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ABSTRACT Genetic interactions can strongly influence the fitness effects of individual mutations, yet the impact of these epistatic
interactions on evolutionary dynamics remains poorly understood. Here we investigate the evolutionary role of epistasis over 50,000
generations in a well-studied laboratory evolution experiment in Escherichia coli. The extensive duration of this experiment provides
a unique window into the effects of epistasis during long-term adaptation to a constant environment. Guided by analytical results in
the weak-mutation limit, we develop a computational framework to assess the compatibility of a given epistatic model with the
observed patterns of fitness gain and mutation accumulation through time. We find that a decelerating fitness trajectory alone
provides little power to distinguish between competing models, including those that lack any direct epistatic interactions between
mutations. However, when combined with the mutation trajectory, these observables place strong constraints on the set of possible
models of epistasis, ruling out many existing explanations of the data. Instead, we find that the data are consistent with a “two-epoch”
model of adaptation, in which an initial burst of diminishing-returns epistasis is followed by a steady accumulation of mutations under
a constant distribution of fitness effects. Our results highlight the need for additional DNA sequencing of these populations, as well as
for more sophisticated models of epistasis that are compatible with all of the experimental data.

A central feature of evolutionary adaptation is that the
space of potential innovations can vary with the evolu-

tionary history of a population. Examples are common in the
microbial world: the ability to import a nutrient may be
beneficial only if a mechanism has evolved to utilize it
(Quandt et al. 2014), while a previously advantageous drug
resistance mutation can be rendered obsolete by the acqui-
sition of a second resistance allele (Weinreich et al. 2006).
This capacity for evolutionary feedback is quantified in
terms of epistasis, which measures how the effect of a muta-
tion depends on the genetic background in which it arises.
In principle, epistasis can lead to widespread historical con-
tingency and can fundamentally alter the dynamics of ad-
aptation (Wright 1932; Gould 1989). But in practice, the
long-term evolutionary impact of epistasis remains largely
uncharacterized.

Empirical patterns of epistasis are most commonly mea-
sured using a direct approach (see de Visser and Krug 2014
for a recent review). Candidate mutations are introduced
into a set of genetic backgrounds via crossing or other ge-
netic reconstruction techniques, and the fitnesses of the
reconstructed genotypes are measured using competitive fit-
ness assays or related proxies. These data yield a functional
relationship between the fitness effect of a mutation and its
genetic background, with the traditional pairwise epistasis
emerging as a special case when the backgrounds are single
mutants. We use the term microscopic epistasis to refer to
these measurements, since they track the background depen-
dence of individual mutations. Of course, the precise back-
ground dependence of any given mutation is essentially an
empirical matter: the fitness effects depend on the biological
details of the organism, its environment, and the identities of
the mutations themselves. Empirical estimates of these quan-
tities therefore provide valuable insight into the physiological
and biophysical properties of the organism (Segrè et al. 2005;
St. Onge et al. 2007; Costanzo et al. 2010; Kinney et al. 2010).

With enough reconstructions, one can also obtain in-
formation about the larger-scale structure of the fitness
landscape. For example, one can assess whether interactions
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between mutations are generally antagonistic or synergistic
(Jasnos and Korona 2007) or estimate the prevalence of sign
epistasis (Weinreich et al. 2006) and overall levels of mod-
ularity (Segrè et al. 2005). These questions are typically
quantified using statistical summaries of the microscopic
epistasis (e.g., the distribution of pairwise epistasis values),
which are aggregated over a large ensemble of mutations
and genetic backgrounds. While the biological interpretation of
these statistics is sometimes unclear, they can in principle ex-
hibit regular and generalizable patterns. This makes them po-
tentially amenable to comparison with simple fitness landscape
models, such as Fisher’s geometrical model (Fisher 1930), the
uncorrelated landscape (Kingman 1978; Kauffman and Levin
1987), and the NK landscape (Kauffman and Weinberger
1989). Yet while these statistics are designed to capture global
properties of the fitness landscape, they are still fundamentally
microscopic in nature, since they can be estimated only frommi-
croscopic (i.e., reconstruction-based) measurements. As such,
they suffer from the same throughput limitations as any other
reconstruction-basedmethod, and one can focus only on a small
subset of possible genotypes.

However, an evolving population typically explores a
much larger number of genotypes than are feasible to re-
construct experimentally. The evolutionary dynamics de-
pend on the entire distribution of fitness effects (“the DFE”)
and on how this distribution varies among different genetic
backgrounds. We denote this background-dependent DFE
by rðsj g!Þ : the fraction of mutations with fitness effect s in
genetic background g!: In contrast to the statistics above,
the background dependence of the DFE is a macroscopic
form of epistasis, since it includes no information about the
background dependence of any individual mutation. Like
many macroscopic quantities, there is not a one-to-one corre-
spondence between the underlying microscopic epistasis and
its macroscopic manifestation. For example, one can imagine
a scenario where epistasis changes the identities of beneficial
mutations after every substitution, but in a way that preserves
the overall shape of the DFE. In this case, the widespread
patterns of microscopic epistasis are masked at the macro-
scopic level, and the dynamics of adaptation will be indistin-
guishable from a nonepistatic scenario. At the opposite
extreme, the DFE can change even without any microscopic
epistasis once selection starts to deplete the finite supply of
beneficial mutations. In this case, the dynamics of adaptation
will show signatures of macroscopic epistasis even though
there are no direct interactions between mutations.

Despite the potential importance of macroscopic epistasis
in evolutionary adaptation, it remains less well character-
ized than its microscopic counterpart. In principle, it is
possible to measure the background dependence of the DFE
directly, by assaying the fitness of large libraries of random
mutants (Silander et al. 2007; MacLean et al. 2010; Miller
et al. 2011; Bank et al. 2014). However, such studies suffer
from throughput limitations similar to those of the micro-
scopic approach above. These throughput limitations are
compounded by the fact that the most important changes

in the DFE, from an evolutionary perspective, are often lo-
cated in difficult-to-sample regions such as the high-fitness
tail (Good et al. 2012).

To avoid these issues, a number of studies have focused
on the evolutionary outcomes themselves, associating ob-
served differences in the adaptability of different strains
with differences in the underlying DFE (Burch and Chao
2000; Silander et al. 2007; Barrick et al. 2010; Woods
et al. 2011; Kryazhimskiy et al. 2012, 2014; Perfeito et al.
2014). In principle, this approach offers the greatest sensi-
tivity for detecting relevant differences in the DFE among
related genetic backgrounds. However, it does so by trans-
forming the measurement into an inverse problem: the pat-
terns of macroscopic epistasis must ultimately be inferred
from the dynamics of a few observable quantities (e.g., changes
in fitness over time or across experimental treatments), which
depend on the complex population genetics of an evolving
microbial population (Lang et al. 2013; Frenkel et al. 2014).
Thus, while it is easy to demonstrate the existence of macro-
scopic epistasis with this approach, it is difficult to associate the
observed differences in adaptability with the precise changes in
the underlying DFE. This, in turn, has made it hard to distin-
guish between competing models of epistasis when interpret-
ing the results of these evolution experiments (Frank 2014;
Kryazhimskiy et al. 2014).

In this article, we propose a general framework for
quantifying patterns of macroscopic epistasis from observed
differences in adaptability. We then use this framework to
investigate the role of epistasis in a well-studied laboratory
evolution experiment in Escherichia coli (Wiser et al. 2013). By
analyzing the differences in the dynamics of adaptation through
time, we can make inferences about the changes in the DFE
that have accumulated over the course of the experiment.
These changes constitute the most basic form of epistasis that
arises during adaptation to a constant environment. Similar to
Kryazhimskiy et al. (2009), we focus on two simple summaries
of the dynamics: the competitive fitness and the total number of
genetic changes relative to the ancestor. We use a combination
of theory and numerical simulations to investigate how well
these data are explained by several popular models of macro-
scopic epistasis, including the recently proposed diminishing-
returns model of Wiser et al. (2013). We find that fitness
measurements alone have little power to discriminate between
different models of epistasis, while the addition of genetic in-
formation is sufficient to rule out many existing explanations of
the data. Together, these results highlight the need for more
sophisticated models of macroscopic epistasis that are compat-
ible with all of the experimental data, as well as additional DNA
sequence data to test their predictions.

Results

Fitness and mutation trajectories in the long-term
evolution experiment

In the long-term evolution experiment (LTEE) conducted by
Lenski and collaborators, 12 populations of E. coli were
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founded from a single common ancestor (Lenski et al. 1991)
and propagated in a constant environment for.60,000 gen-
erations (see Wiser et al. 2013 for a recent summary of
experimental details). A central observable quantity is the
fitness of the evolved populations, which can be measured
using competition assays with a marked ancestor. If fi and ff
denote the frequencies of the evolved strain at the beginning
and end of the competition assay, then the (log-)fitness, X, is
given by

X[
1
Dt

log

"
ff

12 ff

12 fi
fi

#
; (1)

where Dt is the duration of the competition in generations.
Note that this definition of fitness differs from the traditional
measure W reported in previous studies of the LTEE. Al-
though the two measures are correlated, Equation 1 pro-
vides a more direct connection to the population genetic
theory described in the following sections.

Using the fitness assays reported in Wiser et al. (2013),
we calculated the fitness defined by Equation 1 for each
population at �40 time points during the first 50,000 gen-
erations of evolution (see Appendix). We plot the fitness
trajectories for the six complete, nonmutator populations
in Figure 1A. Measurement error estimated from replicate
assays is substantial (SE � 3%, Figure 1C), leaving us with
little power to distinguish fluctuations in individual trajec-
tories. Instead, we pool all six populations and focus on the
average fitness trajectory XðtÞ (Figure 1B). Bootstrap resam-
pling from the errors in Figure 1C suggests that the measure-
ment error in XðtÞ is smaller (SE � 1%) and more normally
distributed (Figure 1D). However, even for the average fitness
trajectory, the fluctuations between neighboring time points
still fall within experimental uncertainty, so we can obtain
robust inferences only from long-term trends in the data.

The most striking trend is the pronounced slowdown in
the rate of adaptation during the course of the experiment:
nearly two-thirds of the total fitness occurred during the first
5000 generations of evolution. This deceleration is incon-
sistent with a constant DFE, which would predict that the
average fitness increases linearly with time. Instead, the
slowdown in the rate of adaptation has long been inter-
preted as a signature of diminishing-returns epistasis, consis-
tent with the approach to a fitness plateau (Lenski and
Travisano 1994). Previous work has argued that the shape
of the deceleration is best captured by a logarithmic fitness
trajectory,

XðtÞ ¼ Xc log
�
1þ v0t

Xc

�
; (2)

where v0 gives the initial rate of fitness increase and Xc
controls the severity of the slowdown (Sibani et al. 1998;
Kryazhimskiy et al. 2009; Wiser et al. 2013); the best-fit pa-
rameters are shown in Figure 1B. The shape of this trajectory,
in combination with more precise measurements of the change

in fitness between generations 40,000 and 50,000 (DX, see
inset in Figure 1B), has been used to argue that fitness is still
increasing in the LTEE (Wiser et al. 2013), rather than asymp-
toting to a fitness peak (Lenski and Travisano 1994).

More recent work has tried to use the shape of the fitness
trajectory to make inferences about the underlying model of
epistasis in the LTEE (Kryazhimskiy et al. 2009; Wiser et al.
2013; Frank 2014). However, to truly distinguish between
different models, we must move beyond the simple curve
fitting implied by Equation 2 and postulate a set of concrete
population genetic models that can be used to generate
predictions for XðtÞ: The likelihood of the observed fitness
trajectory can then be written in the form

p
�
Xobsju

�
¼

Z
perr

�
Xobs 2X

�
� pevol

�
Xju

�
d X: (3)

Here, pevolðXjuÞ is the probability distribution of the data
vector ðXðt0Þ; . . .XðtnÞ;DXÞ in the underlying model, which
depends on some set of parameters u, and perrð e!Þ is the
distribution of measurement errors, which we assume to
be independent and normally distributed with variance
serr; X � 1:4% for each time point of XðtÞ (Figure 1) and
serr;DX � 0:4% for DX (Figure 1B, inset). By computing this
likelihood, we can assess the fit of a given model using
standard statistical techniques (see Appendix). In contrast
to the curve-fitting approach of earlier work, this method
correctly accounts for inherent stochasticity of the evolution-
ary process, which can lead to correlated fluctuations in the
observed fitness trajectory. Yet in practice, it is often difficult
to compute the likelihood in Equation 3 because the model
distribution pevolðXjuÞ is unknown. This is largely due to the
large population size of the LTEE (N � 3 3 107), which
makes it difficult to analyze even the simplest population
genetic models (Desai and Fisher 2007). To avoid these
issues, we use computer simulations of the model to obtain
accurate predictions of the fitness trajectory (see Appendix),
computing the approximate-likelihood function as

p
�
Xobsju

�
� 1

n

Xn
i¼1

perr
�
Xobs 2XsimðuÞ;i

�
: (4)

Unfortunately, regardless of the method used for inference,
we will demonstrate that there is little power to distinguish
between different models of epistasis based on the fitness
trajectory alone. As noted by Frank (2014), it is relatively
easy to devise an epistatic model that reproduces the ob-
served fitness trajectory in Figure 1B, and we outline several
specific examples below. Fortunately, the average fitness tra-
jectory is not the only quantity that has been measured in
the LTEE. DNA sequences from a small number of clones are
available for several time points in a subset of the lines
(Barrick et al. 2009; Wielgoss et al. 2011, 2013). Although
these genetic data are more sparse than the fitness measure-
ments, they provide a crucial window into the the molecular
changes responsible for the observed patterns of fitness evo-
lution. In Figure 1B, we plot the average number of genetic
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differences between the ancestor and a set of clones sam-
pled from the nonmutator populations (see Appendix).
When viewed as a function of time, this mutational trajectory
MðtÞ is the natural genetic analog of the average fitness
trajectory XðtÞ: Any evolutionary model that purports to ex-
plain the long-term trends in XðtÞ must also be consistent
with the observed values of MðtÞ: As we will see below, this
turns out to be much more informative than fitting the fitness
trajectory on its own.

The most striking feature of the mutation trajectory in
Figure 1 is the sheer number of mutations that have accu-
mulated during the experiment. Although the full data no
longer support the constant substitution rate observed in the
first 10,000 generations of evolution (Barrick et al. 2009),
the number of mutations in the later portion of the experi-
ment is still much higher than one might expect based on
the fitness trajectory. Roughly half of all mutations accumu-
lated after the first 10,000 generations, when rate of fitness
increase had already slowed substantially. Of course, some
unknown fraction of these mutations are likely to be selec-
tively neutral, as these accumulate continuously at the neu-
tral mutation rate Un (Birky and Walsh 1988). There are no
a priori estimates of Un, but evidence from the synonymous
substitution rate and mutation accumulation lines suggests
that a reasonable upper bound is Utot � 73 1024 (Supporting
Information, File S1). With this estimate, ,30 neutral muta-
tions should have accumulated by generation 40,000, which
suggests that most of the � 60 observed mutations in
Figure 1 are beneficial. In fact, the substitution rate in the first

10,000 generations is so rapid that many of these beneficial
mutations must be segregating in the population at the same
time. Given that the typical fitness effect of a fixed mutation
is at most �10% (Khan et al. 2011), the fixation time of
a successful mutation is much longer than the maximum
possible waiting time between mutations. As a result, these
mutations must compete for fixation within the population—
a process known as clonal interference (Gerrish and Lenski
1998; Desai and Fisher 2007). This will prove to be an im-
portant factor in the theoretical analysis below.

Macroscopic epistasis from a finite genome

Although a decelerating fitness trajectory is a clear signature
of macroscopic epistasis (i.e., a changing DFE), this does not
necessarily imply that microscopic epistasis must be at work.
The DFE can change even in the absence of epistasis pro-
vided that the length of the genome is finite. Given enough
time, the population will eventually exhaust the supply of
beneficial mutations, and the rate of adaptation will slow
substantially. Thus, this nonepistatic scenario offers one of
the simplest possible explanations for the decelerating rate
of adaptation in the LTEE, provided that it can also quanti-
tatively reproduce the trajectories in Figure 1.

In the simplest version of this model, the beneficial DFE
evolves according to the mean-field dynamics,

Lb@ trbðs; tÞ ¼ 2NUbrbðs; tÞ pfixðsÞ; (5)

where Lb is the number of sites and pfix(s) is the fixation
probability of a new mutation. Equation 5 accounts for the

Figure 1 Fitness and mutation
trajectories in the LTEE. (A) Indi-
vidual fitness trajectories for the
six complete, nonmutator popu-
lations analyzed by Wiser et al.
(2013). Each point is the average
of two independent competition
assays, with fitness estimated
from Equation 1. (B) The average
fitness trajectory for the six pop-
ulations in A (green squares),
with 62 SE confidence intervals.
For comparison, the solid line
depicts the logarithmic trajectory
in Equation 2, with estimated
parameters Xc � 4.6 3 1022

and v0 � 7.7 3 1024. The blue
circles depict the average number
of mutations in single clones sam-
pled from the LTEE (see Appen-
dix), with 62 SE confidence
intervals for time points with
more than one sampled popula-
tion. Inset shows independent
measurements of the change in
fitness, DX, between generations

40,000 and 50,000 for the six populations in A (left, circles) and their average (right, square), with 62 SE confidence intervals. (C) The change in fitness
between consecutive time points, pooled across all six populations in A. The black curve shows the empirical distribution of measurement errors, defined
as half of the difference between replicate fitness measurements. (D) The average change in fitness between consecutive time points. The black curve
shows the bootstrapped distribution of measurement errors, obtained by repeatedly averaging six randomly chosen errors from the empirical distribu-
tion in C. The standard deviation of this distribution is serr;X � 1:4%:

180 B. H. Good and M. M. Desai

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-9.pdf


fact that, once a beneficial mutation fixes, a second mutation
at that site is not likely to be beneficial, effectively removing
this site from the beneficial portion of the DFE; the overall
normalization of rb(s, t) will therefore decrease as more
mutations are driven to fixation. The rate of change of the
DFE in Equation 5 is inversely proportional to Lb, and it
vanishes in the limit that Lb / N as expected. In a true
“finite-sites” model, each of the Lb beneficial mutations cor-
responds to a single site in the genome, and the ratio Ub /Lb
is set by the per-site mutation rate m. However, Equation 5
also describes the evolution of the DFE in a generalized
“running out of mutations”model—for example, there could
be Lb genes that are beneficial to knock out or Lb modules to
improve (Tenaillon et al. 2012; Kryazhimskiy et al. 2014). In
these cases, Lb represents the total number of nonredundant
mutations, e.g., the number of genes to knock out, and Ub /
Lb is the target size of each module. Note that this model
assumes that all modules share the same target size; the
variable target size case is treated in more detail in File S1.

Given a solution for the time-dependent DFE in Equation 5,
the expected fitness and mutation trajectories are given by

@tXðtÞ ¼
Z

sNUbrbðs; tÞ pfixðsÞds; (6a)

@tMbðtÞ ¼
Z

NUbrbðs; tÞ pfixðsÞds; (6b)

@tMðtÞ ¼ @tMbðtÞ þ Un: (6c)

Unfortunately, both Equations 5 and 6 are difficult to solve
in general, since the fixation probability also depends on the
DFE (Good et al. 2012). Despite this difficulty, we can gain
considerable qualitative insight by focusing on the strong-
selection, weak-mutation (SSWM) limit, where the fixation
probability is given by Haldane’s formula, pfix(s) � 2s
(Haldane 1927). In this limit, the evolution of the DFE
greatly simplifies, and the distribution of beneficial fitness
effects is given by

rbðs; tÞ ¼ r0ðsÞe22NUbst=Lb ; (7)

where r0(s) is the DFE in the ancestral background. The
average fitness and mutation trajectories can then be
obtained by substituting Equation 7 into Equation 6 and
evaluating the resulting integral. For example, arguments
from extreme value theory suggest that the ancestral DFE
may often be exponential (Gillespie 1984; Orr 2002), which
leads to an average fitness trajectory of the form

XðtÞ ¼ Xc

"
12

�
1þ v0t

2Xc

�22
#
; (8)

where v0 ¼ 2NUb
R
s2r0ðsÞds and Xc ¼ Lb

R
sr0ðsÞds: How-

ever, while this trajectory shares the same qualitative decel-
eration as the data in Figure 1, it predicts a much sharper
deceleration in the adaptation rate than is actually observed

(Figure S1). This shows that for a fixed DFE shape, we will
not always be able to quantitatively reproduce the observed
fitness trajectory with our finite-sites model.

However, the situation changes if we are allowed to
arbitrarily tune the shape of the DFE to match to the
observed fitness trajectory. In particular, we find that the
adaptation rate for the DFE in Equation 7 is proportional to
the Laplace transform of s22r0(s), which leads to an inverse
relation of the form

r0ðsÞ ¼
1

Lbs2
L21f@tXðtÞg

�
2NUbs
Lb

�
: (9)

In other words, we can reproduce a particular fitness
trajectory within our finite-sites model by choosing the
ancestral DFE to match the expression above. Note that
Equation 9 implicitly assumes that the inverse Laplace
transform exists and yields a proper probability distribution.
This places certain constraints on the fitness trajectories that
we can reproduce with this model, e.g., requiring that @tXðtÞ
is monotonically decreasing. The intuitive reason for this
restriction is clear from the definition of the model: exhaust-
ing the supply of beneficial mutations can never lead to an
increasing adaptation rate, no matter how exotic the ances-
tral DFE is. Note, however, that deleterious mutations
(McCandlish et al. 2014a,b), clonal interference (Desai
and Fisher 2007), and the fixation of mutator phenotypes
(Wiser et al. 2013) can complicate this picture considerably.
The other apparent limitation of this model is that the fitness
trajectory must be bounded, since the maximum possible
fitness that can be attained is XðNÞ ¼ Lb

RN
0 sr0ðsÞds: At first

glance, this would seem to preclude the logarithmic trajec-
tory in Equation 2, which has no maximum value. However,
since experimental trajectories are observed only over a fi-
nite time window, 0 # t # tmax, we can always satisfy this
restriction in practice by assuming that XðtmaxÞ � XðNÞ: For
example, the logarithmic fitness trajectory in Equation 2
corresponds to an ancestral DFE of the form

r0ðsÞ}
�
s22e2s=s s.se;
0 s#se;

(10)

where e � Xc /v0tmax is a lower cutoff chosen to maintain
normalization (see File S1). The fitting parameters in Equation
2 are given by Xc = Lbse and v0 = 2NUbes2.

A similar argument shows that we can also reproduce
a given mutation trajectory (subject to the same technical
constraints), provided that the ancestral DFE satisfies

r0ðsÞ ¼
1
Lbs

L21f@tMbðtÞg
�
2NUbs
Lb

�
: (11)

However, while we can fit a broad class of fitness and
mutation trajectories by choosing the appropriate ancestral
DFE, we do not have complete freedom to fit both quantities
at the same time. In the weak mutation limit, the average
fitness and mutation trajectories in our finite-sites model are
related by

The Impact of Macroscopic Epistasis 181

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172460/-/DC1/genetics.114.172460-9.pdf


MbðtÞ ¼ 2N
�
Ub

Lb

�Z t

0

h
XðNÞ2XðtÞ

i
dt   ; (12)

regardless of the choice of ancestral DFE. By choosing r0(s)
to fit the fitness trajectory, we severely constrain the shape
of the mutation trajectory (and vice versa), with only an
overall scale NUb/L that can be tuned to fit the data. For
example, the logarithmic fitness trajectory in Equation 2
implies a constant substitution rate

MbðtÞ �
v0t

2Nhsif ðUb=LbÞ
; (13)

where hsif � s/log(1/e). This linear increase is inconsistent
with the mutation trajectory in Figure 1, which starts to
show deviations from linearity after generation 10,000.

However, a potential caveat with this analysis is that
the mutation trajectory in Equation 13 (and much of the
analysis preceding it) depends on our assumption of the
weak-mutation limit, which requires that NUb � 1. This is
often not self-consistent: in the LTEE, the weak-mutation
analysis typically leads us to infer parameter values that
violate the weak-mutation assumptions. For example, in
the finite-sites model defined by Equation 10, the fitted val-
ues of Xc and v0 in Figure 1 require that NUb $ 3, which
violates the weak-mutation condition used to derive Equa-
tions 10 and 13. Thus, we must turn to our computational
framework to rigorously compare this model with the data.

To do so, we performed a grid search over combinations
of Ub, Lb, and s for the ancestral DFE defined by Equation 10
(File S2). The posterior predictive P-value for the fitness
trajectory is P � 0.9 (x2-test, see Appendix), which shows
that the finite-sites model can still reproduce the observed
fitness trajectory in the presence of clonal interference.
Figure 2 shows the average fitness and mutation trajectories
for all parameters with P . 0.05. The mutation trajectories
also include a best-fit rate of neutral mutations (0 # Un #

Utot 2 Ub), which is fitted to minimize the mean square error
from the observed mutation trajectory. Even with this cor-
rection, the mutation trajectories remain inconsistent with
the data, which allows us to reject the simple finite-sites
model in Equation 5.

Fitness trajectories on an uncorrelated fitness landscape

We next consider an alternative model of macroscopic
epistasis—the uncorrelated fitness landscape—which repre-
sents the opposite limit of the additive finite-genome models
above (Kingman 1978; Gillespie 1984; Kauffman and Levin
1987; Orr 2002). In this model, the fitness of every genotype
is drawn independently from the same distribution f(X). In
our notation, this implies that the DFE is given by

r
�
sj g!

�
¼ f

�
X
�
g!
�
þ s

�
; (14)

where Xð g!Þ denotes the fitness of genotype g!: This uncor-
related landscape contains extensive microscopic epistasis,

with the standard deviation of the pairwise epistasis eij = sij 2
si 2 sj on the same order as si. The fitness effect of a given
mutation is therefore barely heritable. However, much of this
idiosyncratic microscopic epistasis averages out at the level of
the DFE, which depends on the genetic background only
through the fitness Xð g!Þ:

The dynamics of adaptation become particularly simple
when f(X) is exponentially distributed, since the beneficial
portion of the DFE remains exponential (with the same
mean) regardless of the fitness. Instead, epistasis primarily
acts to reduce the beneficial mutation rate via Ub(X ) =
Ube2X/s, where s is the average fitness effect in the ancestral
background. In the weak-mutation limit, this diminishing
mutation rate leads to the same logarithmic fitness trajectory
as Equation 2, with Xc = s and v0 = 4NUbs2 (Kryazhimskiy
et al. 2009). Thus, the fitnesses in Figure 1 can also be repro-
duced in this model of extreme epistasis, in addition to the
purely additive model in Equation 10. However, the corre-
sponding mutation trajectory,

MbðtÞ ¼ log
�
1þ v0t

Xc

�
; (15)

Figure 2 Fitting a finite sites model to the LTEE. (A) Simulated fitness and
mutation trajectories for the ancestral DFE in Equation 10 with e = 33 1024

(solid lines). We have included all simulated combinations of U, s, and Lb
with P . 0.05 and jM=Mobs21j2 , 0:35: Each line is colored according to
the relative error of the mutation trajectory, jM=Mobs21j2; after fitting the
best-fit neutral mutation rate 0 , Un , Utot by least squares. For compar-
ison, we have also included the observed fitness and mutation trajectories
from Figure 1B. (B) The relative error of the mutation trajectory for all sim-
ulated parameter combinations. For each combination of U and s, we plot
the minimum error across all simulated values of Lb, and we have included
only parameter combinations for which P . 0.05.
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contains no free parameters. This form of MbðtÞ implies
a beneficial substitution rate of essentially zero after t �
Xc/v0 generations, which is clearly inconsistent with the
data, both on a curve-fitting level (Figure S2) and in simu-
lation (Figure S3). Thus, while the fitness trajectory is con-
sistent with an uncorrelated landscape, this model is again
unable to reproduce the observed mutation trajectory.

Global fitness-mediated epistasis

The general patterns of macroscopic epistasis in the un-
correlated landscape can also be realized in other models
that have much less microscopic epistasis. For example,
a key simplifying assumption of the uncorrelated landscape
is that the effective beneficial mutation rate depends only on
the fitness of the genetic background and not on its specific
genotype. This leads us to consider a broader class of models
of the form

r
�
sj g!

�
¼ r

�
sjX

�
g!
��

; (16)

where the shape of the DFE is similarly mediated by fitness.
This form of epistasis has been implicated in recent genetic
reconstruction studies (Chou et al. 2011; Khan et al. 2011;
Kryazhimskiy et al. 2014), and it has been hypothesized to de-
scribe the patterns of epistasis in the LTEE as well (Kryazhimskiy
et al. 2009; Wiser et al. 2013). Most of these studies have
focused on an even simpler class of models of the form

rðsjXÞ ¼ f ðXÞ21r0

�
s

fðXÞ
�
; (17)

where the fitness dependence of the DFE is given by a simple
change of scale. We assume by convention that f(0) = 1, so
that r0(s) represents the ancestral DFE. In the weak muta-
tion limit, the fitness trajectories for Equation 17 must sat-
isfy the implicit relation

tðXÞ ¼ 1
v0

Z
0

X dX

f ðXÞ2; (18)

where v0 ¼ 2NUb
RN
0 s2r0ðsÞds ¼ @tXðtÞjt¼0: We can then in-

vert this equation to solve for f(X) as a function of the fitness
trajectory:

f ðXÞ ¼
"
@tXðtÞ

��
t¼X

21ðXÞ
@tXðtÞ

��
t¼0

#1=2
: (19)

Thus, like the finite-sites model above, we can reproduce a
given fitness trajectory with the rescaled DFE in Equation 17
by choosing the correct form for f(X). Note, however, that
Equation 19 implicitly assumes that the right-hand side
exists and is a real-valued function, which is satisfied for
all @tXðtÞ. 0: This is a less restrictive condition than we
found for the finite-sites model in Equation 9, which re-
flects the fact that fitness-mediated epistasis can generate

accelerating as well as decelerating fitness trajectories with
the appropriate choice of f(X).

We can realize this model microscopically by assuming
that fitness effects of individual mutations obey the same
scaling relation,

sðXÞ ¼ s0 f ðXÞ  ; (20)

which allows us to make predictions for microscopic quanti-
ties like the fitness effects of reconstructed strains. However,
there is not complete freedom to choose f(X) in this micro-
scopic model, since the combined effects of a sequence of
mutations must commute with each other. The only rescaling
that satisfies this commutative property is the linear rela-
tion f(X) = 1 2 X/Xc, where Xc represents the global fitness
maximum. In this case, the fitness effect of each mutation is
scaled by the fractional distance to the peak, similar to the
“stick-breaking” model of Nagel et al. (2012). In the weak-
mutation limit, this model reproduces the hyperbolic fit-
ness trajectory

XðtÞ ¼ v0t
�
1þ v0t

Xc

�21

  ; (21)

which has been used to fit the LTEE fitness data in previous
studies (Lenski and Travisano 1994). However, as shown by
Wiser et al. (2013), Equation 21 provides a relatively poor fit
to the observed fitness trajectory (Figure S1), even after
accounting for clonal interference (posterior predictive
P , 1023). This allows us to rule out all microscopic models
of the form in Equation 20.

For other choices of f(X), Equation 17 will hold only in
a statistical sense, with a more complicated pattern of mi-
croscopic epistasis than predicted by Equation 20 (File S1).
Wiser et al. (2013) have shown that the logarithmic fitness
trajectory in Equation 2 can be recovered by setting

f ðXÞ ¼ e2X=2Xc : (22)

However, like the additive and uncorrelated models above,
the mutation trajectory in this case is strongly constrained
by XðtÞ: In the weak mutation limit, the mutation trajecto-
ries for Equation 17 must satisfy

MbðtÞ ¼
1
hsif

Z t

0

h
@tXðtÞjt¼0 � @tXðtÞ

i1=2
dt; (23)

with only an overall scale hsif ¼
R
s2r0ðsÞds=

R
sr0ðsÞds that

can be tuned to fit the data. Note that the shape of r0(s)
remains largely unconstrained by this choice: two beneficial
DFEs with the same hsif can reproduce the same pair of
fitness and mutation trajectories, although the required
value of Ub will be different.

For the logarithmic fitness trajectory in Equation 2, Wiser
et al. (2013) have shown that the corresponding mutation
trajectory grows as a square root of time:
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MbðtÞ ¼
2Xc
hsif

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v0t

Xc

r
2 1

�
: (24)

At first glance, Equation 24 appears to give a decent fit to
the observed mutation trajectory (Figure S2), although it
systematically overestimates the curvature. However, the
best-fit scale hsif � 5% lies in the clonal interference regime,
so we must again turn to our computational framework to
rigorously compare this model with the data.

To do so, we performed a grid search over combinations
of U, s, and Xc for an exponential ancestral DFE, r0(s) }
exp(2s/s), which was the specific generative model proposed
by Wiser et al. (2013). The posterior predictive P-value for
the fitness trajectory is P � 0.9, which shows that the global
diminishing-returns model can still reproduce the observed
fitness trajectory even when NUb . 1. Figure 3A shows the
average fitness and mutation trajectories for all parameters
with P . 0.05. As expected, there is a large “ridge” of pa-
rameter values that reproduce the observed fitness trajec-
tory, but the vast majority of these parameter combinations
are inconsistent with the observed mutation trajectory.
Those parameters with the best estimates of MðtÞ still dis-
play some small systematic errors, underestimating the
number of mutations in the first part of the experiment
and overestimating them later (Figure 3B). The numerical
values of these parameters are also wildly unrealistic, since
they predict that the mutation rate to fitness effects .1% is
more than a quarter of the genomic point mutation rate. In
light of this information, we conclude that the mutation data
are inconsistent with the particular global diminishing-
returns model proposed by Wiser et al. (2013).

However, our findings in the SSWM limit above suggest
that the precise value of the estimated beneficial mutation
rate can dramatically vary with the shape of the ancestral
DFE, while the predictions of Equations 19 and 23 are
insensitive to this choice. Similar insensitivity to the DFE has
been noted in the clonal interference regime as well
(Hegreness et al. 2006; Desai and Fisher 2007; Fogle et al.
2008; Good et al. 2012; Fisher 2013). In accordance with
this intuition, the inferred parameters become more realistic
if we truncate the exponential distribution at smax = 4s,
although the systematic errors in the mutation trajectory
remain (Figure S4). Compared to the finite-sites model
and the uncorrelated landscape above (as well as the orig-
inal Wiser et al. 2013 model), this modified version of the
global diminishing-returns model is the only one that can
plausibly reproduce all of the observed data.

Evidence for two evolutionary epochs

While the discrepancies in the mutation trajectory are too
small to reject the fitness-mediated epistasis model outright,
these systematic errors still suggest that the model defined
by Equation 22 may be missing a key feature of the ex-
periment. This argues for a degree of caution in interpreting
the parameters inferred in Figure 3, particularly far into the
future where the errors in the fitness and mutation trajectories

start to grow larger. Of course, we could continue to postu-
late more elaborate models of epistasis to account for the
mutation trajectory, and with enough additional parameters
this approach is likely to be successful. For example, the
fitness and mutation trajectories can both be reproduced
by generalized finite-sites models where we can tune the
individual target sizes (File S1) or by fitness-mediated epis-
tasis models where the overall mutation rate also depends
on the fitness. But without a biological basis for choosing
among the space of possible models, these additional as-
sumptions are likely to overfit the mutation trajectory and
lead to incorrect predictions for other observables (e.g., ge-
netic diversity or variation among lines). Instead, we focus
on an alternative class of models that are simpler in some
ways, although more complex in others.

Revisiting the original data in Figure 1, we note that we
were initially led to consider models of macroscopic epistasis,
rather than a constant DFE, because of the differences be-
tween the initial part of the experiment (e.g., before genera-
tion 10,000) and the later part of the experiment (e.g., after
generation 10,000). The differences in the rate of adaptation
are so striking that we can clearly rule out a constant DFE
even without a rigorous statistical comparison. In contrast,
the deceleration in the fitness trajectory in the final 40,000
generations of evolution is much less pronounced. This leads
us to consider a simple statistical question: Does the later

Figure 3 Fitting a fitness-mediated epistasis model to the LTEE data.
(A) An analogous version of Fig. 2A constructed for the global diminishing
returns model in Eq. (22) with an exponential ancestral DFE. We have
included all simulated combinations of U, s, and Xc with p . 0.05 and
jM=Mobs 21j2 , 0.1. (B) The analogous version of Fig. 2B. Note the
change in scale for the relative error in the mutation trajectory.
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portion of the experiment actually contain evidence of mac-
roscopic epistasis, or are we simply extrapolating from the
strong deceleration in the early part of the fitness trajectory?

We can frame this statistical question as a model of
epistasis with two evolutionary epochs: an initial “poorly
adapted” phase in the first 10,000 generations followed by
a more “well-adapted” phase for the remaining 40,000 gen-
erations. We do not attempt to model the initial phase, but
instead simply assume that the population is subject to some
complicated and unspecified model of epistasis that generates
the observed data with probability one. This could account for
the fact that the large-effect mutations available at the begin-
ning of the experiment might depend on specific details of the
ancestral strain or other experimental details. After this initial
phase of adaptation is complete, the population enters a sec-
ond phase of evolution with negligible macroscopic epistasis.
In other words, rather than try to fit a single model of a chang-
ing DFE to the whole experiment, we neglect the first 10,000
generations and instead try to fit an evolutionary model with
a constant DFE to the last 40,000 generations of evolution.

Assuming a constant DFE implies that the fitness and
mutation trajectories after generation 10,000 are given by

XðtÞ ¼ v0t þ Xc   ; MðtÞ ¼ R0t þMc   : (25)

This fitness trajectory has the same number of nominal
parameters as the logarithmic curve in Equation 2, although
it is important to remember that Equation 2 carries an im-
plicit functional degree of freedom that was used to obtain
the logarithmic trajectory in the first place. Figure 4 shows
that even on a purely curve-fitting level, the nonepistatic
fitness trajectory is only marginally less accurate than its
epistatic counterpart. We infer an adaptation rate of v0 �
0.2% per 1000 generations and a substitution rate of R0 �
1.1 per 1000 generations. Although this adaptation rate
appears to overestimate the fitness gain after generation
40,000, the more precise fitness assays performed between
generations 40,000 and 50,000 corroborate the 2% increase
(Figure 4, inset). The fitted values of v0 and R0 can be used
to infer the typical fitness effect of a fixed mutation and a
corresponding effective mutation rate based on the relations

seff �
v0
R0

  ; v0 � 2log
	
2Nseff



log2

	
seff

�
Ueff


; (26)

derived in previous theoretical work (Desai and Fisher
2007). For the values of v0 and R0 above, we find a typical
fixed fitness effect of order seff � 2 3 1023 and an effective
mutation rate of order Ueff � 2 3 1026.

However, this discussion has so far been based purely on
curve fitting and not on a specific generative model of the
dynamics. Using our computational framework, we can
evaluate the fit of the two-epoch model more rigorously. To
do so, we performed a grid search over combinations of U, s,
and Xc for a truncated exponential distribution (smax = 4s).
Recall that there is little power to infer the shape of the DFE

in this model; we chose the truncated exponential distribu-
tion because its parameters can be directly compared to the
best-fit diminishing-returns model in Equation 22. We find
that the best nonepistatic models are statistically consistent
with the observed fitness trajectory (P � 0.9; x2-test) and
provide only a marginally worse fit than the diminishing-
returns models above (D log L , 23). Moreover, this dif-
ference in likelihood vanishes completely if we restrict our
attention to the last 35,000 generations of the experiment
rather than the last 40,000. Together, these results suggest
that there is limited evidence for macroscopic epistasis in the
later portion of the LTEE based on the currently available
data.

Discussion

Genetic reconstructions provide numerous examples of
interactions between the fitness effects of individual muta-
tions. The existence of these interactions is hardly surpris-
ing, given the physiological and developmental complexity

Figure 4 Fitting a nonepistatic model to the last 40,000 generations of
evolution. (A) The average fitness and mutation trajectories from Figure 1B,
along with the predictions of the nonepistatic curve in Equation (25) (solid
lines). The estimated parameters are v0 � 1.9 3 1026 and R0 � 1.1 3
1023. For comparison, the best-fit logarithmic trajectory from Equation 2
is shown by the dashed line. Inset shows predictions for the average
change in fitness between generations 40,000 and 50,000 (lines) com-
pared to the independent measurement from the inset in Figure 1B
(square). (B) The likelihood of the fitness trajectory for a constant, expo-
nential DFE truncated at smax � 4s, with a y intercept fitted using max-
imum likelihood. We have included only parameters whose substitution
rates are consistent with the observed mutation trajectory ðR0 2Utot #

@tMb #R0Þ:

The Impact of Macroscopic Epistasis 185



of most organisms. However, the evolutionary implications
of these interactions remain controversial. In this study, we
used longitudinal data from a long-term evolution experi-
ment in E. coli to investigate the evolutionary influence of
epistasis in a simple empirical setting. We focused on two
basic questions: (1) How do naturally occurring patterns of
epistasis alter the rate of fitness increase and the accumula-
tion of new mutations in a constant environment? And (2)
what are the simplest models of epistasis that are consistent
with the observed data?

The first of these questions is largely descriptive and has
been the focus of previous work in this experimental system
and many others (Lenski and Travisano 1994; Wichman et al.
1999; Silander et al. 2007; Barrick et al. 2009; Kryazhimskiy
et al. 2012, 2014; Wiser et al. 2013; Perfeito et al. 2014).
The latter question, in contrast, demands a quantitative ap-
proach and must account for the fact that the underlying
model of epistasis can be observed only through the filter of
population genetic stochasticity and measurement error. In
this study, we developed a computational framework to ac-
count for these confounding factors, which allows us to
quantify the consistency of a predicted fitness trajectory using
well-established statistical tools. Combined with analytical
results in the weak-mutation limit, we used this framework
to investigate the compatibility of several popular models of
epistasis.

We found that the shape of a decelerating fitness
trajectory on its own provides little power to distinguish
between different models of epistasis, including finite-sites
models that lack any direct interactions between mutations.
This suggests that the underlying “symmetry group” or uni-
versality class for this observable may be quite large (Frank
2014), which could potentially explain why previous studies
have been so successful at fitting the LTEE fitness trajectory
with simple epistatic models (Sibani et al. 1998; Wiser et al.
2013; Frank 2014). However, this symmetry is broken as
soon as we include information about the number of muta-
tions that have accumulated, and the combination of fitness
and genetic data places much stronger constraints on the set
of possible models. Of the simple two- and three-parameter
models considered here, we found that a variant of the
global diminishing-returns model proposed by Wiser et al.
(2013) provides the best fit to the observed data, although
certain systematic errors still remain. These systematic
errors, combined with the weak diminishing-returns signal
in the first five mutations in the Ara21 population (File S1),
suggest a degree of caution in interpreting the support for
this model.

Instead, we find that the data are equally well explained
by a two-epoch model of adaptation, in which an initial
burst of macroscopic epistasis is followed by a steady
accumulation of mutations under a constant DFE. Although
this model offers no insight into the initial (presumably
idiosyncratic) phase of adaptation, it provides a more
parsimonious explanation for the dynamics in the latter
phase of the experiment. Moreover, given that this second

phase accounts for three-quarters of the present duration of
the LTEE and more than half of the accumulated mutations,
it could be argued that it provides a better description of the
“typical” dynamics of adaptation in a constant environment
than the initial, epistatic phase of the adaptive walk. Under
this hypothesis, the widespread diminishing-returns epista-
sis observed in other experimental systems may simply be
a reflection of their comparatively brief duration.

In light of this speculation, it is worth commenting on the
population genetic parameters estimated in the second,
slower phase of the LTEE. When faced with a constant
environment, it is natural to expect that a population will
eventually enter a slower phase of adaptation once the most
obvious beneficial mutations are exhausted. However, this
steady state is usually assumed to have a negligible bene-
ficial mutation rate and correspondingly simple evolutionary
dynamics. In contrast, the scaled mutation rates that we
estimate for the LTEE are surprisingly large (NU � 10–100)
and are comparable to rapidly evolving laboratory yeast pop-
ulations near the beginning of their adaptive walk (Frenkel
et al. 2014). Although the fitness effects of these mutations
(s � 0.1%) fall below the resolution limit of most fitness
assays, the effective population size is large enough that
the scaled selection strengths are quite large from a popula-
tion genetic standpoint (Ns ≳ 104). Interestingly, these
scaled beneficial mutation rates and selection strengths are
sufficiently large that deleterious mutations are expected to
have a negligible influence on the rate of adaptation (Good
and Desai 2014). [We also note that extrapolating these
estimates to the mutator lines would suggest that the de-
clining mutation rate observed in Ara-1 (Wielgoss et al.
2013) may involve selection for more than just a reduced
deleterious load.]

Together, these estimates suggest that even the “slow”

phase of the LTEE is characterized by rapid adaptation, in
which multiple beneficial mutations compete for fixation at
the same time. These dynamics are illustrated by the simu-
lated mutation trajectories in Figure S6, which display an
even greater amount of hitchhiking and clonal interference
than similar trajectories measured in a recent evolution ex-
periment in yeast (Lang et al. 2013). However, since the
individual fitness effects are an order of magnitude smaller,
the competition between beneficial mutations occurs over
a much longer timescale than is normally observed in exper-
imental evolution. For example, it is not uncommon to find
a beneficial mutation that persists for thousands of genera-
tions at intermediate frequencies before it accumulates
enough additional mutations to sweep to fixation. These
transiently stable polymorphisms would suggest adaptive
radiation or frequency-dependent selection on a more tradi-
tional experimental timescale (e.g.,,2000 generations), but
they arise here as a natural consequence of the population
genetic process.

Of course, the preceding discussion should be treated
with a degree of caution, since our present estimates are
based on a limited number of clone sequences and relatively
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noisy fitness measurements. It is possible that additional
data would indicate a departure from the constant adapta-
tion rate in the second phase of the experiment or reverse
some of the systematic errors of the global diminishing-
returns model. Moreover, even perfectly resolved fitness and
mutation trajectories will likely be consistent with more
than one evolutionary model, just as a perfectly resolved
fitness trajectory is consistent with multiple mutation trajec-
tories. Our estimates should therefore be viewed as merely
consistent with the available data, rather than strongly
supported by them. Nevertheless, our results demonstrate
that an easy-to-measure genetic observable such as the
mutation trajectory can greatly restrict the set of models
that are consistent with a measured fitness trajectory. Additional
information about the genetic diversity within the popula-
tion (e.g., measured from pairwise heterozygosity among
clones) will likely provide even more power to distinguish
between competing hypotheses. The computational frame-
work developed here provides a powerful and flexible method
for incorporating this genetic information as it becomes
available.
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Appendix

Fitness Trajectories

The finesses of the LTEE strains were calculated from Equation 1, using the raw competition assays reported by Wiser et al.
(2013). The quantity f/(1 2 f) was estimated from the ratio of red and white colonies when plated on arabinose media, and
the duration of each competition was Dt = log2(100) � 6.6 generations. The fitness gains between generations 40,000 and
50,000 were calculated in a similar manner, but with a longer competition time of Dt = 3 log2(100) � 19.9 generations.
Subsequent analysis of the fitness trajectory was restricted to the six nonmutator populations with complete fitness measure-
ments: Ara25, Ara26, Ara+1, Ara+2, Ara+4, and Ara+5 (Wiser et al. 2013). These populations were chosen because they
have complete fitness trajectories that can be reasonably expected to evolve under the same population genetic model.
Notably, this subset excludes both the citrate-metabolizing population (Ara23) studied by Blount et al. (2008) and the
crossfeeding population (Ara22) studied by Rozen and Lenski (2000).

Fitness Effects of Individual Mutations

The fitness effects of the five mutations in Figure S5 were calculated from the raw competition assays reported by Khan et al.
(2011). The fitness effect s was defined as the difference between the fitnesses of the mutant and background genotypes,
which were estimated from the competition assays using the same procedure as above.

The Mutation Trajectory

The total number of genetic changes was estimated from the DNA sequences of clones analyzed by Barrick et al. (2009) and
Wielgoss et al. (2011). The finalized mutation calls for the clones in Barrick et al. (2009) were obtained from supplementary
tables 1 and 2 of that work, and the mutation calls for the clones in Wielgoss et al. (2011) were obtained from the
supplementary data files available at http://barricklab.org/twiki/pub/Lab/SupplementLongTermMutationRates/long-
term_mutation_rates.zip. To obtain a more densely sampled mutation trajectory, we included clones from populations that
were excluded from the fitness trajectory analysis above. This includes seven clones sampled from the Ara21 population
prior to the spread of the mutator phenotype and two clones sampled from the Ara23 population prior to the spread of the
citrate-metabolizing phenotype. The complete list of included clones is given in Table S1.

Population Genetic Simulations

Simulated fitness and mutation trajectories were obtained from a forward-time algorithm designed to mimic the serial
transfer protocol of the LTEE. Between each transfer, lineages are assumed to expand clonally for log2(100) � 6.64 gen-
erations at a deterministic exponential growth rate r = r0 + X, where X is the fitness relative to the ancestor. At the transfer
step, the population is diluted 100-fold (with Poisson sampling noise) to Nb = 5 3 106 individuals. Mutations accumulate at
a constant rate U during the growth phase, but we assumed that they do not significantly influence the fitness of the
individual until the next transfer cycle. Thus, mutation was approximated by assuming that each individual has a probability
6.64 � U of gaining a mutation at the end of a transfer step, with additive fitness effects drawn from the genotype-specific
DFE, rðsj g!Þ: For the finite-sites model, a discrete ancestral DFE was initialized by drawing L fitness effects from the
continuous distribution r0(s), with the same realization shared across replicate lines. A copy of our implementation is
available at https://github.com/benjaminhgood/ltee_inference.

Likelihood Estimation

The likelihood of each parameter combination was estimated from simulations, using Equation 4. To speed computation, we
simulated 18 replicate populations and generated n = 10,000 different 6-population averages by bootstrap resampling. The
scaled likelihood L, which differs from pðXobs;DXobsjuÞ by a constant factor, was defined as

L[
Xn
i¼1

exp

"
2

P
ftkgðXobsðtkÞ2XiðtkÞÞ2

2s2
err; X

#
3 exp

"
2
ðDXobs2DXiÞ2

2s2
err;DX

#
; (A1)

where the measurement uncertainties serr; X � 1:4% and serr;DX � 0:4% were estimated from Figure 1.
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Statistical Tests

The consistency of each parameter combination was assessed using a x2 goodness-of-fit test. We simulated 18 replicate
populations to estimate XðtÞ and DX; and we generated n = 10,000 different 6-population averages by bootstrap resampling
these replicates and adding unbiased Gaussian measurement noise with serr; X ¼ 1:4% and serr;DX ¼ 0:4%. The P-value is
then approximated by

Pr
�
x2. x2obs

��u � 1
n

Xn
i¼1

u
	
x2i 2 x2obs



; (A2)

where u(x) is the Heaviside step function and x2
i is the mean square error,

x2i [

P
tkðXiðtkÞ2XðtkÞÞ2

s2
err; X

þ ðDXi2DXÞ2
s2
err;D X

: (A3)

The posterior predictive P-value for the entire model is then defined by

P ¼
R
Pr½x. xobsju� pðXobsjuÞ pðuÞduR

pðXobsjuÞ pðuÞ
du; (A4)

where p(u) is the prior distribution of parameter values.
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SUPPORTING INFORMATION

I. THE NEUTRAL MUTATION RATE

To predict the patterns of fitness and mutation accumulation in the LTEE, our population genetic model utilizes the
key approximation,

Uρ(s) ≈ Unδ(s) + Ubρb(s) , (S1.1)

which partitions the DFE into a set of strongly beneficial “driver” mutations and a collection of nearly neutral
“passengers” (Good and Desai, 2014; Schiffels et al., 2011). By assumption, the driver mutations set the important
evolutionary timescales in the system (e.g., the rate of adaptation and the coalescence timescale), while the passenger
mutations constitute a perturbative correction. In recent theoretical work, we have shown that this approximation is
accurate when the mutation rate is small compared to the relevant fitness differences in the population (Good and
Desai, 2014), which is expected to be the case for the non-mutator lines in the LTEE. Note that as defined above, the
passenger portion of the DFE is comprised not only of truly neutral mutations (|s| . 1/N), but also those mutations
that approach the neutral substitution rate by hitchhiking with the beneficial drivers. As such, Un has an implicit
dependence on both N and Ubρb(s).

Since Un is an effective parameter, it cannot be measured directly. Instead, it must be self-consistently inferred
from the data along with the other model parameters. In principle, this is straightforward: the passenger mutations
do not influence the fitness trajectory by construction, so the neutral mutation rate can be estimated from a regression
of the mutation trajectory residuals, Mobs(t)−M b(t). Nevertheless, we will find it useful to place some crude bounds
on Un, both to limit the range of the regression and to allow for back-of-the-envelope arguments that do not require
the full precision of our computational inference scheme. To establish these bounds, we will make use of the fact that
the neutral mutation rate cannot exceed the total per genome mutation rate or the observed mutation accumulation
rate.

Unlike Un, the total genomic mutation rate is a directly measurable quantity, although these measurements can
be confounded by dependence on the genetic background (Matic et al., 1997), genomic heterogeneity (Lang and
Murray, 2008), and the role of complex mutational events. In previous work, Wielgoss et al. (2011) estimated that
the total point mutation rate in the LTEE strain is approximately Upoint ∼ 4 × 10−4 based on the number of
synonymous mutations that have accumulated over the course of the experiment. A mutation accumulation study
in a different strain of E. coli found that small indels occur approximately an order of magnitude less frequently
than point mutations (Lee et al., 2012), or Uindel ≈ 0.1Upoint. This is comparable to observations in other organisms
such as yeast (Zhu et al., 2014). In comparison, much less is known about the mutation rate for larger indels and
other chromosomal rearrangements, such as those arising from insertion sequence (IS) elements. This uncertainty is
particularly problematic for the LTEE, since these complex mutations constitute a substantial fraction of the observed
mutation trajectory. A recent mutation accumulation study in a different strain of E. coli estimated that the total
rate of IS events in their background is approximately UIS ∼ 3×10−4. In the LTEE lines, ∼ 100 rearrangements were
observed across all twelve populations by generation 40,000 (Raeside et al., 2014), which suggests that the mutation
rate to neutral IS mutations is bounded by UIS,n ≤ 2 × 10−4. However, this is likely to be an overestimate, since
some of these mutations are probably beneficial. For example, in the single population where timecourse information
is available (Ara−1), the accumulation of rearrangements slows significantly after 10,000 generations. If we restrict
our attention to the mutations that have accumulated after generation 10,000, the bound on UIS,n drops to 6× 10−5,
which is more in line with the rate of small indels. Note, however, that all of these estimates are based on extremely
limited data, and are highly susceptible to statistical fluctuations and other ascertainment biases. In the absence of
more precise estimates, we decided to employ the combined bound,

Un ≤ Upoint + Uindel + UIS,n . 7× 10−4 , (S1.2)

with the hope that any underestimation of the rate of complex mutational events is balanced by an overestimation of
the neutral fraction of point mutations.

II. THE “RUNNING OUT OF MUTATIONS” MODEL

In the main text, we analyzed the patterns of fitness and mutation accumulation in a simple “running out of mutations”
model of macroscopic epistasis. Here, we present our model in more detail, and show how the continuum analysis in
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the main text emerges from a model which is fundamentally based on a finite number of sites. In the most general
form of this model, we consider a collection of Lb sites with fitness effects {si}Lbi=1 and target sizes {µi}Lbi=1, from which
we can define a joint distribution of target sizes and fitness effects,

f0(µ, s) =
1

Lb

Lb∑
i=1

δ(µ− µi)δ(s− si) . (S2.1)

Here, f0(µ, s) can be interpreted as the probability density that a randomly drawn site has a target size µ and fitness
effect s. Similarly, the marginal distribution f0(s) =

∫
f0(µ, s) dµ can be interpreted as the probability density that

a randomly drawn site has fitness effect s, independent of the target size. Note that f0(s) differs from the traditional
DFE, ρ0(s), which is the probability density that a randomly drawn mutation has fitness effect s. Since mutations
will be biased towards sites with larger target sizes, the DFE corresponds to the weighted integral,

Ubρ0(s) = Lb

∫
µf0(µ, s) dµ . (S2.2)

So far, our discussion has been purely notational. The content of this model comes from the assumption that, once a
given site has mutated, further mutations at that site are no longer beneficial. For example, after a loss-of-function
mutation in a particular pathway, further loss-of-function mutations in the same pathway are expected to have little
to no effect (s ≈ 0), while the reversion will restore the original function of the gene (s < 0). In the large population
limit, these mutated sites will behave as if they are effectively removed from the beneficial portion of the DFE. Based
on this intuition, we define a collection of indicator variables {Ii(t)}Lbi=1, where Ii(t) = 1 if a mutation at site i has
fixed by time t. We can use these indicator variables to define a time-dependent version of f0(µ, s),

f(µ, s, t) =
1

Lb

Lb∑
i=1

[1− Ii(t)]δ(µ− µi)δ(s− si) , (S2.3)

which satisfies the initial condition f(µ, s, 0) = f0(µ, s). In the SSWM limit, pfix(s) ≈ 2s is independent of f(µ, s, t),
so that the latter evolves as

∂t〈f(µ, s, t)〉 = −2Nµs〈f(µ, s, t)〉 , (S2.4)

or

〈f(µ, s, t)〉 = f0(µ, s)e−2Nµst , (S2.5)

where 〈f(µ, s, t)〉 denotes the expectation value over {Ii(t)}Lbi=1. It is similarly straightforward to show that the average
fitness and mutation trajectories, X(t) =

∑
si〈Ii(t)〉 and M(t) =

∑
〈Ii(t)〉, evolve as

∂tX(t) =

∫
2NLbµs

2e−2Nµstf0(µ, s) dµ ds , (S2.6a)

∂tM b(t) =

∫
2NLbµse

−2Nµstf0(µ, s) dµ ds . (S2.6b)

Thus, our model corresponds to the strong-selection (Ns → ∞) limit of the weak-mutation model analyzed by
McCandlish et al. (2014). We recover Eqs. (5), (6), and (7) in the main text by demanding that all sites have the
same target size µ = Ub/Lb, so that

f0(µ, s) = δ

(
µ− Ub

Lb

)
ρ0(s) . (S2.7)

Note that in the present framework, our pseudo-continuous DFEs exist purely for notational convenience, since the set
of available mutations is always bounded in practice. However, in certain cases it will be computationally convenient
to consider the large Lb limit of these equations, in which sums over discrete numbers of sites are replaced with
integrals over a continuous distribution. We have constructed our notation in such a way that this limit requires no
modification of our equations, with the implicit caveat that we can only consider distributions for which this limit is
well-defined. This excludes pathological cases like heavy-tailed DFEs, which lead to singular dynamics in the Lb � 1
limit.

B. H. Good and M. M. Desai



3

Derivation of Eq. 10

In this section, we show how one can obtain a logarithmic fitness trajectory from a finite sites model with an ancestral
DFE,

ρ0(s) ∝

{
s−2e−s/σ if s > εσ,

0 else,
(S2.8)

where ε is a small parameter. We will make use of the asymptotic expansion

Ip(ε) ≡
∫ ∞
ε

ξ−pe−ξ dξ ∼


ε1−p

p−1 if p > 1,

log
(

1
ε

)
if p = 1,

Γ(1− p) if p < 1.

(S2.9)

The normalizing constant for the DFE is therefore given by

C =
σ∫∞

ε
ξ−2e−ξ dξ

≈ εσ , (S2.10)

and the mean and mean-squared fitness effects are

〈s〉 = εσ

∫ ∞
ε

ξ−1e−ξ dξ ≈ εσ log

(
1

ε

)
, (S2.11)

〈s2〉 = εσ2

∫ ∞
ε

e−ξ dξ ≈ εσ2 . (S2.12)

Substituting Eq. (5) into Eq. (6), we find that the fitness trajectory is given by

∂tX(t) =

∫
2NUbs

2e−2NUst/Lρ0(s) = 2NUbεσ
2

∫ ∞
ε

exp

[
−
(

2NUbσt

L
+ 1

)
ξ

]
dξ ,

≈

(
2NUbεσ

2

1 + 2NUbσt
L

)
e−

2NUbσεt

L , (S2.13)

which yields a logarithmic fitness trajectory

X(t) = (Lσε) log

(
1 +

2NUbεσ
2t

Lσε

)
, (S2.14)

provided that t � L/(2NUbσε). When t ≈ L/(2NUbσε), we have X(t) ≈ X(∞), so we can also write this condition
in the form X(t)� X(∞). Even after fitting Xc = Lσε and v0 = 2NUbεσ

2, there is still sufficient freedom to choose
the parameters so that this condition holds for any finite time tmax or fitness X(tmax).

Heterogeneous target sizes

It is also useful to investigate the consequences of the running out of mutations model when we relax the uniform
target size assumption. This becomes unwieldy in our original DFE notation, but simplifies considerably if we change
variables from the target size µ to the substitution rate R = 2Nµs. From the change of variables theorem, this induces
induces a related joint distribution,

g0(R, s) =
f0(R/2Ns, s)

2Ns
, (S2.15)

which allows us to rewrite the fitness and mutation trajectories in the form

∂tX(t) = Lb

∫
sRe−Rtg0(R, s) dRds = Lb

∫
h(R)Re−Rtg0(R) dR , (S2.16a)

∂tM b(t) = Lb

∫
Re−Rtg0(R, s) dRds = Lb

∫
Re−Rtg0(R) dR . (S2.16b)
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Here, g0(R) =
∫
g0(s,R) ds is the marginal distribution of R and h(R) = g0(R)−1

∫
sg0(R, s) ds is the conditional

mean of s given R. Thus, it is easy to see that for a fixed h(R), the relationship between X(t) and M b(t) is completely
determined. For example, we recover Eq. (12) in the main text when h(R) ∝ R, even if the distribution of target sizes
is not completely uniform. However, it is also clear that if we are allowed to tune h(R) and g0(R) independently, then
it is possible to fit both X(t) and M(t) simultaneously with the inverse Laplace transforms

g0(R) ∝
L−1

{
∂tM b

}
LbR

, (S2.17a)

h(R) ∝ L
−1{∂tX}
L−1{∂tM b}

, (S2.17b)

subject to the same technical restrictions on X(t) and M b(t) that we encountered in the text. See also related results
by (McCandlish et al., 2014), who study similar questions while relaxing the strong selection requirement.

For example, we can reproduce both the fitness and mutation trajectories of the global diminishing returns model
in Eq. (22) by choosing

g0(R) ∝

{
R−3/2e−R/R̃ if R > εR̃ ,

0 else,
(S2.18)

h(R) = s̃

(
R

R̃

)1/2

, (S2.19)

where

R̃ =
2NUb〈s〉〈s〉f

Xc
, c = 〈s〉f , Lb =

2Xc

〈s〉f
√
ε
, (S2.20)

and ε� 1 is a small parameter chosen to maintain normalization. We can achieve this by choosing a joint distribution
for R and s of the form

g0(R, s) ∝

δ
[
s− c

(
R
R̃

)1/2
]
R−3/2e−R/R̃ if R > εR̃,

0 else.
(S2.21)

Switching back to µ and s, we have

f0(µ, s) ∝

(2Ns) · δ
[
s− c

(
2Nsµ

R̃

)1/2
]

(2Nsµ)−3/2e−2Nsµ/R̃ if 2Nsµ > εR̃,

0 else,

∝

{
(2Ns)−1/2 · δ

[
µ− R̃s

2Nc2

]
µ−3/2e−2Nsµ/R̃ if 2Nsµ > εR̃,

0 else,

∝

{
δ
[
µ− Ub〈s〉s

Xcc

]
s−2 exp

[
−
(
s
c

)2]
if s > c

√
ε,

0 else,
(S2.22)

where the normalization factor is

C =
1∫∞

c
√
ε
s−2e−(s/c)2 ds

=
2c∫∞

ε
ξ−3/2e−ξ dξ

= cε1/2 . (S2.23)

In terms of the traditional DFE, ρ0(s), we have

ρ0(s) ∝
∫
µf0(µ, s) dµ ∝

{
s−1e−(s/c)2 if s > c

√
ε,

0 else,
(S2.24)

where the overall mutation rate is given by

Ub = Lb

∫
µf0(µ, s) dµ ds =

LbR̃
√
ε

4Nc

∫ ∞
ε

ξ−1e−ξ dξ ,

≈ v0

2Nc2
log

(
1

ε

)
. (S2.25)
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These expressions show that (within the context of the SSWM limit) the scaling of X(t) and M(t) with NUb cannot
be used to distinguish between the generalized running out of mutations model and the global diminishing returns
model in Eq. (22). However, the time-dependent DFE, ρ(s, t), differs between the two models, which implies that
they still constitute different models of macroscopic epistasis. In principle, these differences can be elucidated by
considering additional observables or by probing the scaling with N and Ub in the clonal interference regime.

III. COMPARISON WITH RECONSTRUCTION DATA

In the main text, we focused on signatures of epistasis in long-term patterns of fitness and mutation accumulation.
Since our inferences were conducted at this aggregate level, it is natural to ask how they relate to more traditional
measures of epistasis derived from the fitness effects of individual mutations. Actual data in this case is somewhat
limited, given the general difficulty of identifying and reconstructing mutations that arose during the course of an
evolution experiment. Fortunately, in the case of the LTEE, a small-scale study was recently carried out by Khan
et al. (2011), who reconstructed all 25 allelic combinations of the first 5 mutations that fixed in the Ara−1 population.
These reconstructions were used to measure the fitness effects of 5 mutations in 16 different genetic backgrounds, and
3 of the 5 mutations showed signatures of diminishing returns epistasis.

One the one hand, it is tempting to apply our global diminishing returns models directly to the full dataset, e.g.,
plotting s(X)/s(0) as a function of X for each of the 5 mutations. Wiser et al. (2013) employed a related method
to support the global diminishing returns model in Eq. (22). However, as we have argued above, we must be careful
when extrapolating from macroscopic models of epistasis to fundamentally microscopic measurements. In particular,
we showed in the text that one cannot define a consistent model of microscopic epistasis where s(X) = s(0)e−X/Xc ,
since this would violate the bookkeeping property (Nagel et al., 2012). Thus, in a technical sense, the dependence of
s(X)/s(0) on X cannot provide additional evidence for the model in Eq. (22).

However, there is one aspect of the reconstruction data that can be used to gauge the support for the class of
macroscopic models in Eq. (17). If global diminishing returns is responsible for the decelerating fitness trajectory
in Fig. 1, then the fitness effects of fixed mutations should decrease along the line of descent, independent of their
effects in other backgrounds. For example, in the SSWM limit, the distribution of fitness effects of fixed mutations
(measured in the background in which they arise) must satisfy the scaling relation,

ρf (s|X) ∝
(

s

f(X)

)
ρ0

(
s

f(X)

)
. (S3.1)

This distribution becomes more complicated in the clonal interference regime, but the scaling with f(X) is approxi-
mately preserved up to logarithmic corrections (Good et al., 2012). In either case, we expect the fitness effects of fixed
mutations to decrease roughly proportionally to f(X). However, the data itself shows no such decrease (Fig. S5). Of
course, this finding should be treated with a degree of caution, since it is based on a sample of five mutations from
ρf (s) with considerable sampling noise. Nevertheless, it implies that there is limited evidence in the Khan et al. (2011)
data to suggest that global diminishing returns is driving the deceleration in the fitness trajectory. As suggested by
Draghi and Plotkin (2013), the stronger diminishing returns signal off the line of descent may reflect ascertainment
biases inherent in any set of fixed mutations.
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Schiffels, S., Szöllösi, G., Mustonen, V., and Lässig, M. 2011. Emergent neutrality in adaptive asexual evolution.
Genetics 189:1361–1375.

Wielgoss, S., Barrick, J. E., Tenaillon, O., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R. E.,
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Generation Clone ID Population Source

2,000 REL1164A Ara−1 Barrick et al. (2009)

5,000 REL2179A Ara−1 Barrick et al. (2009)

10,000 REL4536A Ara−1 Barrick et al. (2009)

15,000 REL7177A Ara−1 Barrick et al. (2009)

20,000 REL8593A Ara−1 Barrick et al. (2009)

REL8593A, REL8593B, REL8593C Ara−1 Wielgoss et al. (2011)

30,000 ZDB16, ZDB357 Ara−3 Wielgoss et al. (2011)

40,000 REL10947, REL10948, REL10949 Ara−5 Wielgoss et al. (2011)

REL11005, REL11006 Ara−6 Wielgoss et al. (2011)

REL11008, REL11009 Ara+1 Wielgoss et al. (2011)

REL10950, REL10951 Ara+2 Wielgoss et al. (2011)

REL10956, REL10957 Ara+4 Wielgoss et al. (2011)

REL10982, REL10983 Ara+5 Wielgoss et al. (2011)

TABLE S1 A list of the clones used to estimate the mutation trajectory in Fig. 1B.

FIG. S1 Comparison of the four analytical fitness trajectories in Eqs. (2), (8), (21), and (25). The best-fit parameters were
obtained by minimizing the mean squared error, and the fit of the linear trajectory in Eq. (25) was restricted to the last 40,000
generations of evolution.

FIG. S2 Comparison of the four analytical mutation trajectories in Eqs. (13), (15), (24), and (25). The best-fit parameters
were obtained by minimizing the mean squared error in the presence of an unknown neutral mutation rate 0 ≤ Un ≤ Utot, and
the fit of the linear trajectory in Eq. (25) was restricted to the last 40,000 generations of evolution.

B. H. Good and M. M. Desai
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FIG. S3 Fitting an uncorrelated landscape model to the LTEE data. An analogous version of Fig. 2 constructed for the
uncorrelated landscape model in Eq. (14) with an exponential ancestral DFE. Note the change in scale for the relative error in
the mutation trajectory. To ensure better convergence of the ensemble mean fitness trajectory, we simulated 100 independent
populations for bootstrap resampling instead of the 18 used for the other models.

B. H. Good and M. M. Desai
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FIG. S4 An analogous version of Fig. 3 for a truncated exponential ancestral DFE (smax = 4σ).

FIG. S5 The fitness effects (along the line of descent) for the first 5 mutations to fix in the Ara−1 population, estimated from
the genetic reconstruction data of Khan et al. (2011) (see Appendix). On the x-axis, each mutation is plotted according to the
fitness of the genetic background in which it arose. Error bars denote 2 stderr confidence intervals.

B. H. Good and M. M. Desai



10

FIG. S6 Simulated mutational dynamics for the constant truncated exponential DFE in Fig. 4. Colored lines depict the
frequencies of all mutations that rose above 5% in the first 50,000 generations. To mimic whole-population sequencing in the
LTEE, mutation frequencies are sampled in 500 generation intervals with binomial sampling noise (n = 300). Parameter values
are Ub = 2.6 × 10−6, σ = 1.1 × 10−3, and Un = 4 × 10−4 (top) and Ub = 2.5 × 10−5, σ = 7 × 10−4, and Un = 1.3 × 10−4

(bottom).
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