller et al. 2011; Strelkowa and Lässig
2012; Kvitek and Sherlock 2013; Lang et al. 2013; Lee and
Marx 2013; Barroso-Batista et al. 2014), so it is important
that we extend our previous analysis to this potentially more
realistic scenario.

At long times, a population in the multiple-driver regime
reaches a steady state in which the continuous production of
new mutations is balanced by the depletion of this diversity
due to natural selection (Tsimring et al. 1996; Rouzine et al.
2003; Desai and Fisher 2007). The fitness distribution f(X, t)
behaves like a “traveling wave,” with a characteristic shape
f(x) that translates toward higher fitness at a constant rate v

Figure 3 A schematic illustration of the fitness distribution. (A) In the rare
driver regime, the population is predominantly composed of the last
successful driver, with a deleterious subpopulation given by Equation 7.
(B) In the multiple-driver regime, the fitness distribution approaches
a steady-state shape, f(x), which translates toward higher fitness at rate v.
The red line depicts the fixation probability, w(x), which increases rapidly
with x before transitioning to the standard Haldane result at x � xc. Future
common ancestors are located in a narrow region of width � T21

c near
the nose. Effectively lethal mutations ðsd � T21

c Þ remove an individual
from this region, thereby reducing the pool of potential ancestors. Effec-
tively neutral mutations ðsd � T21

c Þ leave an individual within this region,
with a small fitness cost relative to its immediate ancestor.
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(see Figure 3). In some respects, this multidriver equilibrium
is simpler to analyze than the rare driver regime above,
where the punctuated nature of adaptation required us to
explicitly account for departures from steady state. Averaged
over short fitness scales and timescales, the steady-state
shape of the fitness distribution is described by the deter-
ministic dynamics,

2v
@f
@x

¼ x f þ U
Z

ds  rðsÞ½ f ðx2 sÞ2 fðxÞ�; (11)

where x denotes the relative fitness, X2XðtÞ: This determin-
istic equation holds throughout the bulk of the fitness distri-
bution, but starts to break down near the high-fitness “nose”
(see Figure 3) where most successful drivers originate. In
large populations, the nose constitutes just a small fraction
of the total population, so we can approximate the effects of
genetic drift in this regime with a suitable linear branching
process (Neher et al. 2010; Good et al. 2012; Fisher 2013).
The fixation probability, w(x), for a lineage with relative fit-
ness x satisfies a related differential equation,

v
@w
@x

¼ xwþ U
Z

ds  rðsÞ½wðx þ sÞ2wðxÞ�2w2

2
; (12)

where the nonlinear term gives the contribution from genetic
drift (see Appendix A). The marginal fixation probability, pfix(s),
of a mutation with fitness effect s can be calculated from w(x)
by averaging over the distribution of background fitnesses,

pfixðsÞ ¼
Z

f ðxÞwðx þ sÞdx; (13)

where the consistency condition pfix(0) � 1/N serves to
uniquely determine v as a function of the underlying param-
eters N and Ur(s) (Hallatschek 2011; Good et al. 2012;
Fisher 2013).

In the absence of deleterious mutations, we have previously
derived an approximate solution to Equations 11–13 in the
strong selection regime where sb �

ffiffiffi
v

p
(Good et al. 2012).

Unfortunately, this solution contains several pathologies that
render it unsuitable for the perturbative analysis below (Fisher
2013). In Appendix B, we derive a modified version of this
solution that corrects these issues. The resulting fixation prob-
ability is characterized by a narrow boundary layer near a crit-
ical fitness value, xc $ sb. Above this point, lineages fix without
the need for additional driver mutations, so w0(x) � 2x. Below
xc, the fixation probability rapidly declines as

w0ðxÞ �
�
2xceðx22x2c Þ=2v0 if   x. xc 2 sb;
0 else:

(14)

The fitness distribution displays a similar transition near xc,
taking a simple Gaussian form below xc,

f0ðxÞ � 1ffiffiffiffiffiffiffiffiffiffiffi
2pv0

p e2ðx2=2v0Þ; (15)

and vanishing above this threshold (Fisher 2013). The
location of the boundary can be obtained from an integral

transform of Equation 12, which yields an auxiliary
condition,

1 ¼ Ub

sb

�
12

sb
xc

	21

excsb=v02s2b=2v0 ; (16)

which uniquely determines xc as a function of Ub, sb, and v0
(Good et al. 2012).

The solution in Equations 14–16 requires that
ðxc 2 sbÞ �

ffiffiffi
v

p
and sb �

ffiffiffi
v

p
: The first of these conditions

places a lower bound on the amount of clonal interference
in the population: there must be sufficient fitness variation
that the parents of successful drivers have abnormally high
fitness (i.e., greater than one standard deviation from the
mean). This distinguishes the clonal interference regime
from the rare driver limit above. The second condition
places an upper bound on the amount of fitness diversity in
the population: individuals that compose the bulk of the
population (i.e., within one standard deviation from the
mean) typically harbor the same number of driver mutations.
In terms of the underlying parameters, these two conditions
require that Nsb � 1 and Ub � sb (see Appendix B). We focus
on this regime because it is thought to apply to a broad range
of microbial evolution experiments, at least in the initial
phases of adaptation (Desai et al. 2007; Parfeito et al.
2007; Wiser et al. 2013; Barroso-Batista et al. 2014).

Deleterious mutations lead to a reduction in the fixation
probability and deviations from the Gaussian fitness distribu-
tion, which can alter the rate of adaptation and the location of
the nose in potentially complex ways. However, we can still
investigate the leading-order effects of deleterious passengers,
using the same perturbative strategy that we employed above.
We rewrite the substitution rates in the suggestive form

Rb ¼ R0b

�
12

�
Ud

xc

�
Drb

	
; (17a)

Rd ¼ 0þ Ud � Drd; (17b)

with corresponding expansions for w(x), f(x), and v,

wðxÞ ¼ w0ðxÞ
�
1þ

�
Ud

xc

�
gðxÞ

	
; (17c)

f ðxÞ} f0ðxÞ
�
1þ

�
Ud

xc

�
hðxÞ

	
; (17d)

v ¼ v0

�
12

�
Ud

xc

��
Drb þ

xcsd
v0

Drd

�	
: (17e)

Note that we have not included an expansion for xc, since
this is simply a property of w0(x) rather than a measurable
quantity like v. Thus, with a slight abuse of notation, we
continue to use xc to denote the zeroth-order value x0c : With
these definitions in hand, we can substitute Equation 17 into
Equations 11–13 and equate like powers of Ud to obtain at
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a corresponding set of equations for Drb, Drd, g(x), and h(x)
(see Appendix C). The correction to the deleterious substitu-
tion rate is particularly easy to calculate, since the zeroth
order (Ud = 0) contribution vanishes. To leading order, we
find that

Drd ¼ N
Z

f0ðxÞw0ðx2 sdÞ  dx;

�
 
12 e2ðsbsd=v0Þ

sbsd=v0

!
exp
�
2
ðxc2 sbÞsd

v0

	
;

(18)

which interpolates between the effectively neutral limit
(Rd � Ud) and the effectively lethal limit (Rd � 0) illustrated
in Figure 4. In sufficiently large populations where xc � sb,
Equation 18 reduces to

Drd � exp
�
2
xcsd
v0

	
; (19)

which shows that the border of the effectively neutral
regime occurs at s*d � v0=xc: This crossover has a natural
interpretation in terms of the fundamental timescales of
the system. The “nose-to-mean” time Tsweep � xc/v0 is the
time required for the current fitness of the nose to become
the mean fitness of the population. When xc � sb, we have
previously shown that this is also the timescale over which
the fates of new common ancestors and successful drivers
are decided, so that Tc � Tb � Tsweep (Desai et al. 2013).
Solving for v0 and xc, one can show that

Tsweep � 1
sb
log
�
sb
Ub

�
; (20)

which is much greater than 1/sb (i.e., Tc sb � 1) and is
approximately independent of the population size (Desai
et al. 2013). Thus, like the rare driver regime above, the
number of deleterious passengers does not necessarily de-
crease in larger and more rapidly adapting populations. Yet
in this case, the cost of a typical passenger does not increase
as rapidly with N or Ub, which reflects the fact that adapta-
tion is not limited by the supply of beneficial mutations.

Corrections to the beneficial substitution rate can be
obtained in a similar way, although the algebra is more
involved because Drb, g(x), and h(x) are not independent.
We carry out this calculation in Appendix C, and we find that
the leading-order correction to Rb is given by

Drb ¼ 2v0
ðxc2 sbÞsd

�
12 e2ðxcsd=v0Þ

�
xc
sb



esbsd=v0 2 1

�
þ 1
		

2
xc
sb



esbsd=v0 2 1

�
e2ðxcsd=v0Þ:

(21)

We compare this formula with simulations in Figure 4. In
sufficiently large populations where xc � sb, Equation 21
reduces to the simple form

Drb � 2v0
xcsd

2 2e2ðxcsd=v0Þ
�
v0
xcsd

þ 1þ xcsd
2v0

	
; (22)

which depends only on the compound parameter xcsd=v0 �
Tcsd: In the limit that xcsd=v0/0; Drb � 0þOðxcsd=v0Þ2;
which is consistent with the equal accumulation of nearly neu-
tral passengers in the nose and in the bulk population (Desai
and Fisher 2007). On the other hand, when xcsd=v0/N; the
reduction in Rb is consistent with a simple reduction in popu-
lation size, Ne = N(12 Ud/sd), similar to the ruby in the rough
limit of the rare driver regime above. In between these two
extremes, Equation 21 predicts a maximum reduction in Rb at
an intermediate value of xcsd=v0 � 3:4: This is consistent with
our heuristic argument that passengers should influence the
fates of drivers only if they are purged on the same timescale
that determines the fate of a driver mutation, Tb � Tsweep.
Unlike the rare driver regime, the maximally interfering muta-
tions in this case are approximately the same size as a typical
passenger mutation ðT21

b � T21
c Þ and are much smaller than

the size of a typical driver ðT21
b � sbÞ:

Distributions of fitness effects

Our analysis has so far assumed that the DFE is given by the
simple two-effect form in Equation 2. On the surface, such
an assumption seems to conflict with empirical measure-
ments of the DFE, which typically involve at least severalfold
variation in the magnitudes of beneficial and deleterious
mutations (Eyre-Walker and Keightley 2007). In this sec-
tion, we discuss how our analysis can be extended to this
more biologically realistic scenario.

At the level of approximation considered here, distribu-
tions of deleterious fitness effects do not pose any major
problems for our analysis. Since we have focused only on
the leading-order contributions in Ud, the net effects of a del-
eterious DFE can be obtained simply by averaging over the
deleterious effect sizes,

Drd½rdðsÞ� ¼
Z �

sd
sd

�
DrdðsdÞrdðsdÞdsd; (23a)

Drb½rdðsÞ� ¼
Z 

DrbðsdÞrdðsdÞ  dsd   ; (23b)

where Drd(sd) and Drb(sd) are given by Equations 18 and 21.
The outcome of this average can depend rather sensitively
on both the supply of beneficial mutations [which controls
the quantitative dependence of Drd(sd) and Drb(sd)] and the
relative variation in rd(sd). In the broad distribution limit
where rd(sd) is approximately uniform, the reduction in the
beneficial substitution rate will be dominated by the density
of deleterious mutations near syd � T21

b : The effects on the
deleterious substitution rate are more subtle. When Drd(sd)
decays exponentially with the fitness cost, Rd will be domi-
nated by mutations near s*d � T21

c as expected. However,
when Drd(sd) decays as an inverse power of sd, the weight-
ing factor in Equation 23a will remove much of the Tc
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dependence in the integrand. In this case, significant contri-
butions to Rd will arise from all deleterious mutations in the
range T21

c , sd ,T21
b :

In the rare driver regime, a similar averaging scheme can
be applied for a distribution of beneficial fitness effects, so
that Tc � 1=ð2NUbsbÞ: However, this average breaks down in
the multiple-driver regime, since the beneficial substitution
rate is not a simple linear function of Ub. Instead, previous
work has shown that a large class of beneficial DFEs can be
approximated by a single-effect DFE, UbrbðsÞ � U*

bdðs2 s*bÞ;
provided that the effective selection coefficient and the mu-
tation rate are chosen appropriately (Hegreness et al. 2006;
Desai and Fisher 2007; Good et al. 2012). In agreement with
this earlier work, we find that the single-sb approximation
holds for Drb and Drd as long as the effective parameters are
associated with the expressions in Good et al. (2012):

s*b ¼ xc þ v0@s log


rbs*b

�
; (24a)

U*
b ¼ Ubrb



s*b
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pv0
12 v0@2s rb

�
s*b
�s
: (24b)

Thus, we can extend our results to a distribution of fitness
effects simply by replacing sb/s*b and Ub/U*

b in all of our
previous expressions. The only difference is that s*b and U*

b
now vary as a function of the population size and mutation
rate, so the scaling of the various quantities (e.g., Tc and Tb)
can change.

As an example, we consider the case where beneficial
mutations follow an exponential distribution, rbðsÞ}expð2s=sbÞ:
In this case, we have previously shown that the effective selec-
tion strength and mutation rate are given by

s*b ¼ xc 2
v0
sb
; U*

b ¼ Ub

ffiffiffiffiffiffiffiffiffiffiffi
2pv0
s2b

s
e2xc=sb ; (25)

where xc � s*b for all but the largest population sizes (Good
et al. 2012). Thus, the fittest individuals in the population
typically contain only one more driver mutation than the
mean, and the dynamics of adaptation bear some resem-
blance to the selective sweeps pictured above (Schiffels
et al. 2011). In this “quasi-sweep” regime, the size of a typ-
ical driver increases with the population size in such a way
that the nose-to-mean time,

Tsweep � xc
v0

� 2log2ðsb=UbÞ
sblogðNUbÞ

; (26)

remains a decreasing function of N. This is similar to the rare
driver regime above, although the dependence on N is much
weaker in this case. Substituting our expressions for s*b and
U*
b into Equations 18 and 21, we find that the substitution

rates are given by

Drd �
 
12 e2ðxcsd=v0Þ

xcsd=v0

!
exp
�
2
sd
sb

	
; (27a)

Drb � 2 sb
sd

2 2e2ðsd=sbÞ
�
sb
sd

þ
�
sb
sd

þ 1
2

�

12 e2ðxcsd=v0Þ

�	
:

(27b)

We compare these predictions to simulations in Figure 5.
Similar to the single-sb case, we again observe a transition
from a regime of effective neutrality (Rd � Ud) to a regime of
effective lethality (Rd � 0) at a characteristic effect size
s*d � v0=xc: This threshold is much smaller than the size of
an average beneficial mutation ðsbÞ as well as the size of
a typical driver ðs*b � sbÞ: Since xc � s*b; these results are also
consistent with earlier work by Schiffels et al. (2011), which
found that s*d � R0

b � v0=s*b: Writing the typical cost of a pas-
senger in this way emphasizes the quasi-sweep nature of the
exponential DFE. Like the rare driver regime, the deleterious
substitution rate in Equation 27a decays as a power law
when sd � s*d; as opposed to the exponential dependence
in Equation 19. Similarly, the reduction in the beneficial
substitution rate in Equation 27b is maximized when
sd � 1:7sb � s*b; where hitchhiking is already unlikely
(Rd � 0). This illustrates a subtle feature of the single-s
equivalence principle above. If we condition on the size
of a successful driver ðs*bÞ; our results are insensitive to
the shape of the DFE. However, if we condition on the size
of an average potential mutation ðsbÞ; then the relevant
deleterious mutations can depend rather sensitively on
the shape of rb(s).

Figure 4 Corrections to the substitution rate in the limit that driver
mutations are common. Symbols denote the results of forward-time sim-
ulations for various combinations of Ud and sd, with the remaining param-
eters fixed at N = 107, Ub = 1025, sb = 1022. The quantities Drb and Drd
are calculated from Equation 17, with v0 measured from simulations and
xc estimated from Equation 16. For comparison, the solid red lines show
the first-order predictions from Equations 18 and 21, using the same
estimated values of v0 and xc.
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Discussion

In any sufficiently complex organism, spontaneous mutations
will have a broad range of effects on reproductive fitness. This
leads to a natural question: Which (if any) of these mutations
will influence the evolutionary dynamics of the population?
If certain mutations are more important than others, is it
possible to focus only on a subset of potential mutations? In
the general case, these questions can be difficult to answer.
Adaptive changes account for just a small fraction of all
possible mutations, but when they do arise, beneficial variants
are rapidly amplified by selection and dramatically alter the
evolution of the population. Deleterious mutations, in con-
trast, have a negligible impact individually, but their greater
numbers can nevertheless lead to a large collective influence.
Given this competition between the scales of mutation and
selection, it is possible that beneficial and deleterious muta-
tions both play an important role in certain populations.

Here, we have introduced a quantitative mathematical
framework for characterizing the effects of deleterious
passengers in rapidly evolving populations. By leveraging
previous results in the absence of deleterious mutations, we
derived simple formulas for the rates of sequence evolution
when beneficial and deleterious mutations possess a broad
range of fitness effects. These results provide important
qualitative intuition about the effects of deleterious passen-
gers, since they allow us to estimate which deleterious muta-
tions are most likely to hitchhike to fixation and which ones
will hinder the fixation of the drivers.

In the case of hitchhiking, we found that the maximum
cost of a passenger is determined by the inverse of the
coalescent timescale, s*d � T21

c ; which reduces to the tradi-
tional drift-barrier ðs*d � N21Þ in the absence of other muta-
tions. When drivers are more common, the location of this
neutral threshold can grow to be much larger than the in-
verse population size, with a qualitatively different depen-
dence on N (Table 1). Thus, as observed in previous studies
(Schiffels et al. 2011), larger and more rapidly adapting
populations will often accumulate a larger number of more
strongly deleterious mutations, although the total fraction of
deleterious substitutions must still decline. This increased
deleterious load can have important implications for the
stability of rapidly adapting proteins [e.g., in influenza
(Strelkowa and Lässig 2012)] and is likewise relevant when
inferring the prevalence of adaptive mutations from changes
in dN/dS ratios (Ostrow et al. 2014). It is important to note,
however, that the deleterious load can increase with N
only in the presence of strongly beneficial driver mutations
(Tcsb � 1) and not as a general consequence of linkage. In-
deed, we find that s*d decreases (weakly) with N in “infinites-
imal” models of linked selection (Tcsb � 1) (Tsimring et al.
1996; Cohen et al. 2005; Hallatschek 2011; Neher and
Hallatschek 2013; Neher et al. 2013; Good et al. 2014) and
in the presence of Muller’s ratchet (Söderberg and Berg 2007).

In addition to the size of a successful passenger, our
framework also allows us to identify mutations that are most
likely to hinder fixation of the drivers. We saw that this
influence is maximized for deleterious mutations of an
intermediate effect syd � T21

b ; set by the stochastic phase of
a successful driver mutation. When drivers are rare, this is
simply the drift time Tb � s21

b ; and deleterious mutations above
this threshold limit the rate of adaptation through a well-known
reduction in effective population size (Charlesworth 1994; Peck
1994; Orr 2000; Wilke 2004). However, when driver mutations
interfere with each other (RbTc � 1), this stochastic phase
becomes much longer than s21

b ; since multiple beneficial muta-
tions are required for fixation. Thus, the relevant deleterious
fitness effects are usually much smaller than the size of a typical
driver, which emphasizes the importance of the two-effect DFE
that we used throughout our analysis. Previous work has often
focused on a simpler “single-effect” DFE, where the fitness
effects of beneficial and deleterious mutations are identical
(sb = sd) (Woodcock and Higgs 1996; Rouzine et al. 2003,
2008; Goyal et al. 2012). Our present results suggest that these
models may underestimate the importance of deleterious muta-
tions, since they implicitly neglect mutations with the largest
potential influence.

These findings suggest that the cumulative influence of
deleterious passengers depends rather sensitively on the dis-
tribution of beneficial and deleterious fitness effects, in ad-
dition to the population size and mutation rate. This makes
it difficult to estimate the relevance of deleterious passen-
gers in practice, since these distributions are known only to
a very rough degree of approximation (Eyre-Walker and
Keightley 2007). The notable exception is in experimental

Figure 5 Corrections to the substitution rate for an exponential distribu-
tion of beneficial fitness effects. Symbols denote the results of forward-
time simulations for N = 105 (triangles) and N = 107 (circles), with the
remaining parameters the same as in Figure 4. Once again, Drb and Drd
are calculated using the simulated value of v0, with xc estimated from
Equation 16 and s*b and U*

b estimated from Equation 25. For comparison,
the solid red lines show the first-order predictions from Equation 27,
using the same estimated values of v0, xc, and s*b:
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microbial populations, where high-throughput screens have
enabled a much more detailed characterization of the fitness
effects of new mutations (Elena et al. 1998; Wloch et al.
2001; Sanjuán et al. 2004; Kassen and Bataillon 2006; Qian
et al. 2012; Frenkel et al. 2014). As a concrete example, we
have recently estimated rb(s) for a strain of Saccharomyces
cerevisiae in rich media to be an exponential distribution
with Ub = 1024 and sb ¼ 93 1023 (Frenkel et al. 2014),
which is also consistent with recent measurements of the
yeast deletion collection (Figure 6A). If we assume that
rd(s) can also be estimated from these deletion measure-
ments, then our model implies that deleterious mutations
will start to influence the rate of adaptation in these popu-
lations only when Ud � 1022 (Figure 6B), which is already
larger than the total per-genome mutation rate in yeast (Zhu
et al. 2014). Deleterious passengers are therefore unlikely to
impede the rate of adaptation in these populations. Recent
work has shown that sb may decrease by as much as a factor
of 4 over �1000 generations of evolution due to the effects
of diminishing-returns epistasis (Chou et al. 2011; Khan
et al. 2011; Wiser et al. 2013; Kryazhimskiy et al. 2014).
This lowers our estimate of U*

d only by a factor of 2, which
suggests that deleterious mutations are also unlikely to con-
tribute to the long-term differences in evolvability of these
strains in the absence of more complicated epistatic inter-
actions. Of course, it is not surprising that deleterious muta-
tions play a small role here, since these populations have
been studied precisely because they repeatedly adapt to
their laboratory environment. In more well-adapted popula-
tions, mutator strains have been observed to evolve toward
lower mutation rates (McDonald et al. 2012; Maharjan et al.
2013; Wielgoss et al. 2013), suggesting that the deleterious
load may eventually become more of a burden. However,
without a more detailed estimate of the DFE, this hypothesis
is merely speculative.

In the present article, we have considered only the most
basic effects of deleterious passengers on the long-term patterns
of sequence evolution, leaving many potential avenues for
future work. Most notably, we have omitted any discussion
about the patterns of sequence diversity within the popula-
tion, which provide a snapshot of the selective forces operating
in the recent past. Deleterious passengers are potentially even
more relevant for these contemporary data, since mutations
that are too deleterious to fix can still generate appreciable
fitness diversity if they are sufficiently common (Haigh 1978).
Our perturbative corrections to the fitness distribution can
potentially capture some of this deleterious diversity, but the

effects on neutral polymorphism and the implications for re-
combining chromosomes will require additional analysis.
Recent work by Weissman and Hallatschek (2014) could
potentially be used to address these questions. In this case,

Figure 6 Breakdown of the linear approximation at high Ud. (A) Fitness
effects of all single-gene deletions in yeast, measured by Qian et al. (2012)
in rich media. The shape of the beneficial DFE is approximated by an expo-
nential distribution with mean sb = 0.01, while the deleterious DFE is approx-
imated by a Weibull distribution with mean sd ¼ 0:06 and shape k = 0.64
(red lines). (B) Corrections to the rate of adaptation as a function of the
deleterious substitution rate, assuming that the beneficial and deleterious
DFE shapes are given by the fits in A. The remaining parameters are N =
105 and Ub = 1024 (Frenkel et al. 2014). Symbols denote the results of
forward-time simulations, while the predicted scaling relation Dv } Ud is
shown in solid green. For comparison, the dashed lines indicate the point
where the accumulation of deleterious mutations overwhelms the rate of
adaptation (v � 0). (C) Analogous corrections for the beneficial and delete-
rious substitution rates. In this case, the predicted scaling relation is Dr } 1.

Table 1 Summary of the deleterious substitution rates in the different adaptive regimes

Adaptive regime Deleterious substitution rate Typical passenger cost Related work

No drivers r(x) � 2x/(e2x 2 1) ds*d=dN,0 Fisher (1930); Wright (1931)
Rare drivers r(x) � 1/(1 + x) ds*d=dN.0 Johnson and Barton (2002)
Multiple drivers, xc � s*b r(x) � (1 2 e22x)/(2x) ds*d=dN.0 Schiffels et al. (2011)
Multiple drivers, xc � s*b r(x) � e2x ds*d=dN � 0 Desai and Fisher (2007)
Infinitesimal limit r(x) � e2x ds*d=dN,0 Hallatschek (2011)

To compare functional forms, we show the scaled substitution rate, r(x) = c1R(2c2x), where the scaling parameters c1 and c2 are chosen so that r(0) = 2r9(0) = 1.
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the relevant parameters would be the beneficial and delete-
rious mutation rates within an appropriately defined linkage
block, the length of which must be self-consistently deter-
mined by the resulting coalescence timescale (Neher et al.
2013; Good et al. 2014; Weissman and Hallatschek 2014).

A second limitation of our analysis is that it is fundamen-
tally perturbative in nature. By focusing only on the leading-
order corrections to the dynamics in powers of Ud/xc, our
results are primarily applicable when the net effect of delete-
rious mutations is small (i.e., v0 2 v � v0). A similar approx-
imation is implicit in earlier work by Schiffels et al. (2011).
Thus, these studies have explicitly neglected cases where
many deleterious mutations fix cooperatively due to Muller’s
ratchet (Söderberg and Berg 2007; McFarland et al. 2013) or
the long-term “fixed point” where the accumulation of bene-
ficial and deleterious mutations balances (Goyal et al. 2012).
In practice, our expressions are often quite accurate, even
permitting estimates of the v � 0 fixed point in certain cases
(Figure 6B). However, a more thorough characterization of
this fixed point [and the shapes of rb(s) and rd(s) that are
attained there] remains an important avenue for future work.
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Appendix A: Stochastic Model of the Fitness Distribution and the Mean-Field Approximation
As described in the text, the dynamics of our evolutionary model can be recast in terms of the population fitness distribution,
f(X, t), which tracks the fraction of individuals in each “fitness class” X. In the diffusion limit, these fitness classes obey the
Langevin dynamics,

@fðXÞ
@t

¼ ½X2XðtÞ� f ðXÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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mutation

þ
Z

dX9
h
d


X2X9

�
2 fðXÞ

i ffiffiffiffiffiffiffiffiffiffiffi
f ðX9Þ
N

r
h


X9
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic drift

; (A1)

where XðtÞ ¼ R dX   X   fðX; tÞ is the mean fitness of the population and h(X) is a Brownian noise term of the Ito form (see Good
and Desai 2013 for further discussion). Equation A1 represents a natural generalization of the single-locus diffusion equation
for a genome with a large number of selected sites. To track the fate of a lineage founded by an individual with fitness X0, we
introduce the labeled fitness classes g(X, t) and f(X, t) corresponding to the focal lineage and the background population,
respectively. These fitness classes obey a generalized version of Equation A1,

@f ðXÞ
@t

¼ ½X2XðtÞ� f ðXÞ þ U
Z

ds  rðsÞ½ fðX2 sÞ2 f ðXÞ� þ
ffiffiffiffiffiffiffiffiffi
f ðXÞ
N

r
hf ðXÞ

2 fðXÞ
2
4Z

ffiffiffiffiffiffiffiffiffiffiffi
f
�
X9
�

N

s
hf



X9
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
g
�
X9
�

N

s
hg



X9
�
dX9

3
5;

(A2a)
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(A2b)

with the initial condition gðX; 0Þ ¼ ð1=NÞdðX2X0Þ: For general N and Ur(s), there is no closed-form solution of Equation A3.
However, in sufficiently large populations we can employ a “mean-field” approximation that has been used in several
previous studies (Neher et al. 2010; Neher and Shraiman 2011; Good et al. 2012; Fisher 2013).

The basic idea behind this approximation is that there is a separation of frequency scales between the regime where
genetic drift is important and the regime where population saturation is important (Desai and Fisher 2007). In other words,
the fate of a lineage is determined while it is still rare ðR gðXÞdX � 1Þ; while most of the remaining population evolves
deterministically. From these assumptions, we can rewrite Equation A3 in the simpler form,

@f ðXÞ
@t

¼
�
X2

Z
X9f
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�
dX9
	
fðXÞ þ U

Z
ds  rðsÞ½ f ðX2 sÞ2 fðXÞ�; (A3a)
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r
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where we have approximated the dynamics of the focal lineage by a simple linear branching process. The fixation probability
of this lineage can then be deduced using standard techniques from the theory of branching processes. We introduce the
generating functional H½fðXÞ; t� ¼ hexp½2 R NfðXÞgðX; tÞdX�i; which satisfies the partial differential equation
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@t

¼
Z (�
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)
@H

@fðXÞ dX; (A4)

subject to the initial condition H[f(X), 0] = exp[2f(X0)] = 1 2 f(X0). [The last equality follows from the standard
diffusion limit used to derive Equation A1. Here, f(X) has “units” of fitness or inverse population size and thus becomes
infinitesimally small in the limit that N / N and s / 0. Since we neglect saturation effects, we know that at long times the
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focal lineage must either go extinct or diverge to infinity. This yields a relation between the generating function and the
fixation probability,

lim
t/N

H½fðXÞ; t� ¼ 12 Pr
� Z

gðXÞu½fðXÞ�dX. 0
	
; (A5)

where u(x) is the Heaviside step function. Thus, we must simply solve Equation A4 to obtain the fixation probability for any
subset of the focal lineage. We can achieve this via the method of characteristics. Letting t denote backward time, the
characteristic equation for f(X ) is given by

2
@fðXÞ
@t

¼
�
X2

Z
X9  f



X9; t2 t

�
dX9
	
fðXÞ þ U

Z
ds  rðsÞ½fðX2 sÞ2fðXÞ�2fðXÞ2

2
; (A6)

with the backward-time initial condition f(X, t = 0) = f(X). Meanwhile, the characteristic for H is simply @tH = 0, so we
can immediately conclude that H[f(X), t] = 1 2 f(X0, t = t) and therefore that the fixation probability for a subset of the
focal lineage is given by

Pr
� Z

gðXÞu½fðX; t ¼ 0Þ�dX. 0
	
¼ lim

t/N
fðX0; t ¼ tÞ: (A7)

Finally, we let w(X) be the unique long-time limit of f(X, t) when f(X) . 0, or

wðXÞ[ Pr
� Z

g


X9
�
dX9.0

	
¼ lim

t/N
fðX; t ¼ tÞ: (A8)

In other words, w(X) is simply the fixation probability of a new lineage founded by a single individual with fitness X at time
t = 0. Similar derivations of Equation A8 can be found in Good et al. (2012) and Fisher (2013), although we will sometimes
require the more general expression in Equation A7.

Within our mean-field approximation, the fixation probability, pfix(s), for a new mutation with fitness effect s can be
obtained by averaging over the fitness backgrounds that the mutation could have arisen on. By construction, this distribution
of backgrounds is simply f(X), so that

pfixðsÞ ¼
Z

f ðX2 sÞw ðXÞ dX: (A9)

We must then match the “microscopic” dynamics of pfix(s) with the deterministic solution for f(X, t) to obtain a self-consistent
description of the evolutionary dynamics (Hallatschek 2011; Neher et al. 2010; Neher and Shraiman 2011; Good et al. 2012;
Fisher 2013). We carry out this procedure for several simple cases below.

Appendix B: Zeroth-Order Solution Without Deleterious Mutations

In this section, we review the solution of the mean-field model in the absence of deleterious mutations (Ud = 0). This
“zeroth-order” solution forms the basis of the perturbative analysis described in the text. Mirroring our discussion in the text,
we distinguish between the rare driver regime and the multiple-driver regime.

Rare Driver Mutations

When driver mutations are rare [also known as the successional mutations or strong selection–weak mutation (SSWM) regime
(Desai and Fisher 2007)], multiple beneficial mutations rarely segregate in the population at the same time. We can
therefore neglect the mutation terms in the mean-field approximation in Equations A3a and A6. When a beneficial mutation
arises, the population is fixed for a single genotype, which (without loss of generality) can be assumed to have fitness X = 0.
In other words, the deterministic solution for the fitness distribution is simply f(X, t) � d(X). The differential equation for
u(X, t) in Equation A6 reduces to

2@tf � XfðXÞ2fðXÞ2
2

; (B1)

from which we can obtain the long-term solution for the fixation probability,
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wðXÞ ¼ lim
t/N

fðX; tÞ ¼
�
2X if   X. 0;
0 if   X, 0:

(B2)

Given w(X), the fixation probability of a new mutation trivially follows from Equation A9,

pfixðsÞ �
�
2s if   s. 0;
0 if   s ¼ 0;

(B3)

which we immediately recognize as the large-N limit of the single-locus fixation probability, pfix(s) = 2s/(1 2 e22Ns). The
beneficial substitution rate is therefore given by Rb = 2NUbsb. For this solution to be self-consistent, we require that no new
beneficial mutations establish during the fixation time of the driver, Tfix ¼ ð2=sbÞlogð2NsbÞ; or

Rb � Tfix ¼ 4NUb log ð2NsbÞ � 1: (B4)

This also implies that Rb � sb.

Multiple-Driver Mutations

In large populations, the rare driver condition in Equation B4 breaks down and multiple beneficial mutations will segregate
in the population at the same time. In this case, the mean-field fitness distribution is no longer a d-function (with discrete
jumps when drivers fix), but rather an extended traveling wave f(X, t) = f(X 2 vt) that steadily increases in fitness at rate v.
Without loss of generality, we can assume that the mean fitness of the population is zero when the new mutation arises. Then
we can change variables to the relative fitness, x[X2XðtÞ � X2 vt; so that Equations A3a and A6 become

2v@x fðxÞ ¼ xfðxÞ þ Ub

Z
ds  rbðsÞ½ f ðx2 sÞ2 f ðxÞ�; (B5a)

v@ xwðxÞ ¼ xwðxÞ þ Ub

Z
ds  rbðsÞ½wðx þ sÞ2wðxÞ�2wðxÞ2

2
; (B5b)

with pfixðsÞ ¼
R
f ðx2 sÞwðxÞdx; as described in the text. For this solution to be self-consistent, we require that pfix(0) � 1/N;

i.e., exactly one individual from the current population will become a future common ancestor (Hallatschek 2011; Good et al.
2012; Fisher 2013). This serves to completely determine v, f(x) and w(x) as a function of N and Ubrb(s). There are many
different regimes to consider (see Fisher 2013 for additional discussion), but we focus on a particular case that is relevant for
many microbial evolution experiments. We assume that the typical background fitness of a successful driver is much larger
than the standard deviation of the fitness distribution (xbg � s). This ensures that there is a substantial amount of clonal
interference in the population, which is consistent with the empirical observation that the fates of drivers strongly depend on
background fitness (Lang et al. 2013). Second, we assume that the fitness effect of a typical driver is also much larger than
the standard deviation of the fitness distribution ðs*b � sÞ: This ensures that there is not too much clonal interference in the
population and is consistent with direct measurements of the fitness distribution (Desai et al. 2007) and forward-time
simulations, using parameters inferred from marker divergence experiments (Frenkel et al. 2014). In terms of the underlying
parameters, these two conditions apply whenever logðNs*bÞ � logðs*b=U*

bÞ � log1=2ðNs*bÞ � 1 (Desai and Fisher 2007; Fisher
2013).

Assuming that these two conditions are met, we can use the approximate solution to Equation B5 derived in Good et al.
(2012). This earlier work focused on the rate of adaptation and the distribution of fixed beneficial mutations, which were
relatively insensitive to the approximate forms of f(x) and w(x) that we employed. In contrast, the perturbative analysis
described in the text is much more sensitive to the precise details of our approximation scheme. Fortunately, we can obtain
a suitable generalization of the analysis in Good et al. (2012) by enforcing a basic symmetry constraint: we demand that the
approximate expression for w(x) varies self-consistently under infinitesimal boosts (i.e., changes in v) and translations
(changes in X). The resulting solution will still be incorrect in several key ways (see Fisher 2013 for additional discussion),
but it will be sufficient to calculate the leading-order corrections from deleterious mutations at the level of approximation
required here.

When s*b � s; the contributions from the mutation terms in Equation B5 are small for most of the relevant fitnesses. For
sufficiently large x, the fixation probability satisfies the reduced equation

v@xwðxÞ � xwðxÞ2wðxÞ2
2

; (B6)
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which has the solution

wðxÞ ¼ 2xceðx22x2c Þ=2v
1þ ðxc=xÞeðx22x2c Þ=2v �

�
2x if   x. xc;

2xceðx22x2c Þ=2v if   x, xc:
(B7)

Here, xc �
ffiffiffi
v

p
is a constant of integration that must be set to ensure that w(x) matches onto the correct branch of the

solution for smaller x. The solution in Equation B7 has a characteristic “shoulder” shape. For x2 xc � v=xc; the fixation
probability saturates to the Haldane limit w(x) � 2x, which reflects a dominant balance between the selection [xw(x)] and
drift [w(x)2/2] terms in Equation B6. In this regime, a new mutation will fix provided that it survives genetic drift (Good
et al. 2012). For xc 2 x � v=xc; the fixation probability is rapidly reduced due to clonal interference, which reflects a dom-
inant balance between the selection [xw(x)] and mean fitness [v@xw(x)] terms in Equation B6. In this regime, a new
mutation will fix only if it can generate further beneficial mutations to outrun the steady increase in the mean fitness.
The width of the crossover between these two regimes is of order v/xc, which becomes increasingly sharp in the limit that
xc �

ffiffiffi
v

p
:

Since the fixation probability must vanish when x / 2N, it is clear that the shoulder solution breaks down for smaller
values of x where the effects of “lucky” beneficial mutations become important. In this regime, w(x) will depend rather
sensitively on the precise shape of the DFE, since a mutation will survive only if it is rescued by an usually large driver
mutation. Yet by definition, successful mutations that land in this regime are atypical and represent a small fraction of all
substitutions. We therefore introduce a negligible amount of error by assuming that w(x) vanishes below a certain threshold,
so that

wðxÞ ¼
8<
:

2x if   x. xc;
2xceðx22x2c Þ=2v0 if   xmin, x, xc;
0 else:

(B8)

Note that the functional form of Equation 14 is independent of Ubrb(s), which enters only through location of xmin and xc. In
Good et al. (2012), we had previously assumed that xmin � 0, but if taken literally, this leads to the pathological behavior
pointed out by Fisher (2013). For the present analysis, we assume only that xc 2 xmin≲s*b; which is sufficient to ensure that xmin

drops out of the analysis in Good et al. (2012). The precise value of xmin is set by the symmetry considerations below. As
described in Good et al. (2012), the location of xc can be obtained from an integral transform of Equation B5b, which reduces to

Ub

Z
dx
Z

ds  rbðsÞe2ððx2sbÞ2=2v0ÞwðxÞ �
Z

dx   e2ðx2=2v0ÞwðxÞ2
2

in the limit that xc 2 s*b �
ffiffiffi
v

p
and s*b �

ffiffiffi
v

p
: To satisfy the symmetry constraints below, we need to introduce an O(1) “fudge

factor” F, so that this relation is instead given by

Ub

Z
dx
Z

ds  rbðsÞe2ððx2sbÞ2=2v0ÞUbwðxÞ � F
Z

dx   e2ðx2=2v0ÞwðxÞ2
2

: (B9)

Then we can substitute our approximate expression for w(x) from Equation B8 and evaluate the integrals to obtain a con-
dition for xc,

1 ¼ U*
b

2Fs*b

"
12

s*b
xc

#21

excs
*
b


v2s*

2
b


2v; (B10)

where the effective selection coefficient and mutation rate are given by Equation 24 in the main text. Together, these
expressions completely determine w(x) as a function of v and Ubrb(s).

An approximate expression for the fitness distribution can be obtained in a similar manner. Ignoring the mutation term,
f(x) satisfies the reduced equation2@xf(x) = xf(x), which has a simple Gaussian solution with mean zero and variance s2 = v.
This solution is valid for fitnesses up to x � xc, after which the input from the mutation term causes f(x) to rapidly approach
zero and eventually turn negative (Rouzine et al. 2008; Goyal et al. 2012; Fisher 2013). This is an artifact of our mean-field
approximation, which neglects the increasingly important effects of drift near x � xc. However, like the behavior of the
fixation probability for x � xmin, mutations that originate from x � xc are highly atypical (since they rely on a chance
fluctuation of the fitness distribution) and therefore constitute a relatively small fraction of all substitutions. We therefore
introduce a negligible amount of error by assuming that f(x) vanishes above xc, so that
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f ðxÞ �

8><
>:

0 if   x. xc;

1ffiffiffiffiffiffiffiffiffi
2pv

p e2x2=2pv if   x, xc:
(B11)

Then we can substitute our approximate expressions for f(x) and w(x) into the consistency condition pð0Þ[ R
f ðxÞwðxÞdx � 1=N

and obtain a second relation,

1 ¼ 2Nx cðxc 2 xminÞffiffiffiffiffiffiffiffiffi
2pv

p e2ðx2c=2vÞ; (B12)

which uniquely determines v as a function of N and Ubr(s).
To determine xmin and F, we enforce a symmetry constraint on our approximate solution for w(x). Specifically, we assume

that under infinitesimal boosts and translations, we should get the same expression for w(x) whether we expand our
approximate solution or solve Equation B5b perturbatively. Although this may seem like an abstract requirement, these
symmetry transformations turn out to be intimately related to the sd / 0 and sd / N limits of the full deleterious model.

First, suppose that we perform an infinitesimal boost by perturbing v = v0(1 + e), with e� 1. This is equivalent to adding
an additional term ev0@xw(x) to the left-hand side of Equation B5b. According to our analysis above, the nonperturbative
solution is

wðxÞ ¼
(

2 x if   x. xcð1þ dÞ;
2x cð1þ dxÞeðx22x2c ð1þdxÞ2Þ=2v0ð1þeÞ if   x, xcð1þ dxÞ;

(B13)

where dx and (and the corresponding ds and dU) are defined by

1 ¼ U*
bð1þ dUÞ

2Fs*bð1þ dsÞ

"
12

s*bð1þ dsÞ
xcð1þ dxÞ

#21

excs
*
bð1þdxÞð1þdsÞ


v0ð1þeÞ2s*

2
b ð1þdsÞ2


2v0ð1þeÞ; (B14a)

s*bð1þ dsÞ ¼ xcð1þ dxÞ þ v0ð1þ eÞ@s log rb

h
s*bð1þ dsÞ

i
; (B14b)

U*
bð1þ dUÞ ¼ Ubrb

h
s*bð1þ dsÞ

i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pv0ð1þ eÞ

12 v0ð1þ eÞ@2s rb
�
s*bð1þ dsÞ

�
s

: (B14c)

From the definition of s*b; there are no contributions to dx from ds and dU to lowest order in e, which shows that

dx �
 
12

s*b
2xc

!
e; (B15)

and

wðxÞ �

8>>>>>>>><
>>>>>>>>:

w0ðxÞ if   x. xc

"
1þ

 
12

s*b
2xc

!
e

#
;

xceðx22x2c Þ=2v0 þOðeÞ if   xc, x, xc

"
1þ

 
12

s*b
2xc

!
e

#
;

w0ðxÞ½1þ egðxÞ� if   x, xc;

(B16)

where we have defined gðxÞ ¼ 2 ðx2=2v0Þ2 ðx2c =2v0Þð12 s*b=xcÞ: Then for any test function z(x), we have

Z
zðxÞwðxÞdx ¼

Z
zðxÞw0ðxÞdx þ e

Z xc

2N
zðxÞgðxÞ þ

Z xcþ excð12s*b=2xcÞ
xc

hðxÞ
h
2xceðx22x2c Þ=2v0 2 2x þOðeÞ

i
d x;

¼
Z

zðxÞw0ðxÞdx þ e

Z xc

2N
zðxÞgðxÞ þ O� e2�; (B17)
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and we see that the contribution from the nonperturbative boundary layer between xc and xc þ excð12 s*b=2xcÞ vanishes to
lowest order in e. Thus, by solving Equation B5b and then expanding, we find that

wðxÞ �

8>><
>>:

w0ðxÞ½12 e � 0� if   x. xc;

w0ðxÞ
"
12 e

 
x2

2v0
þ x2c
2v0

 
12

s*b
xc

!!#
if   x, xc:

(B18)

Now we try to obtain this solution by expanding Equation B5b in powers of e and solving perturbatively. To that end, we
rewrite w(x) in the form w(x) = w0(x)[1 + eg(x)], which yields a related equation for g(x):

@ x gðxÞ ¼ 2 @x log w0ðxÞ2w0ðxÞgðxÞ
2v0

þ Ub

v0

�
w0ðx þ sÞgðx þ sÞ

w0ðxÞ 2 gðxÞ
	
: (B19)

We can solve this equation using the same approximation methods that we used for Equation B5b above. For x � xc, the
mutation and mean fitness terms can be ignored, and we have

gðxÞ ¼ 2
v0
x2

� 0: (B20)

Meanwhile, for x , xc, the drift and mutation terms can be ignored, and we find that

gðxÞ ¼ 2
x2

2v0
þ C; (B21)

where C is a constant of integration. Since w(x) is continuous at x = xc, it is tempting to fix C by demanding that g(x) is also
continuous at xc, but this would not be correct. We saw in Equation B16 that w(x) develops a nonperturbative boundary layer
between xc and xc þ excð12 s*b=2xcÞ: In this region (which does not contribute to any integrals at leading order), w(x)
changes rapidly to ensure continuity, but the perturbative correction g(x) is not continuous. Instead, we fix C using the
integral transform above that we used to determine xc. This yields the relationZ xc

e2ððx2sbÞ2=2v0Þw0ðxÞgðxÞdx2
Z xc

e2ðx2=2v0Þv0@ xw0ðxÞdx ¼ F
Z xc

e2ðx2=2v0Þw0 ðxÞ2 gðxÞdx; (B22)

which reduces to

gðxcÞ
Z xc

e2ððx2sbÞ2=2v0Þw0ðxÞdx2
Z xc

xmin

x x ce2ðx2c=2v0Þ   dx ¼ 2gðxcÞF
Z xc

e2ðx2=2v0Þw0ðxÞ2 dx; (B23)

and hence

C ¼ x2c
2v0

2
x2c
v0

�
xc2 xmin

sb

�
22 ðxc2 xminÞ=xc

4F
: (B24)

Thus, we see that the perturbative solution matches our previous expression in Equation B18 provided that 
xc2xmin

s*b

!2

2 2

 
xc
s*b

! 
xc2 xmin

s*b

!
þ 2F

 
2xc
s*b

2 1

!
¼ 0: (B25)

This provides one relation between xmin and F and is sufficient to show that xc 2 xmin � Oðs*bÞ:
Now we repeat this analysis for an infinitesimal translation, x/ x2 exc, which is equivalent to adding a2excw(x) term in

Equation B5b. In this case, the nonperturbative solution is

wðxÞ ¼
�
x2 exc if   x. xc þ exc;
xceðx2excÞ2=2v02x2c=2v0 if   x, xc þ exc;

(B26)

which, when expanded to first order in e, yields
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wðxÞ �

8>>>>><
>>>>>:

w0ðxÞ
h
12 e

xc
x

i
if   x. xc þ exc;

xceðx22x2c Þ=2v0 þOðeÞ if   xc, x, xc þ exc;

w0ðxÞ
�
12 e

x x c

v0

	
if   x, xc:

(B27)

Again, the boundary layer does not contribute to any integrals of w(x) at leading order, so we can simply drop it from our
expansion to obtain

wðxÞ �

8>><
>>:

w0ðxÞ
h
12 e


xc
x

�i
if   x. xc;

w0ðxÞ
�
12 e

�
xxc
v0

�	
if   x, xc:

(B28)

We now try to obtain this solution in the opposite order by expanding Equation B5b and solving perturbatively. Defining
w(x) = w0(x)[1 + eg(x)], we see that g(x) satisfies

@ x gðxÞ ¼ 2
xc
v0

2
w0ðxÞgðxÞ

v0
þ Ub

v0

�
w0ðx þ sÞgðx þ sÞ

w0ðxÞ 2 gðxÞ
	
; (B29)

whose solution is simply

gðxÞ ¼

8><
>:

2
xc
x

if   x. xc;

2
xxc
v0

þ C if   x, xc:
(B30)

The constant C is again determined by the integral conditionZ
e2ððx2sbÞ2=2v0Þw0ðxÞgðxÞdx2 xc

Z
e2ðx2=2v0Þw0ðxÞdx ¼ F

Z
e2ðx2=2v0Þw0ðxÞ2 gðxÞ dx; (B31)

which shows that

C ¼ x2c
v0

2
x2c
v0

�
xc 2 xmin

2Fsb

	
: (B32)

This perturbative solution matches our previous expression in Equation B28 if�
xc2 xmin

sb

�
¼ 2F; (B33)

which provides a second relation between xmin and F. Combined with the first relation in Equation B25, this shows that

xmin ¼ xc2 s*b; F ¼ 1
2
: (B34)

This completes our analysis of the zeroth-order solution in the multiple-mutations regime.

The Infinitesimal Limit

In addition to the “strong driver” limit ðs*b �
ffiffiffi
v

p Þ; we can also analyze the behavior of the multiple-driver regime in the
“weak driver” limit ðs*b �

ffiffiffi
v

p Þ: A particularly simple case is the infinitesimal limit, where Ub / N and sb / 0 in such a way
that the product 2D[Ubs2b remains fixed (Tsimring et al. 1996; Cohen et al. 2005; Neher et al. 2010; Hallatschek 2011;
Neher and Shraiman 2011; Neher and Hallatschek 2013; Neher et al. 2013; Good et al. 2014). Since sb / 0, the driver
mutations behave as if they were effectively neutral, so the substitution rate is simply

Rb � Ub: (B35)
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However, the overall evolutionary dynamics are far from neutral. Since we are simultaneously taking Ub / N, there are
enough infinitesimal drivers segregating within the population that the total variance in fitness remains finite. It is straight-
forward to solve for the distribution of fitnesses and the fixation probability in this limit, since the mutation terms in Equation
B5 can be expanded in a Taylor series,

2s2@ x fðxÞ ¼ xfðxÞ þ D@x
2 f ðxÞ; (B36a)

s2@xwðxÞ ¼ xwðxÞ þ D@2xwðxÞ2
wðxÞ2
2

; (B36b)

where s2 = v 2 Us is the variance in fitness within the population. In large populations, w(x) again develops a sharp
boundary layer near x � xc, above which it approaches the Haldane form w(x) � 2x. Below xc, f(x) and w(x) both satisfy
a modified Airy equation, so that

f ðxÞ} e2ðs2x=2DÞAi
�

s4

4D4=3
2

x
D1=3

	
; (B37)

wðxÞ} es
2x=2DAi

�
s4

4D4=3
2

x
D1=3

	
; (B38)

where Ai(z) is the solution to the Airy equation that converges for large z (Hallatschek 2011). The full solution is obtained by
matching w(x) and its derivative at x = xc. For large N, the argument of the Airy function will be close to the first zero, z0 �
22.33 (Fisher 2013). Expanding around this point, we find that

wðxÞ �

8>><
>>:

2x if   x. xc;

2xc

�
s2

2D2=3

�
eðs

2=2DÞðx2xcÞAi

 
xc2 x
D1=3

þ z0 þ 2D2=3

s2

!
else;

(B39)

where the relationship between xc and s2 (i.e., the analogue of Equation 16) is given by

xc � s4

4D
: (B40)

Finally, we can solve for s2 by substituting these expressions into the self-consistency condition p(0) � 1/N, which yields

s2 �
h
24D2log



2ND1=3

�i1=3
(B41)

in the limit of large N (Tsimring et al. 1996; Cohen et al. 2005; Hallatschek 2011).

Appendix C: Leading-Order Corrections from Deleterious Mutations

In this section, we derive the leading-order corrections to Rb and Rd in the presence of deleterious mutations. As with any
perturbative calculation, this will lean heavily on the zeroth-order (Ud = 0) solutions derived in Appendix B, which we denote
using subscripts/superscripts [e.g., R0

b, v0, f0(x)].

Rare Driver Mutations

In the rare driver regime, adaptation is a highly nonequilibrium process, since drivers arise and fix on very different
timescales. Johnson and Barton (2002) have previously investigated the effects of deleterious mutations in this regime
numerically, using the same branching process approximations employed in the present work. Our analysis therefore con-
stitutes a special case of their method, valid in the limit that Ud / 0. By restricting the parameter regime in this way, we
obtain simple analytical formulas for the beneficial and deleterious substitution rates that can be compared to the multiple-
driver regime below.

If we assume that the last successful driver fixed t generations ago, then the leading-order deleterious corrections to f(X, t)
are given by Equation 7 in the main text, which has mean fitness XðtÞ ¼ 2Udð12 e2sdtÞ: When a new driver arises, it creates

Deleterious Passengers 1203



a new subpopulation g(X) that sweeps through the population, provided that it survives genetic drift (see Appendix A). There
are three different types of successful drivers:

1. The driver occurs on an f(0) background and g(sb) survives drift. This is a classic “unburdened” sweep, since the g(sb)
lineage will come to dominate the population. We denote the probability of this event by f(0, t)pfix(0, 0, t).

2. The driver occurs on an f(0) background and g(sb) goes extinct, but not before it creates an additional deleterious
mutation in g(sb 2 sd) that survives drift. The driver mutation is successful, but it carries a deleterious passenger. We
denote the probability of this event by f(0, t)pfix(0, 1, t).

3. The driver occurs on an f(2sd) background and g(sb 2 sd) survives drift, so the deleterious background hitchhikes to
fixation. We denote the probability of this event by f(2sd, t)pfix(1, 1, t).

From our analysis in Appendix A, the fixation probabilities are given by the long-time behavior of f(X, t),

lim
t9/N

f


sb; t ¼ t9

�
¼
�
pfixð0; 0; tÞ þ pfixð0; 1; tÞ if   fðsb2 sd; 0Þ. 0;
pfixð0; 0; tÞ if   fðsb2 sd; 0Þ ¼ 0;

(C1a)

lim
t9/N

f


sb2 sd; t ¼ t9

�
¼ pfixð1; 1; tÞ; (C1b)

where f(X, t) satisfies

2
@fðsbÞ
@t

¼
h
sb2 e2sdðtþt92tÞifðsbÞ þ Udfðsb2 sdÞ2

fðsbÞ2
2

; (C2a)

2
@fðsb2 sdÞ

@t
¼
h
sb2 sd 2Ude

2sdðtþt92tÞifðsb2 sdÞ þ Udfðsb2 2sdÞ2
fðsb2sdÞ2

2
: (C2b)

This system of equations is difficult to solve in general (Johnson and Barton 2002), but they are straightforward to solve
perturbatively in the limit that Ud is small. To that end, we rewrite f(x) in the form fðX; tÞ ¼ f0ðXÞ1þ ðUd=sbÞf1ðXÞ: As
described in Appendix B, the zeroth-order stationary solutions are given by

f0ðsbÞ ¼
�
0
2sb

; f0ðsb2 sdÞ ¼
�
0
2ðsb2 sdÞuðsb2 sdÞ (C3)

and the first-order correction f1(sb, t) satisfies the linearized equation

2@tf1ðsb; tÞ ¼ 2 sbf1ðsb; tÞ2 2Udsbe
2sdðtþt92tÞ þ

�
2Udðsb2 sdÞuðsb2 sdÞ if   fðsb2 sdÞ. 0;
0 if   fðsb2 sdÞ ¼ 0;

(C4)

with the initial condition f1(sb, 0) = 0. This equation can be solved using elementary methods, and we find that

pfixð0; 0; tÞ ¼ 2sb

�
12

Ude2sdt

sb þ sd

�
þO�U2

d
�
; (C5a)

pfixð0; 1; tÞ ¼ 2Ud

�
12

sd
sb

�
uðsb2 sdÞ þ O�U2

d
�
; (C5b)

pfixð1; 1; tÞ ¼ 2ðsb2 sdÞuðsb2 sdÞ þ OðUdÞ: (C5c)

Given these fixation probabilities, successful sweeps arise as an inhomogeneous Poisson process with rate

RðtÞ ¼ NUb½12 f1ðtÞ�pfixð0; 0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R 0ðtÞ

þNUb½12 f1ðtÞ�pfixð0; 1; tÞ þ NUb f1ðtÞpfixð1; 1; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R1ðtÞ

; (C6)

where R1(t) and R0(t) are the rates of burdened and unburdened sweeps, respectively. The average time between sweeps is
given by
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hti ¼
Z N

0
dt  e2

R t

0
dt9  Rðt9Þ ¼ 1

R0b

"
1þ Ud

sb

"
s2b
s2d

þ
 
12

s2b
s2d

!
uðsb2 sdÞ

#
s2d

sb
�
R0
b þ sd

�
#
þO�U2

d
�
; (C7)

and the probability of a deleterious mutation hitchhiking on any given sweep is

ph ¼
Z

dt  R1ðtÞe2
R t

0
dt9R0ðt9ÞþR1ðt9Þ � Ud

2NUbsb þ sd

"
12

�
sd
sb

�2
#
uðsb2 sdÞ þ O�U2

d
�
: (C8)

Thus, the beneficial and deleterious substitution rates are given by

Rb ¼ 1
hti �

8>>><
>>>:

R0b

"
12

Udsd
s2b

sd
R0b þ sd

#
if   sd , sb;

R0b

�
12

Ud

sd

	
if   sd . sb;

(C9a)

Rd ¼ ph
hti �

8>><
>>:

Ud

 
12

s2d
s2b

!
R0b

R0b þ sd
if   sd , sb;

0 if   sd . sb;

(C9b)

in agreement with Equations 9 and 10 in the text.

Multiple-driver mutations

The deleterious corrections in the multiple-driver regime are more straightforward to calculate, since the time dependence of
f(X, t) is already accounted for in the steady-state traveling wave. Substituting Equation 17 into Equations 11 and 12 and
equating powers of Ud/xc, we obtain a set of linearized equations for g(x) and h(x),

@xgðxÞ ¼ h
@ xw0ðxÞ
w0ðxÞ 2

w0ðxÞgðxÞ
2v0

þ
�
xc
v0

��
w0ðx2 sdÞ

w0ðxÞ 2 1
	

þ Ub

v0

Z
ds  rbðsÞ

�
w0ðx þ sÞ g ðx þ sÞ

w0ðxÞ 2 gðxÞ
	
;

(C10a)

@xhðxÞ ¼ h
@ x f0ðxÞ
f0ðxÞ þ

�
xc
v0

��
f0ðx þ sdÞ

f0ðxÞ 2 1
	
þ Ub

v0

Z
ds  rbðsÞ

�
f0ðx2 sÞhðx2 sÞ

f0
2 hðxÞ

	
; (C10b)

where we have defined h ¼ Drb þ ðxcsd=v0ÞDrd: A similar expansion of the consistency condition, pfixð0Þ ¼
R
fðxÞwðxÞdx � 1

N;

yields a third relation,

0 ¼
R
f0ðxÞw0ðxÞgðxÞdxR

f0ðxÞw0ðxÞ
þ
R
f0ðxÞ

�
hðxÞ2

R
f0h
�
w0ðxÞdxR

f0ðxÞw0ðxÞ
; (C11)

which uniquely determines g(x), h(x), and h. To carry out this calculation, it is useful to separate g(x) and h(x) into parts that
depend on h and parts that depend on sd:

gðxÞ ¼ hghðxÞ þ gsðxÞ; hðxÞ ¼ hhhðxÞ þ hsðxÞ; (C12)

where the individual components satisfy

@ xghðxÞ ¼ @ x logw0ðxÞ2w0ðxÞghðxÞ
2v0

þ Ub

v0

Z
ds  rbðsÞ

�
w0ðx þ sÞghðx þ sÞ

w0ðxÞ 2 ghðxÞ
	
; (C13a)

@ xgsðxÞ ¼ 2
w0ðxÞgsðxÞ

2v0
þ xc
v0

�
w0ðx2 sdÞ

w0ðxÞ 2 1
	
þ Ub

v0

Z
ds  rbðsÞ

�
w0ðx þ sÞgsðx þ sÞ

w0ðxÞ 2 gsðxÞ
	
; (C13b)
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@ xhhðxÞ ¼ @x log f0ðxÞ þ Ub

v0

Z
ds  rbðsÞ

�
f0ðx2 sÞhhðx2 sÞ

f0
2 hhðxÞ

	
; (C13c)

@ xhsðxÞ ¼ 2

�
xc
v0

��
f0ðx þ sdÞ

f0ðxÞ 2 1
	
þ Ub

v0

Z
ds  rbðsÞ

�
f0ðx2 sÞhsðx2 sÞ

f0
2 hsðxÞ

	
: (C13d)

Substituting these definitions into the consistency condition in Equation C11, we transform the implicit equation for h into
an explicit formula

h ¼ 2

2
6664
R
f0ðxÞw0ðxÞgsðxÞdxR

f0ðxÞw0ðxÞdx
þ
R
f0ðxÞ
�
hsðxÞ2

R
f0hs

�
w0ðxÞdxR

f0ðxÞw0ðxÞdxR
f0ðxÞw0ðxÞghðxÞdxR

f0ðxÞw0ðxÞdx
þ
R
f0ðxÞ
�
hhðxÞ2

R
f0hh

�
w0ðxÞdxR

f0ðxÞw0ðxÞdx

3
7775: (C14)

We must then simply solve for the g’s and h’s and evaluate the required integrals.
We begin by focusing on gh(x). Here, the solution is identical to the “boost” transformation discussed in Appendix B, with

e ¼ 2 ðUd=xcÞh: Thus, we can immediately conclude that

ghðxÞ ¼

8><
>:

0 if   x. xc;

x2

2v0
þ x2c
2v0

"
12

s*b
xc

#
if   x, xc:

(C15)

Similarly for hh(x), we find that hhðxÞ ¼ 2 ðx2=2v0Þ þ C; and after renormalizing,

hhðxÞ2
Z

f0ðxÞhhðxÞ ¼ 2
x2

2v0
þ 1
2
� 2

x2

2v0
: (C16)

Combining these expressions for gh(x) and hh(x), we can simplify the denominator of Equation C14, so that

h � 2

"R
f0ðxÞw0ðxÞgsðxÞdx

R
f0ðxÞw0ðxÞdx þ

�R
f0ðxÞ

�
hsðxÞ2

R
f0hs

�
w0ðxÞdx

�R
f0ðxÞw0ðxÞdx�

x2c

2v0
��
12 s*b


xc
�

#
: (C17)

Now we turn our attention to gs(x) and hs(x). For the latter, we find that

hsðxÞ ¼ xxc
v0

þ xc
sd
e2ðxsd=v0Þ2ðs2d=2v0Þ þ C; (C18)

and hence after renormalization

hsðxÞ2
Z

f0ðxÞhsðxÞ ¼ xxc
v

2
xc
sd

h
12 e2ðx sd=v0Þ2ðs2d=2v0Þ

i
(C19)

For gs(x), we can neglect the first-derivative term when x . xc, so that

gsðxÞ ¼ 2

xc
x

��
12

w0ðx2 sdÞ
2x

	
: (C20)

Meanwhile, for x , xc we can neglect the w0(x)gs(x) term and obtain gs(x) by direct integration:

gsðxÞ ¼ 2
xxc
v0

2
xc
sd

u


s*b2 sd

�
e2ðsdmaxfx;xc2s*bþsdg=v0Þþs2d=2v0 þ C: (C21)

To solve for C, we return to the same integral transform that we used for the symmetry transformations in Appendix B. For
infinitesimal translations, we already saw that the xxc=v0 terms do not contribute to C in this regime. The remaining terms
yield
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C ¼
h
s*bv0e

2ðx2c=2v0Þ
i21

"
2Ub

R xc
xc2s*b

e2
�
ðx2s*bÞ2

�
2v0w0ðxÞ

xcu
�
s*b2 sd

�
sd

e2ðsdmaxfx; xc2s*bþsdg=v0Þþs2d=2v0

þ
Z xc

xc2s*b

e2ðx2=2v0Þw0ðxÞ2
xcu
�
s*b2 sd

�
sd

e2ðsdmaxfx; xc2s*bþsdg=v0Þþs2d=2v0 þ xc
Z

e2ððxþsdÞ2=2v0Þw0ðxÞ
#
; (C22)

and hence

C�
x2c

v0
�ðRd=UdÞ ¼ 12 u



s*b2 sd

� es
2
d=v0

es
*
bsd=v0 21

!24 21
12 sd=xc

þ


12 s*b

.
xc
�

3

0
@12 e2

�
ðs*b2sdÞ2=v0

�
12 sd


s*b

þ e2
�
ðs*b2sdÞ2=v0

�
2 e2

��
s*

2
b 2sdðs*b2sdÞ

�
v0
�1A
3
5: (C23)

Due to the separation of fitness scales v0=ðxc 2 s*bÞ �
ffiffiffiffiffi
v0

p
and v0=s*b �

ffiffiffiffiffi
v0

p
; we can keep only the zeroth-order terms in

sd=
ffiffiffiffiffi
v0

p � sd=s*b � sd=xc; which yields

C ¼ x2c
v0

Rd
Ud

"
1þ s*b

xc



es

*
bsd=v021

�21
#
: (C24)

Putting all of this together in our expression for h, we see that the xxc/v0 terms from the gs(x) and hs(x) integrals cancel, and
we obtain

h ¼ 2
2v0
x2c

�
12

1
q

�21

C2
xc
sd

þ xc
sdsb

Z xc

xmin

uðxc 2 x2 sdÞe2ðx sd=v0Þ2s2d=2v0   dx

"

2

Z xc

xmin

uðxc2 xmin2 sdÞe2ðsdmaxfx;xminþsdg=v0Þþs2d=2v0   dx

#
;

(C25)

¼ 2
2v0
x2c

�
12

1
q

�21�
C2

xc
sd

2
xc
sb
e2ððxc2sbÞsd=v0Þ2s2d=2v0

	
: (C26)

The last term can be neglected since sd � s*b; and we find that

h ¼ 2
�
12

1
q

�21
"
v0
xcsd

2
Rd
Ud

 
1þ 1

q
e2ðsdsb=v0Þ

12 e2ðsdsb=v0Þ

!#
: (C27)

The Infinitesimal Limit

The leading-order corrections in the infinitesimal limit can be obtained in a similar manner. In this case, however, it makes
more sense to partition the fitness effects into deleterious and infinitesimal components,

UrðsÞ ¼ UiriðsÞ þ Udrdð2sÞ; (C28)

rather than the beneficial/deleterious division in Equation 1. Here, ri(s) can also contain deleterious fitness effects as long
as they are sufficiently close to the infinitesimal limit (Tc|s| � 1). Recall that the mutational diffusion constant
½2D[Ui

R
s2riðsÞds� does not depend on the sign of s, so these results will also apply when the fitness of the population is

declining due to Muller’s ratchet. Provided that Ud � xc, the substitution rate for the remaining deleterious mutations is
given by

Drd �
R xc
2N f ðxÞwðx2 sdÞdxR xc

2N fðxÞwðxÞdx � e2ðs2sd=2DÞ
RN
z0 AiðzÞAi�zþ sd


D1=3

�
RN
z0

AiðzÞ2dz

0
@

1
A � e2ð2 xcsd=s2Þ; (C29)
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where the last approximation captures the interesting dependence in the large-N limit where s2 � D2/3. Neher and
Hallatschek (2013) have recently shown that the coalescent timescale is given by Tc � s2=2xc in this regime, so for fixed
Tc, Equation C29 is identical to Equation 19 derived in the text. In this case, however, we see that

Tc � s2

2xc
� log1=3

�
ND1=3

�
D1=3

; (C30)

which increases weakly with population size. This implies that larger populations will tend to fix fewer and more weakly
deleterious mutations, similar to the behavior in the single-locus case.

To calculate the change in the infinitesimal substitution rate, we must solve for the corrections to w(x) and f(x) in the
same manner as the previous section. In this case, however, we note that the infinitesimal substitution rate formally diverges
in the infinitesimal limit (Ui / N), so the fractional change in Rb is simply

Drb � 0þO
�
xc
Ui

�
: (C31)
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