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ABSTRACT Mutator and antimutator alleles often arise and spread in both natural microbial populations and laboratory evolution
experiments. The evolutionary dynamics of these mutation rate modifiers are determined by indirect selection on linked beneficial and
deleterious mutations. These indirect selection pressures have been the focus of much earlier theoretical and empirical work, but we
still have a limited analytical understanding of how the interplay between hitchhiking and deleterious load influences the fates of
modifier alleles. Our understanding is particularly limited when clonal interference is common, which is the regime of primary interest
in laboratory microbial evolution experiments. Here, we calculate the fixation probability of a mutator or antimutator allele in a rapidly
adapting asexual population, and we show how this quantity depends on the population size, the beneficial and deleterious mutation
rates, and the strength of a typical driver mutation. In the absence of deleterious mutations, we find that clonal interference enhances
the fixation probability of mutators, even as they provide a diminishing benefit to the overall rate of adaptation. When deleterious
mutations are included, natural selection pushes the population toward a stable mutation rate that can be suboptimal for the
adaptation of the population as a whole. The approach to this stable mutation rate is not necessarily monotonic: even in the absence of

epistasis, selection can favor mutator and antimutator alleles that “overshoot” the stable mutation rate by substantial amounts.
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NA replication occurs with extremely high fidelity, de-

spite taking place in the noisy environment of the cell. For
example, laboratory strains of Escherichia coli produce a point
mutation at a rate of roughly one nucleotide per 10 billion
copied (Wielgoss et al. 2011; Lee et al. 2012), which implies
that hundreds of generations can elapse before a single mu-
tation is introduced into the genome. To achieve such low
error rates, bacteria and eukaryotes employ a complex array
of cellular machinery, which must be maintained by natural
selection.

One explanation for the low observed error rates is that the
genome encodes a large number of functions, all of which are
essential for survival. Low mutation rates could then emerge
from hard selection against these lethal errors. But, in practice,
observed mutation rates lie far below the levels that would
quickly result in extinction. This is evident from the fact that
mutator strains, whose mutation rates are 10- to 1000-fold
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higher than the wild type, can be propagated for thousands of
generations in the laboratory without significant loss of via-
bility (McDonald et al. 2012; Wiser et al. 2013). This suggests
that mutation rates are not maintained solely by hard selec-
tion, but also by more direct evolutionary competition be-
tween strains with different mutation rates. These variants
feel the effects of natural selection indirectly, by being linked
to other mutations that directly influence fitness.

Strains with higher mutation rates are more likely to be
linked to deleterious mutations, and will therefore experience
an effective fitness cost. This cost can be measured in head-to-
head competitions between mutator and wild-type strains
(Trobner and Piechocki 1981; Chao and Cox 1983; Chao
et al. 1983; Giraud et al. 2001; Thompson et al. 2006;
Gentile et al. 2011). In the absence of beneficial mutations,
natural selection will therefore act to decrease the mutation
rate, until it is eventually balanced by genetic drift, mutation,
or other physiological costs. A large body of previous theo-
retical work has explored these dynamics (Kimura 1967;
Liberman and Feldman 1986; Dawson 1998, 1999; Johnson
1999a; Lynch 2008; Desai and Fisher 2011; Lynch 2011;
Soderberg and Berg 2011; James and Jain 2015).
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When beneficial mutations are available, lineages with
higher mutation rates are also more likely to produce and
hitchhike with a successful beneficial variant. In the absence
of deleterious mutations, natural selection will therefore act
to increase the mutation rate, until the supply of beneficial
mutations is eventually exhausted. In accordance with these
expectations, mutator alleles are often found to spontaneously
arise and spread in rapidly adapting microbial populations in
the laboratory (Sniegowski et al. 1997; Notley-McRobb et al.
2002; Shaver et al. 2002; Pal et al. 2007; Voordeckers et al.
2015), and are often correlated with pathogenic lifestyles in
the wild (LeClerc et al. 1996; Matic et al. 1997; Oliver et al.
2000; Bjorkholm et al. 2001; Denamur et al. 2002; Giraud et al.
2002; Richardson et al. 2002; Prunier et al. 2003; Watson
et al. 2004; del Campo et al. 2005; Labat et al. 2005).

In a few cases, laboratory populations that have previously
fixed a mutator allele have been shown to evolve a lower
mutation rate later in the experiment, suggesting that mutation
rate evolution is an ongoing process (Trobner and Piechocki
1984; Notley-McRobb et al. 2002; McDonald et al. 2012;
Turrientes et al. 2013; Wielgoss et al. 2013). Because these
populations often continue to increase in fitness during this
process (Wielgoss et al. 2013), the success of mutator and
antimutator alleles must depend on the interplay between
beneficial and deleterious mutations, rather than the complete
cessation of adaptation. However, our understanding of this
interplay remains incomplete. A few simulation studies have
shown how these effects can, in principle, favor either in-
creases or decreases in mutation rates, depending on the spe-
cific population parameters (Taddei et al. 1997; Tenaillon et al.
1999, 2000; Travis and Travis 2002). Some analytical progress
has also been made in the case where beneficial mutations are
rare, and occur one-by-one in discrete selective sweeps (Leigh
1970, 1973; Painter 1975; Gillespie 1981; Ishii et al. 1989;
Kessler and Levine 1998; Johnson 1999b; Tanaka et al.
2003; Andre and Godelle 2006; Wylie et al. 2009; Desai and
Fisher 2011). However, our understanding is much more lim-
ited in larger populations, where beneficial mutations are
more common, and multiple adaptive lineages must compete
with each other for fixation. This is the regime where the in-
direct effects of linked selection are likely to be maximized,
and it is also the most relevant for understanding the microbial
evolution experiments where mutation rate modifiers have
been observed to spread. In this clonal interference regime,
even the most basic questions about this process remain unan-
swered: exactly how large can the deleterious load be before it
effectively selects against a mutator allele? And how does this
depend on the population size, the supply of beneficial muta-
tions, and the magnitude of the mutator phenotype?

Here, we address these questions in the context of a simple
model of adaptation, which is motivated by recent microbial
evolution experiments. In particular, we focus on a regime in
which deleterious mutations have a negligible impact on the
rate of adaptation, even though they may have a large effect on
the fates of mutation rate modifiers. Within this model, we
calculate the fixation probability of an allele that changes the
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mutation rate by a factor r (with r > 1 corresponding to muta-
tor alleles and r < 1 corresponding to antimutators). We con-
sider both small changes in mutation rate (r ~ 1), as well as
substantial changes (where [log(r)| > 1).

We find that clonal interference amplifies the beneficial
advantage of mutator alleles, even as it constrains the overall
rate of adaptation. For large r this can be a substantial effect,
resulting in >100-fold increases in the probability of fixation.
However, clonal interference also amplifies the effects of the
deleterious load, resulting in a much narrower window of
mutator favorability. We show that this window depends
most strongly on the strengths of typical driver mutations,
and relatively weakly on the rate at which beneficial muta-
tions arise. With the steady production of such modifier al-
leles, the mutation rate will evolve toward a stable point at
which neither mutator nor antimutator alleles are favored.
Surprisingly, we find that the approach to this stable point is
not necessarily monotonic, even in the absence of epistasis.
Instead, alleles that overshoot the stable point can be posi-
tively selected, and selection must then act to change the
mutation rates in the opposite direction.

Model

Our goal is to understand how beneficial and deleterious
mutations influence the fates of mutation rate modifiers in
rapidly adapting populations. We focus on the simplest pos-
sible model in which we can address this question. Specifically,
we consider an asexual haploid population of constant size N
(our analysis also applies to diploids when all mutations have
intermediate dominance effects). We assume beneficial and
deleterious mutations occur at genome-wide rates U, and Uy,
respectively. We define U = U, + Uy as the total mutation
rate, and e = U, /Uy as the ratio of beneficial to deleterious
mutation rates. We focus on adapting populations, and con-
sider both the successional-mutations regime (where benefi-
cial mutations are rare), and the clonal interference regime.

For most of our analysis, we assume that beneficial mutations
all confer the same fitness advantage s, though we also comment
on how our results can be extended to the case where beneficial
mutations have a distribution of fitness effects. We also assume
that there is no macroscopic epistasis among beneficial mutations
[as defined by Good and Desai (2015)], so that U, and s; remain
fixed as the population adapts. On sufficiently long timescales,
this assumption may eventually break down, so we also comment
on the effects of changing U, or s;, in the Discussion.

We make no specific assumptions about the fitness effects
of deleterious mutations, other than that they are purgeable,
i.e., deleterious mutations are sufficiently costly that they are
unlikely to fix, and do not significantly reduce the overall rate
of adaptation of the population. We describe the technical
conditions required for this to be true, and the qualitative
implications of nonpurgeable deleterious mutations in more
detail in the Discussion.

Our goal is to analyze the fate of a modifier allele that
changes the overall mutation rate U by a factor r (while



leaving € and s; unchanged). For simplicity, we assume that
this allele has no direct influence on fitness, although in the
Discussion we show how this assumption can be relaxed.
These modifier alleles are produced at rate u from the
wild-type background, and we assume that u is sufficiently
small that the modifiers can be treated independently. In this
case, the substitution rate of the modifier is Nupg (1), where
Drix(r) is the fixation probability of a single modifier individ-
ual. A natural measure of how selection “favors” or “disfa-
vors” the modifier can be obtained from the scaled fixation
probability, Npg (r). When Npgy, > 1, the allele is favored by
selection, since it substitutes more rapidly than a neutral
allele; conversely, the allele is disfavored when Npgy < 1. This
scaled fixation probability will be our primary focus in the
analysis below. In particular, we are interested in determining
the parameters where Npgy transitions between favored
(Npsix > 1) and unfavored (Npgx < 1).

We are primarily interested in situations applicable to
microbial populations, and particularly to laboratory
evolution experiments. This motivates certain technical
assumptions we describe in the analysis below. It also
motivates our focus on asexual populations where recombi-
nation can be neglected. This asexual case is particularly
relevant because, when recombination is absent, modifiers
of mutation rate remain perfectly linked to the beneficial or
deleterious mutations they generate, and hence experience
the strongest indirect selection pressures. In principle, we
could also apply our analysis to physically linked regions
within sexual genomes (“linkage blocks”) that are unlikely
to recombine on the appropriate timescales (Neher et al.
2013; Good et al. 2014; Weissman and Hallatschek 2014).
However, the scale of these linkage blocks is a complex
problem, and understanding these effects is beyond the
scope of this study.

In the remaining sections, we calculate Npgy(r) as a func-
tion of the underlying model parameters, and then we use
these predictions to analyze the dynamics of mutation rate
evolution.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

The Successional Mutations Regime

To gain intuition into the forces that determine Npg;, (1), it
is useful to start by considering the simplest case, where
deleterious mutations can be neglected, and adaptation
proceeds by a sequence of discrete selective sweeps. This
“successional mutations” regime applies whenever bene-
ficial mutations are sufficiently rare that they seldom seg-
regate within the population at the same time. This
will be true provided that NU,log(Nsy) < 1 (Desai and
Fisher 2007). In this regime, beneficial mutations are
produced at rate NU, and establish with probability

Dest = 25p. Selective sweeps then occur as a Poisson pro-
cess with rate

1/7est = ZNUbSb. (1)

When a successful beneficial mutation establishes, it
starts to grow deterministically and requires roughly
Tsx = [(2/sp)log(Nsp)] generations to complete its sweep.
By definition, this time is small compared to the time between
sweeps, so the rate of adaptation is just v = s, /Test. A modifier
allele would increase or decrease this rate by factor of r, if it
was able to fix. We now analyze the dynamics of this process.

When a modifier allele first arises, it starts at an initial
frequency f,(0) = 1/N, and it will then drift neutrally until
the next selective sweep occurs. Most of the time, the lineage
will fluctuate to extinction within the first few generations.
However, with probability ~1/t, it will survive for ~t gener-
ations, and reach size f;,(t) ~ t/N (Fisher 2007). In the ab-
sence of selective sweeps, the modifier lineage can only fix by
drifting to fixation; this happens with probability ~1/N, and
occurs over a timescale of order ~ N generations. Thus,
depending on how this drift timescale N compares with the
sweep timescales 7¢y and 7et /1, two distinct types of fixation
dynamics can emerge.

When 7g and 7e /7 are both much larger than N, then the
fate of the modifier lineage will be determined long before
the next selective sweep occurs. Drift is the dominant evolu-
tionary force, and pg«(r) = 1/N.

In contrast, if either Teg OF Test /1 are small compared to N,
the fixation process is instead controlled by genetic draft. In
this case, the modifier lineage will fix only if it is lucky enough
to produce and hitchhike with the next selective sweep. Since
we are primarily interested in understanding these effects,
we will focus on this regime for the remainder of our analysis.

The next selective sweep is produced by two competing
Poisson processes, corresponding to the beneficial mutants
from the wild type and modifier lineages. These respectively
produce sweeps at rates

Ao(t) = 2NUbSb[1 —fm(t)], (2a)

Am(t) = 2NUpspr fm(t). (2b)

The probability that the next sweep is produced by the
modifier lineage is then simply

Dfix = </00o Am(t)e” J:["O(f')“m(f')]df’dt>7 3)

where the angled brackets denote an average is over the
random lineage trajectory f,(t). In the regime we are consid-
ering, the modifier lineage will remain rare until the next
selective sweep occurs. The trajectory fi,(t) is therefore de-
scribed by the Langevin dynamics,

Do) _ fore, @
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where 7(t) is a Brownian noise term (Gardiner 1985). The
solution of Equation (3) can be complicated, since both the
overall rate of sweeps and their probability of arising in
the modifier lineage depend on the random trajectory f,(t).
We present an exact solution of these equations in Appendix
A, using techniques developed by Weissman et al. (2009).

For the present purposes, however, it will be more useful to
focus on an approximation. If the modifier lineage stays
sufficiently rare that it does not influence the overall rate of
sweeps, then we can approximate Ag(t) + Ap(t) & 1/Tes.
Equation (3) then reduces to

e t/Test

o= | " () ®)

Test

In other words, the fixation probability is given by the average
size of the lineage at the time of the next sweep, and this time is
unaffected by the presence of the modifier. In this case, the
modifier lineage is neutral and (fn(t)) = 1/N, so that

Npsix(r) =T (6)

Thus, we see that the modifier fixation probability (like the
proportional change in the rate of adaptation) is independent
of the population size, the mutation rate, and the fitness
benefits of the driver mutations.

To derive Equation (6), we made the approximation that
Ao(t) + Am(t) & 1/7es. Substituting our expressions for Aq(t)
and A, (t) in Equation (2), we see that this is equivalent to the
assumption that (r — 1)f,(t) < 1. However, since f,, and t are
both random variables, we cannot determine the validity of
this assumption based on the average values alone. We must
instead consider the typical dynamics that contribute to the
average in Equation (5): with probability ~1 /7., the modi-
fier lineage survives for 7.y generations and reaches size
fm(Test) ~ Test/N. This ensures that the average size of the
lineage is just [(Test/N) - (1/7est)] ~ (1/N), as expected. It
also shows that the typical values of (r — 1)f;,(t) will remain
small compared to one provided that r7.y < N. For simplic-
ity, we will assume that this condition holds for the remainder
of our analysis. For moderate r, this is actually the same as-
sumption we already made in focusing on the genetic-draft
regime. For large r, it imposes an upper limitr ~ (N/7eg) > 1
on the range of modifier effects that we consider. However,
this is not a fundamental problem for the analysis; we con-
sider such large-effect modifiers in Appendix A.

Incorporating purgeable deleterious mutations

A similar picture applies in the presence of strongly deleterious
mutations. In particular, we assume that the typical fitness costs
are larger than s, so that a driver mutation can fix only in a
background that is free of deleterious mutations. If the costs
are also much larger than Uy, then the vast majority of the
population will be of this mutation-free type. We refer to these
as purgeable mutations, and we will assume that all deleteri-
ous mutations are purgeable in the analysis that follows.
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When a new beneficial mutation occurs, the wild type will be in
mutation-selection balance with respect to its deleterious muta-
tions, so the mean fitness of the population is —Uj. Even if it arises
on a mutation-free background, the new beneficial lineage will
continue to produce loaded individuals at rate Uy. This exactly
cancels the growth advantage of the mean fitness of the popu-
lation, so that the establishment probability is still just
Dest = 2(sp + Ug — Uy) = 2sp. Since most genetic backgrounds
are in this unloaded state, the overall rate of sweeps is unchanged
from before. This means that if a modifier allele were to fix, it
would still change the rate of adaptation by a simple factor of r.

However, while the deleterious mutations do not affect the
rate of adaptation, they can still have a large effect on the
modifier lineage while it is rare. The modifier produces
doomed lineages at rate rUg, which is not completely can-
celled by the mean fitness of the wild type. Instead, mutator
alleles will feel an effective cost of magnitude Uy(r — 1),
while antimutators will experience an effective fitness advan-
tage. Generalizing Equation (4), the mutation-free portion of
the modifier lineage will then evolve as

Ofm(t)
ot

0. @

=~ Ug(r = )fm(t) +

Beneficial mutations produced by this lineage will likewise
have an effective fitness s, — Uy(r — 1), and will establish with
probability

Pos = 2(sp — Ug(r — 1)). ®

In exactly the same manner as before, the next selective sweep
is produced by two competing Poisson processes with rates

Aolt) = (1~ fun(®), (92)
Am(t) = Tit {1 - %}:D}fm(tx (9b)

and the fixation probability is given by the average in Equation (3).
If we again make the assumption that the modifier lineage
has a negligible influence on the overall sweep rate
(Am + Ao = 1/7et), this reduces to

Pfix = r[l - Lb_l)} /0 ) e

S Test

(10

In this case, the average lineage size is now (fn(t)) =
e~ Uar=1)t /N and we obtain

r{l—w}

Sb

= — = 11
1 +Ud’Test(r— 1) ( )

prix (T‘)

The validity of this expression depends on our assumption that
Ao(t) + Am(t) & 1/Tes. In the same manner as above, we can
establish the region of validity of this approximation by



considering the typical dynamics behind the averages in
Equation (10). These will depend on the sign of Uy(r — 1).

For a mutator allele (r > 1), the modifier lineage will feel
an effective fitness cost Uy(r — 1). If this cost is small com-
pared to 1/7e, then selection will barely have time to influ-
ence f,(t) before the next sweep occurs, and mutators will
continue to fix with probability Npgx ~ r. On the other
hand, if Ug(r — 1) > 1/7es, then this fitness cost exponen-
tially suppresses the probability that the mutator survives
until the next sweep. In particular, the mutator will
survive for t>> 1/U4(r — 1) generations with probability
~Uy(r—1)e Vs~ - and, provided that it does so, it will
no longer grow indefinitely, but will instead reach a maxi-
mum size of order 1/NUy(r — 1) (Desai and Fisher 2007). If
the time between sweeps was deterministic, this would sim-
ply suppress the fixation probability by a factor e~ Va(r=17es
However, this is not actually the case, since the next sweep is
generated by the random Poisson process described above. In
particular, the random nature of this process will occasionally
produce a sweep that occurs much earlier than .. Such anom-
alously early sweeps are uncommon, occurring with probability
~t/Tes < 1, but they are far more common than a mutator
lineage that survives for a typical sweep time. Combining these
facts, we find that the mutator fixation probability is domi-
nated by anomalously early sweep times for which
t ~1/U4(r— 1) < Tegt, which leads to a power law decay
Npsx (1)1 /Uges(r — 1). For a strong-effect mutator (r > 1),
this power-law decay exactly balances the lineage’s increased
beneficial mutation rate, so that the r-dependence of pg, is medi-
ated primarily through the reduced establishment probability; pZ .

In contrast, antimutators will have an effective fitness advan-
tage relative to the wild type, of magnitude Uy(1 —r). If
Ug(1 — 1) < 1/7eq, this fitness advantage will still have a negli-
gible influence on Npg(r). However, when Uy(1 — 1) 7e > 1,
the antimutator will establish with probability Uz (1 — r), and will
start to grow deterministically as fy, (t) ~ eY("" 1t /NU4(r — 1).
Again, if the time to the next sweep was deterministic, this would
result in a simple exponential enhancement of Npg,. But because
t is exponentially distributed, it interacts with the exponential
growth of the lineage in a strong way. In particular, as
Ug4(1 — r)7ese approaches 1, the average in Equation (11) will
be dominated by anomalously late sweep times for which f;,, (t)
is no longer rare, and our approximation that Ag + Am ~ 1/7es
breaks down. Thus, Equation (11) will only be valid provided
that 1 — Ug(1 — r)Test > 1/l0g(N/7est). Outside this regime, the
antimutator lineage will appear to sweep to fixation on its own,
without the help of an additional driver mutation.

The fixation probability in Equation (11) is illustrated in
Figure 1 for several choices of parameters. Its overall shape is
determined by the key parameter

1

— 12
ZENSb7 (12)

UgTest =

which depends only on N, s, and € = U, /Uy, and is indepen-
dent of the overall mutation rate U. Depending on the value

N
o

.
u

Fixation probability, Np;,
[
o
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Figure 1 The fixation probability of a mutation rate modifier in the suc-
cessive mutations regime. Solid lines depict Equation (11) for four sets of
parameters, which illustrate the four characteristic shapes of Nps(r). In
all four cases, the base parameters are N = 107, s, = 1072, U= 1074,
and € = 107>, with modifications listed in the inset.

of UyTest, Equation (11) takes on one of two characteristic
shapes. If UgTese > 1, the fixation probability is a monotoni-
cally decreasing function of r (see Figure 1), and mutators
will never be favored to invade. Instead, antimutators will be
positively selected. Note that this happens even though the
antimutator actually causes a decrease in the overall rate of
adaptation.

On the other hand, for U;ress < 1, the fixation probability
takes on a paraboloid shape (Figure 1). It crosses Npgy (1) = 1
at exactly two points: once at r = 1 and once at

x _ Sb

~ U (13)

r (]. - Ud'Test)-

When r*>1, modifiers will be favored in the range
1 <r<r*, and disfavored elsewhere (i.e., some mutators will
be favored). Conversely, when r* <1, modifiers will be fa-
vored in the range r* <r <1 (i.e., some antimutators will be
favored). It is also useful to rewrite r* in terms of the muta-
tion rate U, = Ur of the modifier lineage:

U;}lEUr*:Sb(l—i-e)(l— L > 14

2eN Sh

Note that this is always positive (since 1/2Nsye < 1), and it is
independent of U.

Dynamics of mutation rate evolution

We are now in a position to analyze how mutation rates evolve
over time. Imagine that we start with some particular values of
N, U, €, and sp. This will correspond to a particular value of
Test and Up,. If Uyress > 1, mutators are disfavored and anti-
mutator alleles will be positively selected instead. After an
antimutator allele fixes, both U, and U; are reduced, but
UgTest is unchanged, so natural selection will continue to
select for lower mutation rates until this force is balanced
by drift, mutational pressure, or other physiological costs.
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On the other hand, if Ujres: < 1 and U < Uy, mutators will
be favored provided that their resulting mutation rate is less
than Uy,. If a mutator allele fixes, U, and U, will be increased,
but Uj7est and Uy, will remain constant. Thus, natural selec-
tion will continue to favor increased mutation rates until U
reaches a special value,

. 1
U=U;, =sp(1+e€) (1 ZENSb)’ (15)

which is stable against further changes in the mutation rate. If
instead the initial mutation rate U > U, antimutators will be
favored provided that their resulting mutation rate is > U.
Natural selection will then continue to favor decreased mu-
tation rates until U reaches U. We describe these dynamics in
more detail in the Discussion.

Of course, this analysis crucially depends on the assump-
tion that any mutation rate increases will still lie within the
successive mutations regime. This will be true provided that
NU, ~ eNs, —1 < 1 /log(Nsp). But, in order for a nonzero
stable mutation rate to exist in the first place, we previously
required that eNs, ~ 1/UyTest > 1. These two conditions can
be satisfied only if

1 1

1
<e< .
€ 2Ny, {1 + log(Nsb)}

2Ns, (16)

This is an extremely small region of parameter space, and it
grows increasingly narrow as Ns;, increases. As a result, the
stable mutation rate in Equation (15) is actually a rapidly
varying function of N, sp, and €. For larger values of € that
violate the stringent constraints in Equation (16), mutator
alleles will generically drive mutation rates into regimes
where selective sweeps begin to interfere with each other.
We now turn to an analysis of this case.

The Clonal Interference Regime

When multiple beneficial mutations segregate at the same
time, many potential drivers are lost due to competition with
other, fitter genetic backgrounds. This reduces the rate of
successful drivers in a way that depends on the relative values
of Ns, and NUj,. In the regime most relevant for our current
study, Desai and Fisher (2007) have shown that 7.y is re-
duced to

1 2splog(Nsp)

, 17
Test 10g2 (sp/Up) a7

which is valid provided that 1 <« log(sy/Us) < 2log(Nsp),
and 2log(Ns;) < log?(sy/Us). Similar expressions can be
obtained for other parameter regimes, all of which share
the weak dependence on NU; (Fisher 2013). Since adap-
tation is no longer mutation-limited, one might guess that
mutators will be less strongly favored in this regime. How-
ever, previous simulation studies (Tenaillon et al. 1999) and
heuristic reasoning (Desai and Fisher 2011) suggest that the
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opposite can actually be true: clonal interference enhances
the fixation of mutator alleles, even as they provide a dimin-
ishing overall benefit for the rate of adaptation.

In the following subsection, we introduce a traveling-wave
formalism for calculating Npg,(r) in the presence of clonal
interference. Before doing so, however, it will be useful to
consider this process from a heuristic perspective. This will
allow us to identify the key forces and parameters involved,
and will provide intuition for the more rigorous analysis that
follows.

Heuristic analysis

In the absence of deleterious mutations, clonal interference
alters the dynamics of fixation in two main ways. First, success-
ful mutations can only occur in the most highly fit genetic
backgrounds in the population. These individuals lie in the
extreme right tail, or “nose,” of the population fitness distri-
bution, which steadily increases in fitness as the population
adapts. In the regime described by Equation (17), the relative
fitness of the nose is given by

1 Og(5b>
Test Up '

which is much larger than the size of a single driver mutation.
These individuals have already acquired q = x./sp > 1 more
adaptive mutations than the average individual, but they are
not yet destined to fix. The reason is that there are still
enough individuals in the nose that they will collectively pro-
duce multiple additional driver mutations in the next ey
generations, and these will occur in a relatively narrow time
window At < 7ey (Desai and Fisher 2007). By definition, all
but one of these mutations must eventually be outcompeted.
But this means that the process of fixation within the nose
takes place over multiple establishment intervals, each of
length 7eg.

Since x Test > 1, genetic drift is not directly relevant for
most of this fixation process. Random fluctuations in the line-
age sizes are still important, but these are now driven by
genetic draft, which arises from slight differences in the rela-
tive order of the next round of driver mutations. During most
of this process, the lineages founded by different driver mu-
tations make up less than ~ 1/q of the total size of the nose.
However, approximately once every ~ q establishments, an
anomalously early driver mutation will occur and reach an
O(1) fraction of the nose (Desai et al. 2013). This roughly
coincides with a fixation event. In order to fix, a lineage must
therefore (i) arise in the nose, (ii) persist for ~q additional
establishment intervals, and (iii) be lucky enough to hitch-
hike with the special “jackpot” driver event.

Mutation-rate modifiers can be incorporated into this pic-
ture in a straightforward way. The key quantities 7.5 and q are
only weakly dependent on the mutation rate. Provided that
[log(r)| < log(sy/Up), the modifier versions of these param-
eters will be similar to the wild type, and the competition
between these lineages will play out according to the same

(18)



dynamics as above. The modifier is no more or less likely to
arise in the nose compared to a neutral mutation. However,
provided that it does occur in one of these special genetic
backgrounds, a mutator lineage is r times more likely than
a neutral lineage to generate an additional driver, while an
antimutator lineage is r times less likely to do so. Since the
modifier lineage must generate ~q additional drivers to fix,
its overall fixation probability is given by
Npgig(r) ~ 1. (19)
Thus, we see that clonal interference increases the fixation prob-
ability of mutators by ~q factors of . This increase can be sub-
stantial for large r; even when g = 2 (see Figure 2). From our
discussion above, we see that this increase is primarily driven by
the fact that multiple additional drivers are required for fixation.
In the presence of deleterious mutations, a mutator lineage
again feels an effective cost of Uy(r — 1), so it will tend to
decline in frequency relative to the other individuals in the
nose. In particular, when the next burst of driver mutations
arises, the mutator lineage will have decreased in frequency
by a factor of e "U«(""17est which makes it that much less likely
to survive to the next round. Similarly, an antimutator lineage
will have increased in frequency by an analogous factor of
eUa(1=N7ex The overall fixation probability then becomes

Npg(r) ~ (re”(~D0mec) ™, (20)
We discuss the regimes of validity of this expression in our
more rigorous analysis below. For the purposes of our heuristic
analysis, it will be more useful to focus on the implications of
Equation (20).

Similar to the selective sweeps case, the direction of selec-
tion in Equation (20) is again determined by the product
UgTest. There are three characteristic regimes of behavior.
When Uyter < 1, mutators will be favored provided that
U, = Ur is less than a maximum value,

N 1 1
N o L)
Test UgTest

which corresponds to the largest value of r for which
Npgix(r) > 1. Conversely, when Uytess > 1, antimutators will
be favored above a minimum value

N 1 _
Um = < +E> Ud’Teste UdTESt.

Test

(21

(22)

Similar behavior is obtained for Usreg is close to one, except
that Uy, is now given by

. 1-
Uy = U<1 + 72‘176“).

(23)
When Uytest = 1, the range of favorable modifiers vanishes,
and mutators and antimutators are both selected against. The
evolutionarily stable mutation rate is therefore given by

Fixation probability, Npg,

Adaptation rate, v(r)/v

10t ol i

Modifier effect, r

Figure 2 (Top) The fixation probability of a mutation rate modifier in
the clonal interference regime when Uy = 0. Symbols denote the results
of forward-time solutions (described in Appendix C) for s, = 1072,
Up =107, and N € {10°,107,10°} Solid lines denote the theoretical
predictions in Equation (38). For comparison, the successive muta-
tions prediction (Npsx &~ r) and neutrality (Npsx ~ 1) are shown by the
dashed lines. (Bottom) The rate of adaptation of a successful modifier
lineage, relative to that of the wild type, for the same set of popula-
tions above. The solid black line denotes the asymptotic prediction,
v(r)/v = log?(sp/Up)/l0g? (sp/rUs), which is independent of N. For com-
parison, the successive mutations prediction (v(r)/v = r), and no change
(v(r)/v =~ 1), are shown by the dashed lines.

N 1
g=1t€ 24)
Test

Note that this is actually an implicit relation for U , SiNce Tegt
depends on Uy, = €U/(1 + €). Substituting our expression for
Test in Equation (17), and solving for U, we find that

- ZSbIOg(NSb)
log*(3)

where the region of validity for Equation (17) [and hence
Equation (25)] now becomes

1 <« +/2log(Nsp) < log(1/e) <« 2log(Nsp).

This is still a restrictive parameter range for ¢, although it is
much broader than Equation (16) in the successive mutations
regime, and it grows larger with increasing Nsj,.

Provided that these conditions are met, we see that the
stable mutation rate in Equation (25) is only weakly depen-
dent on N and €, and is much more strongly influenced by s;.

(25)

(26)
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This contrasts with the behavior we found in the successive
mutations regime. In addition, we see that, unlike in the
successive mutations regime, the stable mutation rate )
does not necessarily coincide with the maximally permitted
mutator or antimutator allele (U,,) when U # U. This can
have important consequences for the dynamics of mutation
rate evolution in this regime. If the mutation rate starts far
above or below U, natural selection can favor modifier alleles
that overshoot the stable value by a substantial amount,
which can lead to a nonmonotinic approach to the stable
point. We will revisit these dynamics in more detail in the
Discussion.

Formal analysis

We now turn to a more formal derivation of the results de-
scribed above. To do so, we make use of “traveling-wave”
formalism developed in previous work (Tsimring et al.
1996; Rouzine et al. 2003; Neher et al. 2010; Hallatschek
2011; Neher and Shraiman 2011; Good et al. 2012; Fisher
2013; Good and Desai 2014). This formalism focuses on the
distribution of relative fitness within the population, which
we denote by f(x), and the fixation probability of a (wild-
type) individual with relative fitness x, which we denote by
w(x). In the absence of mutator or antimutator alleles, we
and others have previously shown that f(x) and w(x) satisfy
the partial differential equations,

of

U (x = Uq = Up)f + Upf(x = sp), (27a)
M (= Ug— Upw+ Upwlx +59) =0 270)
va— X d p)W + Upw(x + sp 5

where v =s/7eq is the average rate of adaptation (Good and
Desai 2014). Note that Equation (27) implicitly assumes that
the deleterious mutations are purgeable, i.e., they do not fix,
and constitute a negligible fraction of the population. The
rate of adaptation (or equivalently, 7.t =55 /v) is set by the
self-consistency condition,

[ feomiear =, (28)
which is just another way of saying that the fixation prob-
ability of a neutral mutation must be equal to 1/N. For a
detailed derivation of these equations, see Good and Desai
(2014). Note that, because we have assumed that deleteri-
ous mutations are purgeable, U; enters into Equations (27)
and (28) only as an overall shift in the mean fitness of the
population. If we measure fitnesses using the shifted vari-
able x = x — Uy (i.e., fitness relative to the average unloaded
individual), then the evolution equations revert back to the
purely beneficial case. We will adopt this convention from
now on.

Even in the simplified model of Equation (27), there are
many possible parameter regimes that one may consider
(Fisher 2013). Here we will focus on a particular approximate
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solution (based on ideas introduced in earlier studies by
Tsimring et al. (1996), Neher et al. (2010), and Hallatschek
(2011)), which is thought to be relevant for many microbial
evolution experiments (Desai et al. 2007; Perfeito et al. 2007;
Wiser et al. 2013; Barroso-Batista et al. 2014). In this regime,
the fitnesses of unloaded individuals are approximately nor-
mally distributed,

! e 50 (xc — 5() , (29)

27V

with a sharp cutoff at X = x.. This corresponds to the “nose” of
the fitness distribution described above. Meanwhile, the sur-
vival probability w(x) can be approximated by the piecewise
form

2x if x> x,
22
0

w (JNC) ~ ZXCeXT (30)

if x; —sp =x=x,

0 if x=x;—sp.

In this context, x, can also be thought of as an interference
threshold. Lineages that are at relative fitness x > x, will fix
provided they survive drift and establish; this occurs with
probability 2x. Below x, the fixation probability drops off
rapidly because lineages can establish but still be lost to in-
terference. Once a lineage is more than s, below x, it can
essentially never catch up with the remaining lineages at the
nose, and it will therefore have a negligible fixation proba-
bility. The location of x. is determined by the auxiliary
condition

(3D

After substituting our expressions for f(x) and w(x) into
Equation (28), the self-consistency condition becomes

2
2xspe” 1
V2mv N

Together with Equation (31), this completely determines v
and x, as a function of the underlying parameters. Asymptotic
formulae for these quantities are given in Equations (17) and
(18); more accurate estimates can be obtained by solving
Equations (31) and (32) numerically.

We have previously shown that this solution applies when-
ever X. — Sp > /v, p > /v, and U, < s, (Good and Desai
2014). The first of these conditions says that the parents of
successful lineages must be highly fit, i.e., that clonal inter-
ference is indeed present. The second condition, which also
implies the third, says that the vast majority of individuals in
the population have roughly the same number of driver mu-
tations, i.e., mutation pressure is not too strong. In terms
of the underlying parameters, these conditions become
1 < log(sy/Up) < log(Nsp) < log?(sp/Us), as we stated after
Equation (17) above.

(32)



Once we have set up this traveling-wave formalism,
mutation-rate modifiers can be added in a straightforward
way. Since the fate of any allele is determined while it is rare, we
can neglect the effects of the modifier on the wild-type pop-
ulation, so that f(x) and v are unchanged from above. When a
modifier allele occurs, it will arise on a genetic background
whose fitness is drawn from f(x). We then introduce a new
function, wy, (x), describing the fixation probability of the mod-
ifier allele as a function of its initial fitness. This function satisfies
a similar equation as w(x), except with a different mutation rate:

v% = [5(— (r—1Ug — rUb]wm
(33)
N w2
+ rUpWnm (X + sp) — 7"‘

Thus, in addition to the increase in Uy, we see that a mutator
lineage experiences an effective fitness cost Uy(r — 1) corre-
sponding to its increased deleterious load. This cost enters as a
shift in the overall location of wp, (X), which we can account for
by defining a shifted function, wy,(x) = wp (X — Ug(r — 1)).
After this transformation, Equation (33) is of the same form
as Equation (27b). Then, provided that the modifier mutation
rate rU, is still in the same regime as Uy, the solution for the
shifted function wp, (x) will have the same form as w(x),

25(' lf 5& > Xcma

_ 2o -

Wm (X) =94 2x;me » if Xem — Sp =X =Xm, (34)
0 if x= Xem — Sh,

except with a different interference threshold, x.,, which
satisfies

-1 2
U Xemsp, S
1" [1 _Lb} e lTE, (35)

Sb Xem

Like the wild-type interference threshold x, the location of x, is
independent of U,. Since mutators are favored when Uy = 0, we
expect that x.,, <x. whenever r > 1. In other words, we expect
that mutators have a lower interference threshold, since these
lineages generate beneficial mutations more rapidly and, once in
the nose, are therefore less likely to be lost to clonal interference.

In order for this solution to apply, it must satisfy the same
conditions as the wild-type population: X, — s, > /v and
rUp < sp. This will be true provided that x.p, is still close
to x., or, equivalently, that the fractional difference
8x = Xem/X. — 1 is small compared to 1. Given this assumption,
we can divide Equation (35) by Equation (31), and solve for 8, :

1+6
o —)%log r( —;8’() ~ —Llog(r). (36)
cSh 14 % XcSp
Xc — Sp

Since x.sp/v ~ log(sp/Up) in this regime, we see that this ap-
proximation will hold provided that [log(r)| < log(sy/Up).

This places an upper limit on the range of modifier effects
that we can consider. But since s, /U, > 1, this includes many
realistically large modifiers of order r ~ 100.

Given our solution for wy,(X), we can compute the mar-
ginal fixation probability of the modifier by averaging over
all the fitness backgrounds that the modifier could have
arisen on:

Do (r) = / £ (&) Wi (%) d. (37)
We evaluate this integral in Appendix B. We find that
Npgix (1) = e2108() ~Uames ("= 1)) 5¢ o308 ~Uarese(r=1)°
Uames(r=1) _ 1 =9

X,
UdTest(r - 1)

where we have employed the short-hand notation g = x. /sy,
Test = Sp/V, and v = 1/s,7eg. In the asymptotic regime we are
considering, 1/q and v are both small parameters. To leading
order, Equation (38) converges to the simpler expression
from our heuristic analysis, which we now recognize as the
technical statement that

lim 298MPx (D) o0y~ Urec(r — 1).

q— ® q

v—0

39

However, since the errors are multiplied by a large number g
and exponentiated, the full version in Equation (38) is often
required for quantitative accuracy.

We illustrate the full expression in Equation (38), and
compare it to forward-time simulations in Figure 2 and Fig-
ure 3. The accuracy is generally good, although there are
some systematic deviations for large r when the effects of
the deleterious load are particularly costly. These are ulti-
mately the result of two factors: (i) inaccuracies in our ap-
proximate solution for w(x) for x, — s, <x <X, and (ii) the
fact that log(r) is starting to approach log(s; /Uy ). More accu-
rate approximations for w(x) derived by Fisher (2013) could
be used to improve the quantitative accuracy for these pa-
rameters; we leave this for future work.

Discussion

In rapidly adapting populations, the fates of mutator and
antimutator alleles depend on a careful balance between
the benefits of hitchhiking and the cost of a deleterious load.
Our analysis shows how the fixation probabilities of these
mutation-rate modifiers depend on the population size, the
beneficial and deleterious mutation rates, and the strength of
selection. By searching for parameters where mutators and
antimutators are both disfavored by selection, we can identify
particular mutation rates, U, that are stable under future
evolution. At these mutation rates, the benefits of hitchhiking
are exactly balanced by the costs of the deleterious load, so
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that neither mutators nor antimutators are favored. We now
consider how a population will approach the stable mutation
rate, and the implications of this mutation rate evolution for
the rate of adaptation within the population. Finally, we de-
scribe the approximations we have made throughout our
analysis and the resulting limitations of our approach.

Approach to the stable mutation rate

Consider a situation in which the population starts with a
mutation rate Uy # U, and fixes a sequence of modifier alleles
with mutation rates Uy, Us, . . ., U,. What are the typical val-
ues of this mutation rate trajectory, under the hypothesis that
each step was favored by selection?

In both the successional mutations and clonal interference
regimes, we found that U depends only on N, s,, and €. This
implies that the mutation rate will always evolve toward this
unique stable point: U, —U. However, the manner in which
the population approaches U can be strongly influenced by
clonal interference.

In the successional mutations regime, selection favors a
monotonic approach to U. Consider, e.g., a mutation rate
Uo < U. In this case, we have shown that mutators will be
able to fix, provided that the new mutation rate Uy, = rU lies
in the range Uy < Uy, < U. When one of these alleles fixes, the
new mutation rate will be given by U; = Up,,, and the process
will repeat itself. Mutators will still be favored to fix provided
that U; < U, < 17, which will lead to a U, > Uy, and so on.
Thus, evolution will favor a monotonic sequence of mutator
alleles until U,, = U, after which the mutation rate will be
stable to further changes. An exactly analogous conclusion
holds if Uy starts above U : here, selection will tend to fix
antimutator alleles that lie in the range U < U, <U; until
U, = U. In both cases, mutator or antimutator alleles that
“overshoot” the stable mutation rate are always disfavored.
This is true even if such alleles would move the mutation rate
closer to the stable rate; e.g., an allele that takes a population
from 0.10— 1.1U would not be positively selected.

When clonal interference is present, the approach to the
stable mutation rate is more complex. This is easiest to see if
we rewrite Equation (20) in terms of Uy, U, and U. Provided
that [log(U;/U)| < log(1/€), the quantities 7es(U) and q(U)
will stay roughly constant over the relevant range of muta-
tion rates, and we can approximate Test(U) = ’Test(U) =1/ U.
This yields a simple heuristic formula,

7\ 4
Une™ n/U
ﬁ) | “o

Npiix(Um) =~ <
which depends only on the scaled mutation rates U/U, Uy, /U,
and g. A more accurate (but more cumbersome) version can
be obtained by substituting the full expressions for 7es(U)
and q(U) into Equation (38). We illustrate this full expression
in Figure 4 for a particular combination of Ns;, and ¢, although
the important qualitative features are already contained in
Equation (40).
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Figure 3 The fixation probability of a mutation rate modifier in the
clonal interference regime when Uy > 0. Symbols denote the results
of forward-time simulations with the base parameters N = 107,
sy =1072, Uy =1072 Uy = 1074, and sy = 10", with modifications
listed in the figure. Solid lines denote the theoretical predictions in
Equation (38).

If the population starts at a mutation rate Uy ~ U, then
only modest changes in the mutation rate will be favorable.
However, if the population starts at a mutation rate Uy < U,
Equation (40) shows that mutators will be positively se-
lected, provided that Uy < U, < Ulog(U /Up). While the most
strongly beneficial modifier has U, = U, the range of favored
mutators also includes values of Uy, that are larger than U by
a factor log(U/Up) > 1. This means that selection can fa-
vor mutator alleles that overshoot the stable mutation
rate by a substantial amount. If a mutator allele of this
maximal strength fixes, the new mutation rate will be
U, = Ulog(U/Uy) > U, and selection will immediately favor
the fixation of antimutator alleles, despite the fact that the
location of U has not changed (see Figure 4 and Figure 5).
If U> U, these antimutator alleles can overshoot the
stable mutation rate in the other direction, by a factor
U/Ue U/V « 1. In the example above, this could then lead
to Uy = Uplog(U/Up), which is larger than the initial muta-
tion rate Uy but still much smaller than U. Thus, while the
population will still approach the stable mutation rate over
time, this approach does not have to be monotonic, even in
the absence of epistasis or environmental variation. More-
over, the functional form of Equation (40) implies that this
behavior is highly asymmetric: an antimutator allele can
overshoot U by a larger amount (and with a larger Npg,) than
a mutator allele with the same value of [log(U/U)|. This can
also be seen in Figure 4 and Figure 5.

Application to a long-term evolution experiment
in E. coli

Several studies have observed the spread of mutator alleles in
microbial populations in the laboratory. One of the best-
studied examples is Lenski’s long-term evolution experiment
(the LTEE), where 12 replicate populations of E. coli have
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Figure 4 The predicted fixation probability of a modifier allele when
Nsp = 10% and e = 107°. Grid points are colored according to the value
of Npsy from Equation (38), and are capped at a maximum value of
|log,Npsix| = 2 to maintain contrast. For comparison, the solid lines de-
note 20 log-spaced contours that range from 10~" to 104.

been propagated under constant conditions for more than
60,000 generations (Lenski et al. 1991, 2015). Mutator phe-
notypes have fixed in six of the 12 populations over the
course of this experiment, and have typically increased
the mutation rate by ~ 100-fold. The rate of adaptation in
the mutator populations increased less than twofold, sug-
gesting that clonal interference plays an important role
(Wiser etal. 2013). In one of the 12 replicates, the dynamics
of mutation rate evolution have been studied in more detail.
Wielgoss et al. (2013) have shown that, soon after the fix-
ation of the mutator allele, an antimutator phenotype fixed,
which lowered the mutation rate by a factor of approxi-
mately two. The antimutator phenotype had two inde-
pendent origins, suggesting that both it and the original
mutator allele were favored by selection. Given these find-
ings, it is interesting to compare various explanations for
this behavior in the context of our theoretical analysis
above.

One potential explanation for these findings is suggested by
the “overshooting” behavior illustrated in Figure 4 and Figure
5. Although the precise evolutionary parameters of these
populations are not known, Figure 5 shows that it is at least
feasible to overshoot the optimum by a factor of 2 when the
population starts at a mutation rate of Uy ~ 0.01U. Note,
however, that Npgy is not necessarily large in the reverse di-
rection, so it remains to be seen whether this effect could
efficiently select for lower mutation rates on the rapid time-
scales observed.

Another potential explanation for the mutation-rate re-
versal, initially suggested by Wielgoss et al. (2013), is that
long-term epistasis reduced the effective advantage of hitch-
hiking later in the experiment, thereby shifting the location of
U below its initial value. Our analysis above does not account
for these effects directly, since it assumes a constant value of
€ and s,. However, as long as any epistasis manifests itself on
timescales that are longer than the fixation time, we can still
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Figure 5 (Top) A vertical “slice” of Figure 4 for three different values
of U. Symbols denote the results of forward time simulations with
NUp = 5780, and sy = 5sp; other parameters are the same as Figure 4.
Solid lines denote theoretical predictions from Equation (38). (Bottom)
The scaled rate of adaptation as a function of the mutation rate for the
same set of parameters. Symbols denote the results of forward-time
simulations, the solid lines show the theoretical predictions obtained by
solving Equations (31) and (32) numerically, and the dashed line shows
the asymptotic formula, v/s2 ~ 2log(Nsp)/log(ss/€Um)?.

account for these effects in a crude way by examining how U
changes after a shift in Uy, or s,. For example, epistasis could
lead to a reduction in €, reflecting a diminished supply of
beneficial mutations (or an increasing supply of deleterious
mutations) as the population adapts. Due to the presence of
clonal interference, Equation (25) suggests that rather dras-
tic reductions in € are required to cause a twofold reduction in
U. Alternatively, diminishing-returns epistasis could reduce
the magnitude of s,, while leaving the beneficial mutation
rate unchanged. Equation (25) suggests that this has much
stronger effect on U. Wiser et al. (2013) have recently pro-
posed and fit a concrete model for how s, declines with fit-
ness in the LTEE. These estimates suggest that s, declines by
<20% in the 4000 generations that separate the mutator and
antimutator alleles. This would seem to be too small to ac-
count for a 250% reduction in U, although the magnitudes
are sufficiently close that a careful comparison with simula-
tions is required. This would be an interesting avenue for
future work.

A third potential explanation is a direct fitness benefit
to either the mutator or antimutator allele. While such
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benefits are difficult to measure directly (due to the con-
founding effects of the deleterious load), they can be in-
corporated into our model in a straightforward way. We can
simply replace Uy(r — 1) —Uy(r — 1) — sy in our formulae
for pgix(r), where s, is the direct benefit of the modifier
allele. Since the effect of the deleterious load is typically
of order U<sy, even a small direct benefit (s, <sp) can
shift the balance between hitchhiking and load in impor-
tant ways.

The evolution of mutation rates and the average rate
of adaptation

Because we have assumed that deleterious mutations are
purgeable, increasing U always increases the rate of adap-
tation, even though these increases may be small in the
presence of clonal interference. Our results therefore sug-
gest that mutation rates will evolve toward a stable muta-
tion rate that is less than what would be optimal for the
population (which, in this case, is technically Uyp = ).
Of course, as we increase mutation rates, the assumption
that deleterious mutations are purgeable will eventually
fail. Somewhere above this point, there will be an optimal
mutation rate Ugyy < o that maximizes the rate of adapta-
tion [see, e.g., Orr (2000)]. To confirm that the stable mu-
tation rate is indeed below Uqp;, we must verify that U is still
in the purgeable deleterious mutations regime. For the ex-
ample in Figure 5, we can verify this directly, since the rate
of adaptation continues to increase as the mutation rate
passes through U. This behavior will hold more generally
provided that the typical cost of a deleterious mutation, s4, is
much larger than U. Since U is typically smaller than s; in
the regimes that we consider, this will indeed be the case
whenever sg 2 sp.

In these cases, the stable mutation rate is below the optimal
mutation rate, which implies that the dynamics of the evolu-
tionary process can sometimes favor changes in mutation rate
that slow the adaptation of the population. Antimutator
alleles can be favored even when their fixation will ultimately
reduce the overall rate of adaptation. Conversely, mutator
alleles can be disfavored even when their fixation would have
increased the rate of adaptation.

Although our results are limited to the purgeable regime, a
similar distinction between U and Uop: may also apply even
when deleterious mutations are no longer purgeable. We
cannot prove this conjecture in our present framework, but
it is an interesting hypothesis for future work.

Limitations to our analysis

We have made anumber of key assumptions throughout our
analysis. Most crucially, we have assumed that deleterious
mutations are purgeable. For this to be true, two conditions
must be met: the deleterious mutations cannot fix, nor
can they affect the overall rate of adaptation by reducing
the fixation probabilities of beneficial mutations. This is
a slightly stronger condition than the “ruby in the rough”
approximation used by earlier authors (Charlesworth
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1994; Peck 1994). Our previous work on the effects of
deleterious mutations in adapting populations provides a
detailed analysis of when these conditions will hold, and of
the effects of deleterious mutations on adaptation when
the purgeable assumption fails (Good and Desai 2014).
This earlier work suggests that deleterious mutations are
likely to be purgeable in most microbial evolution experi-
ments, though recent experimental work hints that this
may not always be the case (McDonald et al. 2016). Here,
we first summarize the conditions under which deleterious
mutations are purgeable, and then describe the potential
effects of deleterious mutations when this condition is
violated.

In our earlier work, we showed that deleterious mutations
with fitness cost s; will typically not fix provided that
sq > 1/T., where T, ~ qres is the coalescence timescale
(Good and Desai 2014). Since s, > 1/T. in all the regimes
that we consider, this will be true provided that sy is not much
smaller than s,. Deleterious mutations can also hinder the
fixation of beneficial mutations that arise in less-fit back-
grounds. However, provided that s; > Uy, deleterious vari-
ants will be rapidly eliminated from the population, and
most genetic backgrounds will be free of deleterious
mutations. Assuming typical values of U; ~ 10™% and
sq¢ ~ 1072 — 107! for microbial evolution experiments (Wloch
et al. 2001), this condition will often be met.

When deleterious mutations have small enough fitness
costs that they are not purgeable, our quantitative results
all break down. However, sufficiently weakly deleterious
mutations cannot affect mutator or antimutator dynamics
on the relevant timescales, so they are effectively neutral from
the point of view of mutation rate evolution. On the other
hand, sufficiently strongly deleterious mutations are purge-
able. Thus, it is only some range of deleterious mutations
between these limits whose effects are both important to
mutation rate evolution and not described by our analysis.
Since these mutations are less deleterious than purgeable
mutations, they must, by definition, be less unfavorable to
mutator alleles (and less favorable to antimutators). Thus,
they do not affect the fate of a modifier of mutation rates as
strongly as a corresponding purgeable mutation would. This
suggests that we can qualitatively understand the effects of
nonpurgeable deleterious mutations in adapting populations
by weighting them less heavily than purgeable ones, so that
the total effective deleterious mutation rate is actually some-
what less than Uy. Of course, this is only a rough intuition. To
analyze the effects of nonpurgeable deleterious mutations
more fully, we need to include them in our traveling wave
framework. Our earlier work explains how these mutations
affect f(x), w(x), x., and v, which provides a potential starting
point for these calculations (Good and Desai 2014). More
generally, we may wish to consider the evolution of mutation
rates in the limit where nonpurgeable mutations become so
important that the population no longer adapts, and instead
Muller’s ratchet plays a crucial role. These are interesting but
complex directions for future work.



In addition to these key limitations of our analysis, we have
also made a number of more technical assumptions. For
example, we have assumed that beneficial mutations all pro-
vide the same fitness benefit, s;. In reality, beneficial muta-
tions will have a range of different fitness effects, drawn from
some distribution. However, earlier work has shown that in
this case the evolutionary dynamics can often be summarized
using a single effective beneficial fitness effect, and corre-
sponding effective beneficial mutation rate (Desai and Fisher
2007; Good et al. 2012; Fisher 2013). Thus our analysis
can be applied to this situation using the appropriate effective
sp and Up.

In our analysis of clonal interference, we focused on a regime
inwhich 1 < log(sy/Up) < 2log(Nsp) < log?(sp/Us). The lat-
ter condition implies that clonal interference is not excep-
tionally strong, and is often a good approximation for
microbial evolution experiments at wild-type mutation
rates. For some large effect mutators, we start to approach
the boundary of this regime, and our quantitative expres-
sions become less accurate (see Figure 5). In princi-
ple, we could extend our analysis to the “high-speed”
[2l0g(Nsp) > log*(s/Up)] or “mutational-diffusion” re-
gimes [U, > sp] by using analogous solutions for f(x) and
w(x) derived by Fisher (2013) or Hallatschek (2011). We
leave this for future work.

Throughout our analysis, we have assumed that modifier
effect sizes can be large but not exceptionally so [e.g., in the
clonal interference regime, |log(r)| < log(sy/Up)]. Since
Uy < sp, this includes many realistically large mutators of
order r ~ 100, and, in practice, our expressions appear to
work reasonably well even when log(r) ~ log(s,/Up) (see
Figure 3). For sufficiently large r, we may also encounter
situations where modifiers switch from one regime to an-
other (e.g., from the clonal interference to successive
mutations regime, or from U, < sp, to U > ). Our quanti-
tative predictions for Npgy break down in all of these cases.
However, the evolutionarily stable mutation rates are de-
fined by the behavior of Npg;y in the local neighborhood of
r ~ 1, so the location of U is not influenced by this problem.
If the population starts sufficiently far from U, then
the fixation probabilities of the first few U; are not well-
described by our analysis, but we know that the mutation
rate must still approach U (in a possibly nonmonotonic
manner). Eventually, the mutation rate will become close
enough to U that our expressions start to apply, and
the remaining steps of the mutation trajectory can be
predicted.

Finally, we have assumed throughout that modifier mu-
tations are sufficiently rare that their fates are deter-
mined independently. In other words, we have neglected
clonal interference between different modifier mutations.
For deleterious or weakly beneficial modifiers, this will
often be a good approximation. However, for strongly
beneficial modifiers, this requires that the establishment
time 1/Nupsix(r) between successive mutators is large
compared to the fixation time. In the clonal interference

regime, Tgy ~ log(sy/Up)/sp, and this condition becomes
M <K sp/log(sy/Up)Npsx(r). This can sometimes be violated
for strongly beneficial mutator alleles with a large target size
(e.g., loss-of-function mutations in multiple genes). In these
cases, our quantitative predictions become inaccurate, al-
though the overall direction of selection [i.e., whether
Npgx > 1 or Npgy < 1] will remain unchanged.

Conclusions

Our analysis has explained how the interplay between
beneficial and deleterious mutations in adapting popula-
tions creates indirect selection pressures on modifiers of
mutation rates, and we have shown how these indirect
selection pressures affect the fates of mutator and antimu-
tator alleles. Our analysis of the successional mutations
regime follows the logic of earlier work (Andre and Godelle
2006; Desai and Fisher 2011), balancing the probability a
new beneficial mutation arises in a mutator, or antimuta-
tor, background with the effects of the modifier allele on
the accumulation of deleterious load. We have also studied
rapidly adapting populations where clonal interference is
widespread. Our approach to this question builds on the
traveling wave framework we and others have recently
introduced (Neher et al. 2010; Hallatschek 2011; Neher
and Shraiman 2011; Good et al. 2012; Fisher 2013; Good
and Desai 2014). In this framework, analyzing the fate of
an allele modifying mutation rate is similar in spirit to
calculating the fixation probability of any lineage: we must
solve the same equation for w(x), except instead of a mu-
tation changing the fitness x, it changes the mutation rate
U. This general framework can also be applied to analyze
indirect selection pressures that act on other modifiers of
the evolutionary process. For example, we could analyze
the fate of a mutation that changes the distribution of fit-
ness effects of new mutations by solving for w(x) for an
allele that modifies p(s). Our analysis does not need to be
limited to adapting populations, since the traveling wave
framework applies whenever interference selection is
widespread, even if the population is not adapting on av-
erage. Of course, in practice, some modifiers and parameter
regimes will lead to equations for w(x) that are analytically
tractable, while others will not. Thus further work is needed
to more fully understand both the limits and promise of
this approach.
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Appendix A: Exact Solution of Equation (3)

In this section, we evaluate the integral

Npfix = < / Am(t)e” fo[‘(’(f)“m(””d"dt>, (A1)
0
where Ag = 2NUpsp[1 — fi(t)] and Am(t) = 2NUpsprfm(t), and fin (t) satisfies the Langevin dynamics
Ifm

ot = \/%’0(07 (AZ)

with f;;(0) = 1/N. Using integration by parts, we can rewrite this integral as

“dt _ /) e (e () ar
prix = % |:1 - / —e "est<e Tesi j;)fm(t ) d >:| R (AB)
0

Test

where we have used the short-hand 7est = 1/2NUysy. To evaluate this integral, we must first solve for the generating function
H(y,t) for the weight [; fm(t')dt', which is defined by

H(y.) = <e—YI$fm<f’> df’>. (A%)

This can be done using techniques described in Weissman et al. (2009). Briefly, we first introduce the joint generating function,

ey, = (0 508 *5)

By Taylor expanding H(z,y,t + dt) and using the Langevin dynamics in Equation (A2), we can show that H(z,y, t) obeys the
partial differential equation

OH z2] 0H
e {J’_ ﬁ} 2 (A6)
which can be solved using the method of characteristics. The characteristic curves satisfy
oy 0z 22 OH
Y _ oz _ 3 _ oq_ A
oo °, do 2N oo °, (A7)
and the solution is given by
. W/2Ny t 1 b4
H(z,y,t)=1 N tanh ﬁ\/ZNy + tanh o) | (A8)
The marginal generating function for fé fm(t') dt’ can then be obtained by setting z = 0:
V2N
H(y,t)=1- Nytanh<§\/2Ny>. (A9)

Substituting this expression into the integral in Equation (A3), we find that

© 2N Test(r — 1)
_ z Jest\" )
Npgy = r/o e % ,Test(r — 1)tanh (\/ o z) dz, (A10)

- V(3+ et ) (Ve ) - % (A11)

’Test(r - 1)
N

where ¥(z) is the digamma function. Asymptotic expansions for small and large arguments yield
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r 1—(9(@)} if Testt < N,

Npfix ~ (A12)

V Nr/Test |:1 _0< N >:| if Teser > N.

Testl"

Appendix B: Derivation of Equation (38)

To obtain an expression for Npgy (1), we must evaluate the integral

pﬁx /f Wm /f Wm X — Ud(r— 1 d)~C = /f(f( + Ud(T‘_ 1))V~Vm<)?)d)~(‘, (Bl)

using the expressions for f(x) and wp,(X) in Equations (29) and (34) in the main text. This is straightforward, although the
algebra is somewhat tedious. Since f(x) and wn, (x) are piecewise functions, the form of the integrand will depend on whether
Xc — Ug(r — 1) is greater or less than X, and xem — Sp.

We first consider the case where x; — Ug(r — 1) > X, In this case, the mutator interference threshold is reached before the
nose, so that

(7+Uq(r-1))> x

Xem o~ o) 2, X, e ~ ~
prix(r) ~  2eme dx+/ .2[x—Ud(r—1)]d_x. (B2)
* sy V20 Xeon+Ua(r—1) V277V

V2mv 2 .
After multiplying both sides by N = v ez, we obtain

2XcSp

2oy (Uar-1)? _semUy—1) o yy-1)

Npgx(r) me o R et
XcSh
Xz 2
& /xc “Hdz—2NUy(r — 1) /xc * 5 (B3)
ze” wdz— q(r— .
XeSh Jxem+Ua(r=1) X +Ug(r—1) V27V

Evaluating the remaining integrals and substituting xcm = xc — ;-log(r), we find that

x _Ugsp(r=1) | _ _ Ugsp(r—1) : Ugsp(r=1)
Nons(r) ~ o L8058 g [oam Sy e — 1
- ~ b _—
Piix Ugsp(r— 1)

V -

(r-1) r-1) : T

Ugsp (r—1 Ugsp (r—1

v | [toatn -0 s [1ogin) -]

A = 1
XcSp

Erfe(x. — ilog(r) + Uy(r— 1)/@) — Erfc (xc/\/é;)

—2NUy(r — 1) - 5 :

(B4)

where Erfc(z fz e tdt. The last two terms are only relevant for extremely high deleterious mutation rates
where Uy(1 — r) ~ xc After neglecting these terms, we obtain Equation (11) in the main text.

Now we consider the case where x, — Uy(r — 1) <x.n. In this case, the edge of the fitness distribution is reached before the
mutator interference threshold. If x, — Ug(r — 1) <Xun — Sp, then the edge of the fitness distribution never even makes it to the
region where wy, (X) is positive, and pg,(r) ~ 0. On the other hand, if x. — Us(r — 1) lies between X, and x., — sp, then

Ua(r=1) W Eaey
prix(7) :/ ——— 2Xcme > dx. (B5)
e

m—Sb vV 2V
V2my 2 .
Multiplying by N = leweﬂ, and evaluating the integrals, we obtain
cob
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(B6)

In practice, the differences between Equations (B4) and (B6) do not become very pronounced until Npg,(r) is already quite
small. For simplicity, we will therefore use Equation (B4) for the full range of r.

Appendix C: Forward-Time Simulations

We validate several of our key approximations by comparing our predictions with the results of forward-time simulations similar
to the standard Wright-Fisher model. In these simulations, the population is divided into fitness classes depending on the number
of beneficial mutations (n,), and the number of deleterious mutations (ny), that each individual possesses. The simulation
starts with a homogeneous population of N individuals with n, = 0 and ng = 0. To form the next generation, each individual
produces a Poisson number of identical offspring with mean C¢(1 + spny, — sqng)(1 — Ug — Up), a Poisson number of beneficial
offspring (n, —np + 1) with mean C;(1 + spnp — sqng)Up, and a Poisson number of deleterious offspring (ng —ng + 1) with
mean C(1 + spnp — sqngq)Ug, where C; is a constant recalculated at each generation to ensure that the expected number of
offspring for the entire population is N. Starting from the initial population, all simulations are allowed to “burn-in” for
At = 5 X 10* generations before any measurements are made.

To measure the fixation probability of a modifier allele, we modify this basic algorithm so that new modifier offspring are
produced from wild-type individuals at rate u. These modifier lineages reproduce the same way as wild-type individuals except
with U, —rU, and Uy;—rUy. Further modifications to the mutation rate, or reversion to the wild type, are not allowed.
To minimize the effects of initial conditions, w is artificially fixed at zero until the burn-in period has elapsed. We then record
the number of generations, T, between the end of the burn-in period, and the fixation of the modifier phenotype. In the limit
that u— 0, this is related to the fixation probability through the relation

1
Npsix(r) = T (C1)
To ensure that u is chosen to be small enough for Equation (C1) to apply, we repeat this process M = 60 times, with a sequence
of modifier mutation rates uy, po, . . ., iy, and a sequence of fixation times T1, To, . . . , Tyr. The mutation rate at step i is chosen
based on the previous T;_1, so that the predicted value of T; is 10* generations:
_ i J M1 Tic1 -2
”’i = I’nln{T7 10 } (CZ)

The value 10# is chosen because, for the parameters considered here, 10* > 1l -1og(sp/Up), and the mutation rates are capped at
1072 to In1n1m1ze the correlated effects of Muller’s ratchet (Neher and Shralman 2012). The sequence is started with
w1 = 1074, and is allowed to “burn-in” for 10 iterations before T;’s are recorded. The fixation probability is calculated from
the maximum likelihood estimator,

1
Npﬁx(r) = Z ;T (C3)
=101

A copy of our implementation in Python is available at https://github.com/benjaminhgood/mutator simulations.
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