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ABSTRACT The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations,
purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller’s ratchet: once lost by
stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller’s ratchet can lead
to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial
mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of
a population in a static environment must involve a dynamic mutation–selection balance, where accumulation of deleterious mutations
is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation
rate U and calculate the fraction of beneficial mutations, e, that maintains the balanced state. We find that a surprisingly low e suffices
to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted
population in spite of Muller’s ratchet. This may explain the maintenance of mitochondria and other asexual genomes.

PURIFYING selection maintains well-adapted genotypes
in the face of deleterious mutations (Haigh 1978). Yet

in asexual populations, random genetic drift in the most-fit
class of individuals will occasionally lead to its irreversible
extinction, a process known as Muller’s ratchet (Muller
1964; Felsenstein 1974). The repetitive action of the ratchet
leads to the accumulation of deleterious mutations, despite
the action of purifying selection. This ratchet effect has been
extensively analyzed (Gessler 1995; Charlesworth and
Charlesworth 1997; Gordo and Charlesworth 2000a,b;
Stephan and Kim 2002; Jain 2008) and has been observed
in experiments (Chao 1990; Duarte et al. 1992; Andersson
and Hughes 1996; Zeyl et al. 2001) and in nature (Rice 1994;
Lynch 1996; Howe and Denver 2008). In small populations
when deleterious mutation rates are high or selection pres-
sures are weak, the ratchet can proceed quickly, causing rapid

degradation of asexual genomes (Gabriel and Burger 1993;
Lynch et al. 1993, 1995). Hence Muller’s ratchet has been
described as a central problem for the maintenance of asexual
populations such as mitochondria (Loewe 2006). Avoiding
this mutational catastrophe is thought to be a major ben-
efit of sex and recombination (see Barton and Charlesworth
1998 and De Visser and Elena 2007 for reviews).

However, new studies indicate that natural and laboratory
asexual populations do not always melt down as predicted. For
example, Silander et al. (2007) recently showed that even
very small laboratory populations of phage with high muta-
tion rates tend toward fitness plateaus. In addition, a recent
comparison of human, chimpanzee, and rhesus Y chromo-
somes demonstrated that after an initial period of degrada-
tion following the halt of recombination, gene loss in the
human Y chromosome effectively stopped (Hughes et al.
2012). Finally, theoretical work by Loewe (2006) has
revealed several “genomic decay paradoxes” (i.e., species
that persist despite predicted unsustainable genomic decay),
including human mitochondria.

These results argue for a reexamination of the assump-
tions behind the classic ratchet model. In the absence of
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recombination (Bell 1998) or epistasis (Kondrashov 1994),
the only forces that can check the deterioration of fitness
due to the accumulation of deleterious mutations are back
and compensatory mutations (Schultz and Lynch 1997).
These mutations are typically assumed to be rare and are
either neglected in models of the ratchet or assumed to only
slightly slow its rate (Haigh 1978; Kondrashov 1995; Lande
1998; Bachtrog and Gordo 2004). However, as most re-
cently discussed by Charlesworth (2012), it is natural to
expect that these back and compensatory mutations become
more common as a population declines in fitness. At a min-
imum, back mutations that revert deleterious point mutations
will cause the proportion of available beneficial mutations to
increase linearly with the accumulation of these deleterious
point mutations. Recent experimental work suggests that the
pool of available compensatory mutations in fact increases
even faster than this (Silander et al. 2007; Barrick et al.
2010). Hence, based on experimental evidence it is reason-
able to assume that the probability that a random mutation
is beneficial increases with decreasing absolute fitness
(Escarmis et al. 1999; Estes and Lynch 2003; Poon and Chao
2005; Poon et al. 2005; Schoustra et al. 2009). Equivalently,
but perhaps more intuitively, one expects the probability
that a random mutation is beneficial to decrease with in-
creasing fitness.

Provided that beneficial (back and compensatory) muta-
tion rates do increase as fitness declines, Muller’s ratchet
will eventually come to a halt. Once the fraction of beneficial
mutations is high enough to counter the ratchet, the popu-
lation will remain in a stable dynamic equilibrium state, as
illustrated in Figure 1. Qualitatively, we can see that the
state is stable from the following argument: let the critical
fraction of beneficial mutations needed to precisely counter
the ratchet and maintain the equilibrium be ec. In a poorly
adapted population, a higher fraction of mutations will be
beneficial, e . ec. This excess of beneficial mutations will
push the population toward higher fitness. At the same time,
adaptation will deplete the available pool of beneficial muta-
tions, until ec is reached, as shown in Figure 1. Conversely, in
an “overadapted” population, we expect e , ec, so that del-
eterious mutations dominate, reducing population fitness
until ec is recovered. Thus we expect the dynamic mutation–
selection balance point to be a stable evolutionary “attractor.”
Furthermore, since back and compensatory mutations are
selectively favored, they can balance deleterious mutations
even while they are relatively rare, thereby maintaining
a well-adapted population. This mechanism may be respon-
sible for the fitness plateaus observed in the natural and
laboratory populations mentioned above. Moreover, we ex-
pect these “treadmill” dynamics, in which continual fixation
of deleterious mutations due to the ratchet is exactly offset
by fixation of back and compensatory mutations, to be the
generic null state of an asexual population under purifying
selection. Characterizing this state is an important step to-
ward predicting the patterns of genetic diversity these pop-
ulations maintain.

Several earlier studies have considered aspects of these
treadmill dynamics in which both beneficial and deleterious
mutations accumulate, including simulations by Wagner and
Gabriel (1990), Antezana and Hudson (1997), and Schultz
and Lynch (1997); experimental work by Silander et al.
(2007); and a combination of simulations and analytical
work by Rouzine et al. (2003, 2008) and Manrubia et al.
(2003). Theoretical work by Poon and Otto (2000) also
considered compensatory mutations using Fisher’s geomet-
rical model, and analytical work by Lande (1998) described
alternate fixation of deleterious and beneficial mutations in
small sexual populations. These studies have all shown that
finite populations settle to fitness plateaus in the presence of
purifying selection. However, the nature of this dynamic
equilibrium state remains poorly understood: the critical
fraction of beneficial mutations ec, the mean fitness of the
population at equilibrium, and the distribution about that
mean all have yet to be characterized.

In this article, we present a detailed analytical description
of the nature of the dynamic equilibrium mutation–selection
balance. Crucially, we decouple the problem of the global
stability of the dynamic balance state (which depends on
how the rate of compensatory mutations changes with ab-
solute fitness) from the properties of the dynamic balance
state itself. We accomplish this by treating the probability
that a mutation is beneficial as an independent parameter e.
The dependence of e on absolute fitness becomes important
for the evolutionary dynamics of the population away from
the equilibrium point, but not at the fixed point itself. This
allows us to identify the dynamic balance condition e = ec
and determine how it depends on population size, mutation
rate, and strength of selection, independent of any assump-
tions regarding the dependence of e on absolute fitness.

Figure 1 The relationship between the fraction of mutations that are
beneficial, e, and the absolute fitness of the population, v. A poorly
adapted population (green) with �v,vc and e , ec will adapt toward
the dynamic equilibrium “attractor” state (gray) with higher fitness and
lower e. Conversely, an “overadapted” population (red) with �v.vc and
e , ec will decline in fitness toward the dynamic equilibrium state due to
Muller’s ratchet.

1310 S. Goyal et al.



We show that even a very modest rate of compensatory
mutations is sufficient to forestall Muller’s ratchet. Even
for remarkably high mutation rates and small population
sizes, dynamic balance can be maintained with most muta-
tions being deleterious. Muller’s ratchet notwithstanding,
selection enables rare beneficial mutations to compensate
for more frequent deleterious mutations and to maintain
a well-adapted population.

Materials and Methods

Simulation methods

Our simulations are done using a custom-written Python
code available on request. We implement a discrete-time
Wright–Fisher model where the population is represented
by a vector nk with elements corresponding to the number
of individuals in fitness class k. Each generation consists
of separate selection and mutation steps. To implement se-
lection, the vector nk is multiplied by esðk2�kÞ2a to obtain a
vector ~nk containing the expected number of offspring in
class k. Here ðk2�kÞ is the fitness of class k relative to the
population mean, and a ¼ ðP​ nk2NÞ=N maintains an ap-
proximately constant population size around N.

Our model is simplified by using beneficial and delete-
rious mutation with effect 6s and mutation rate Ue and
U(1 2 e), respectively. To implement mutation, we calculate
the probability P(i, j) of a genome being hit by i beneficial
and j deleterious mutations, which are Poisson distributed.
This mutation matrix is then applied to ~nk; i.e., the parts of
~nk are moved up or down according to the net number of
mutations they accrued in this time step. Having constructed
the expected number of individuals in fitness class k after
selection and mutation, we draw a population sample from
each class from a Poisson distribution. If necessary, the pop-
ulation is recentered in the discrete vector nk. This prevents
occupied classes from running off the grid due to accumu-
lated increase or decrease in their absolute fitness.

The above process is repeated for a specified number of
generations. The speed of adaptation, v (i.e., the rate of
change of population-averaged fitness), and other features
of the dynamics are measured after an equilibration time to
remove transient effects from the initial conditions. In the
parameter regimes studied, we found that 104 generations
were generally sufficient for establishing a steady “traveling
wave” with velocity v dependent on e and other parameters.

To solve for ec(U, N, s), we rerun the simulation while
iteratively adjusting e to get v as close to zero as possible.
Since v is a fluctuating quantity, ec can be determined only
with limited accuracy, but this can be improved by increas-
ing the number of generations for each run.

We have also run simulations in which e increases with
decreasing fitness (i.e., assuming ek = e0 2 ck, where c is
a small constant) to demonstrate that the population indeed
evolves toward the values of k such that the nose of the dis-
tribution is at the appropriate ec for local dynamical balance.

Model

Our analysis is based on the standard discrete-generation
Wright–Fisher model with population size fixed at N. For the
bulk of this article, we assume that beneficial and deleteri-
ous mutations increase or decrease fitness by the same con-
stant amount s (where s . 0 by convention). In a section
below, we use simulations and bounding analysis to show
that similar behavior occurs when beneficial and deleterious
mutations have different fitness effects. In our simple model
with a single s, each individual can be described by its num-
ber, k, of deleterious mutations relative to the perfectly
adapted state. We define �k to be the mean number of dele-
terious mutations per individual, so that an individual with k
deleterious mutations has fitness sð�k2kÞ relative to the
mean, as shown in Figure 2. The population can be charac-
terized by the number of individuals nk in each of these
fitness classes. We define U to be the total mutation rate
and e to be the fraction of mutations that are beneficial, so
that the beneficial mutation rate is Ub = Ue and the delete-
rious mutation rate is Ud = U(1 2 e).

Although mutations and genetic drift are stochastic pro-
cesses, in the bulk of the distribution—where fitness classes
contain many individuals—the population dynamics are
well captured by a deterministic approximation. On average,
the number of individuals in fitness class k evolves as

dnk
dt

¼ s
�
�k2 k

�
nkf

I

2 Unkf

II

þUdnk21f

III

þ Ubnkþ1f

IV

: (1)

The terms on the right-hand side of this equation describe
the different processes acting on fitness class k: (I) the effect
of selection relative to the mean fitness, (II) mutational
load, (III) deleterious mutations from more-fit individuals,
and (IV) beneficial mutations from less-fit individuals. We
assume that the selective effect of a single mutation is small,
s � 1.

Although we expect that the probability a mutation is
beneficial will depend on the absolute fitness and hence on
k, as discussed in the Introduction, we assume e to be an
independent constant parameter. The neglect of the k de-
pendence of e is a reasonable approximation because at any
given time there will be only a relatively narrow range of k
present in the population. The k dependence of e becomes
important away from the dynamic-balance point corre-
sponding to the stationary solution of Equation 1, since on
longer timescales �k and hence the population mean fitness
begin to increase or decrease significantly. This depen-
dence—assuming that e increases with decreasing absolute
fitness—ensures the global stability of the dynamic balance
point, making it an evolutionary attractor. Yet our approxi-
mation that e is locally constant allows us to accurately
compute the ec, and corresponding distribution nk, at which
the population stays on average at a constant fitness. We
have tested this approximation against simulations that intro-
duce k dependence of e and verified that our characterization
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of the dynamic equilibrium remains accurate; these simula-
tions are described in supporting information, File S1.

We also note that by defining fitness relative to the
population mean in Equation 1, as is standard in Wright–
Fisher dynamics, we neglect the possible dependence of
population size on absolute fitness, an effect that could po-
tentially lead to mutational meltdown. We return to this
possibility in the Discussion.

Analysis

In steady state, the fitness distribution nk stays constant on
average: dnk=dt ¼ 0 for all k. Solving Equation 1 for the
steady state in the case of e = 0 leads to the familiar muta-
tion–selection balance (Haigh 1978) with a Poisson distri-
bution of fitness,

nk ¼
Ne2l

k!
lk; (2)

where k = 0 corresponds to the most-fit class. Here we have
defined

l ¼ U
s
: (3)

This dimensionless ratio is a key parameter that appears
often in the analysis below.

The deterministic approximation (Equation 1) corresponds
to an infinite population where Muller’s ratchet (i.e., the
stochastic extinction of the fittest genotype) does not oper-
ate. In the absence of such stochastic extinction, any ben-
eficial mutation from the fittest class would move the
distribution toward higher fitness, in conflict with the

steady-state assumption. Hence, in infinite populations,
steady state can be achieved only with ec = 0. Conversely,
in a finite population where the fittest class can be lost due
to genetic drift, Muller’s ratchet will eventually lead to a de-
crease in fitness if no beneficial mutations are available.
Thus we must have ec . 0 to be in the dynamic steady state.

A correct description of the dynamic equilibrium state
therefore requires a suitable treatment of genetic drift.
These stochastic effects are particularly important in the
most-fit edge of the distribution, which we call the “nose,”
where the number of individuals with a particular fitness is
small. Our analysis is based on matching a stochastic treat-
ment of the nose with a deterministic description of the bulk
of the fitness distribution (as governed by Equation 1 with
e . 0). The stochastic dynamics of the nose are determined
by two competing processes: the random extinction of the
most-fit class vs. the establishment of a new more-fit class
due to a beneficial mutation. At stationarity, the rates of
these two processes have to be equal; this condition deter-
mines the number of individuals in the nose class. We match
this stochastic condition with the number of individuals in
the nose class calculated based on the deterministic distri-
bution. This determines the critical fraction of beneficial
mutations ec as a function of the population parameters.

The Shape of the Fitness Distribution

We begin with a deterministic analysis of the shape of the
fitness distribution at steady state. Since only relative
fitnesses matter, it is convenient to set the origin of k such
that the mean of the fitness distribution is �k ¼ l. In File S1,
we solve for the steady state of Equation 1, using Fourier
analysis. We find

Figure 2 (A) Schematic illustration of the fitness distribu-
tion within a population. We refer to the most-fit class as
the “nose” of the distribution. (B) A typical realization of
the stochastic dynamics at the nose. In the event of ex-
tinction of the nose, n1 becomes the new nose and relative
nose fitness decreases by s. Conversely, when a more-fit
nose is established, the relative nose fitness increases by s.
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nk ¼ Ne2lð122eÞþk log
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12eÞ=e

p
Jkð2aÞ; (4)

where Jk denotes the Bessel function of order k and we have
defined a[ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð12eÞp

. A comparison of this solution to
simulation results is shown in Figure 3. For k in the vicinity
of �k, this distribution is approximately Gaussian with vari-
ance s2

k ¼ lð122eÞ. While the low-fitness tail of the distri-
bution decays less rapidly than a Gaussian, the high-fitness
side decays more rapidly than a Gaussian.

It is important to note that in the deterministic limit there
is no true stationary state for arbitrary e . 0; this manifests
itself in the loss of positivity of the solution given by Equa-
tion 4 for high-fitness classes above the position of the nose
class. While the position of the nose, which we call k⋆,
requires a more careful treatment, Equation 4 gives a very
accurate description of the bulk of the fitness distribution
(i.e., nk for k . k⋆).

To determine the position of the nose, k⋆, we observe that
if classes with k , k⋆ carry no individuals, fitness class k⋆
does not receive an influx of mutations from the more-fit
class k⋆ 2 1. That is, term III in Equation 1 is absent, yield-
ing ð�k2k⋆2lÞnk⋆ þ lenk⋆þ1 ¼ 0. This, along with Equation
4, gives the following equation for k⋆:

k⋆Jk⋆ð2aÞ ¼ a  Jk⋆þ1ð2aÞ: (5)

This must in general be solved numerically. However, in
File S1 we show that

k⋆  �  

�
l2e   for  el2  �  1
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð12 eÞp

for  el2  �  1:
(6)

To gain some intuition into the significance of k⋆, note that
k⋆ = 0 in an infinite population with ec = 0. In this case, the
fitness distribution is the familiar Poisson distribution and
the fittest class contains a fraction e2l of all individuals. In
a finite population, Ne2l , 1 for sufficiently large l = U/s,

which implies that at steady state the mutation-free geno-
type is typically absent and therefore k⋆ . 0. This adjust-
ment of k⋆ for finite population size is reflected in Equation
6, which states that the most-fit class gets closer to the
population mean as e increases.

The Stochastic Matching Condition

We seek to determine the e = ec at which the distribution is
stationary for a given finite N. Since the most-fit class is
populated by a comparatively small number of individuals,
fluctuations due to genetic drift may change its occupancy
significantly. In particular, the population at the nose can go
extinct, in which case the next fitness class becomes the new
nose. Alternatively, a lucky beneficial mutation can cause the
nose to advance by one class. Stationarity can therefore be
achieved only in an average sense: the rate of advancing the
nose has to equal the rate of extinction of the nose.

Since these two processes depend sensitively on the
number of individuals in the nose, requiring the equality
of extinction and establishment rates determines the aver-
age size of the population of the nose, nk⋆ , as a function of U,
s, and e. We match this nk⋆ to the deterministic solution
determined above to find ec(N, s, U).

The nature of the dynamics at the nose depends qualita-
tively on nk⋆ : If nk⋆ is large enough that its dynamics are
dominated by selection, it is rarely lost and Muller’s ratchet
is slow. Conversely, if nk⋆ is small, the class turns over neu-
trally and is easily lost and reseeded. We begin by considering
the slow-ratchet regime, where nk⋆ is relatively large, and
then turn to the opposite fast-ratchet regime.

Slow-ratchet regime

In the regime where nk⋆s. 1, the fittest class is only rarely
lost due to drift. Note that this regime corresponds to el2 , 1,
which implies nk⋆ � Ne2l and k⋆ � 0. In this regime the
mean extinction rate for the nose, r2, is due to rare large
fluctuations that overcome the “restoring force” due to selec-
tion trying to preserve mutation–selection balance. Estimates
of this extinction rate have been obtained via diffusion theory
(Haigh 1978; Gordo and Charlesworth 2000a; Stephan
and Kim 2002; Jain 2008; Neher and Shraiman 2012) and
have the form (see File S1) r2 � e2gsnk⋆gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gsnk⋆=p

p
; where

g is a “phenomenological” parameter characterizing the ef-
fective strength of selection on the fittest class, introduced
by Haigh (1978) and used in Gordo and Charlesworth
(2000a), Stephan and Kim (2002), and Jain (2008) (see
below).

To impose our stochastic condition, we must also cal-
culate the rate at which a new more-fit class establishes,
r+. This is given by the product of the rate at which new
beneficial mutants are generated and the probability they
establish, rþ ¼ nk⋆UbPest. Since k⋆ � 0 in this regime, we
have Pest � 2s. Equating the two rates yields the stochastic
condition

Figure 3 Comparison of the fitness distribution obtained in simulations with
the analytic result Equation 4 and a Gaussian with equal mean and variance.
The simulation result is the median fitness distribution observed over 106

generations with parameters l = 256, Ns = 1.25 · 106, and N = 109.
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ec ¼ g2

2U=s
e2gsNe2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pgsNel

p : (7)

This condition suggests that ec in the slow-ratchet regime
is a function of a combination of population parameters:
lec(U, N, s)/g2 � f (gsNe2l). We find that contrary to earlier
studies (Haigh 1978; Gordo and Charlesworth 2000a), con-
stant g is not consistent with simulations. Instead, as shown
in Figure 4A, the simulation data in the presented range are
well explained by g ¼ 1=

ffiffiffi
l

p
, which for values of l consid-

ered, is a good approximation to the more general expres-
sion found in Neher and Shraiman 2012. This empirical
dependence is, however, consistent with the approximation
g � 0.6 used by Gordo and Charlesworth (2000a), within
the range of parameters ð0:4& 1=

ffiffiffi
l

p
&0:8Þ addressed by

their study. Since we consider a much broader range of
parameters ð0:1&1=

ffiffiffi
l

p
& 1Þ, accounting for the depen-

dence of g on U/s becomes important. Our analytical solu-
tion Equation 7, shown as a dotted line in Figure 4A, is in
good agreement with the simulation data across this wide
range of parameters.

In this regime, ec depends exponentially on Nse2l and
hence rapidly approaches zero as l becomes small, approach-
ing the infinite population limit where Muller’s ratchet does
not operate.

Fast-ratchet regime

For larger mutation rate, smaller population size, or weaker
selection, the occupancy of the most-fit class decreases,
thereby increasing its rate of extinction. Consequently,
a higher rate of beneficial mutations (larger e) is required
to match the extinction rate. The resulting rapid turnover of
the population at the nose leads to the failure of the quasi-
static approximation we used in the slow-ratchet regime.

As the occupancy of the nose decreases, in particular
when nk⋆s& 1, the dynamics of the fittest class are governed
by drift. The rate of extinction, r2, can therefore be esti-
mated from neutral diffusion: r2 � 1=ð2nk⋆Þ. The rate at
which a new more-fit class is established is given by the
same formula as before, rþ ¼ eUnk⋆Pest. However, Pest now
refers to the probability that a new mutant lineage reaches
1=2ðk⋆ þ 1Þs individuals. At this point, the lineage crosses
over from stochastic to deterministic dynamics, entering the
domain described by the deterministic solution Equation 4.
Thus Pest = 2(k⋆ + 1)s. Equating r2 = r+ yields the stochas-
tic condition

nk⋆ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4eUsk⋆
p : (8)

This condition, together with the solution Equation 4 for the
distribution, allows us to determine ec(N, s, U). As shown in
Figure 4, our solution Equation 8 is in excellent agreement
with simulations for most of the data. However, our solution
overestimates ec for populations with small population size
and small l that still satisfy nk⋆s& 1. A better description in

this regime will require a more careful analysis of fluctua-
tions beyond the nose.

Large population size limit

Large populations can maintain a well-adapted genome
with ec � 1=2 even for moderately large l. In the limit of
large populations and large U/s, with the limit taken so
that ecl2 � 1 while ec � 1=2, the matching condition
reduces to

ffiffiffiffi
ec

p
log ec ¼ l21   logðNse2lð122ecÞÞ. This equa-

tion has the approximate solution

ec � z2

log2½z=logðz21Þ�; 2z[ 12
log  Ns

l
: (9)

This result can be made more precise through iteration (see
File S1 for derivations and comparisons to simulation data).

Figure 4 The critical proportion of beneficial mutations, ec, across both
slow- and fast-ratchet regimes for many combinations of U, s, and N for
the two regimes. Simulation results are shown as points, with color in-
dicating l. (A) Slow-ratchet regime. We show ecl2 as a function of
ð1= ffiffiffi

l
p ÞsNe2l for ecl2 , 1. The dashed black line is the analytic solution

given by Equation 7. (B) Fast-ratchet regime. Note that ec is a function of
l21log Ns and even in small populations approaches ec � 1=2 only for
very large l. The dashed black line shows the asymptotic solution ec in the
large population size limit ðecl2 � 1Þ, Equation 9. The inset compares the
numerical solution from Equation 8 to simulation data.

1314 S. Goyal et al.

http://www.genetics.org/cgi/data/genetics.112.141291/DC1/1


Note here that ec depends only very weakly on Ns and on l,
in contrast to the slow-ratchet regime where ec declines
exponentially with Nse2l.

High mutation rate or weak purifying selection

In this limit, the dynamic equilibrium tends toward the state
where beneficial and deleterious mutations are equally
frequent, e ¼ 1=2. This corresponds to a population that can
no longer maintain a well-adapted state. In File S1, we de-
rive an approximate expression for ec in the fast-ratchet re-
gime in the limit of large l:

ec � 1
2
2

�
3
4l

log  Ns
�1=3

: (10)

From this expression we can immediately determine the
point at which the population can no longer maintain a well-
adapted state, as defined by a maximum fraction of be-
neficial mutations, emax. To have ec , emax, we require

l

log  Ns
#

3
4

�
1

0:52emax

	3
; (11)

valid for emax * 0.2. Note that for emax = 1/4, the right-hand
side (RHS) of this expression is 48; for emax = 1/3, the RHS
is 162. Thus even small populations with Ns * 1 can main-
tain relatively well-adapted genomes in the face of high
mutation rates and weak selection (i.e., when U � s so that
l � 1).

Different fitness effects for beneficial
and deleterious mutations

Our analysis to this point has assumed that both beneficial
and deleterious mutations have the same fitness effect s.
However, compensatory mutations often only partially com-
pensate for the cost of a deleterious mutation. Hence bene-
ficial mutations may tend to have a smaller effect on fitness
than deleterious mutations. The opposite case, where bene-
ficial mutations have larger effects than deleterious muta-
tions, may also be relevant, as weak-effect deleterious
mutations accumulate more rapidly and for some effect dis-
tributions may dominate. We now consider the effects of
these differences in the fitness effects of beneficial and del-
eterious mutations. We denote the effect of a deleterious
mutation by sd and the effect of a beneficial mutation by
sb, where by convention both sd and sb are positive.

When sd 6¼ sb, there still exists a critical value of e = ec
corresponding to a dynamic equilibrium state, which (pro-
vided as always that e increases as fitness decreases) is glob-
ally stable. However, the shape of the fitness distribution in
this equilibrium will be different from that calculated above,
and the critical ec will also change. Fortunately, our analysis
of the single-s model places bounds on this new critical ec
that applies for sd 6¼ sb. To see this, we first define the ec that
corresponds to a particular single-s model (as calculated
above) to be ec(s). Now consider the case sb , sd. The critical

ec for this more complex situation must be less than ec(sb),
because stronger-effect deleterious mutations can only de-
crease ec (stronger selection against deleterious mutations
cannot speed their accumulation). On the other hand, the
critical ec must also be greater than ec(sd), because weaker-
effect beneficial mutations can only increase ec. A similar
argument leads to analogous bounds for the case sb . sd.

These simple bounding arguments imply that the critical
ec is at most ec(sb) or ec(sd), whichever is greater. Since we
have seen that ec remains small even for remarkably small s
and large U, this can still correspond to a relatively well-
adapted state. Provided that deleterious mutations and the
corresponding compensatory mutations do not have widely
differing fitness effects, these bounding arguments also
constrain ec to a narrow range. Thus although the quantita-
tive details of the stable equilibrium state change whenever
sb 6¼ sd, the main qualitative conclusions of our single-s anal-
ysis still apply.

To provide a more precise analysis of how ec depends
on both sb and sd, we use simulations to compare ec for sb =
sd/z with z = 0.5, 1, 2 and show that in the slow-ratchet
regime ec(z) � z2ec(1), demonstrated by the collapse of
simulation data for different parameter values onto the
same curve, as shown in Figure 5. This behavior in the
slow-ratchet regime is quite intuitive, as the rate of forward
motion of the nose increases as s2b. Here one factor of sb
arises from the establishment probability and the other
from the size of the forward step due to each established
beneficial mutation. Hence if sb / sb/z, the rate of bene-
ficial mutations necessary to maintain dynamic balance
must increase by z2. Remarkably, this simple scaling ap-
proximation holds well into the crossover to the rapid-
ratchet regime.

We finally note that of course in general not all beneficial
mutations will have the same fitness effect sb nor will all
deleterious mutations have the same cost sd. Instead, the
effect of any individual mutation will be drawn from some
distribution of beneficial or deleterious fitness effects. The
values of sb and sd then represent some weighted average
effect of a beneficial or deleterious mutation. A full analysis
of this more complex situation is beyond the scope of this
article, but we return to this issue, qualitatively, in the Dis-
cussion below.

Discussion

In infinite populations it has long been recognized that the
balance between mutational pressure and purifying selec-
tion leads to a fitness equilibrium (Eigen 1971; Haigh 1978).
Our analysis demonstrates that such an equilibrium also
exists in a finite population, despite the action of genetic
drift and Muller’s ratchet. Much of the previous work on
these finite populations has focused primarily on the rate
of Muller’s ratchet in the absence of beneficial mutations
and has generally assumed that back and compensatory
mutations are rare enough to be neglected (Gordo and
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Charlesworth 2000a,b; Stephan and Kim 2002; Bachtrog
and Gordo 2004; Etheridge et al. 2009). However, both
intuition and experimental data (Silander et al., 2007)
strongly suggest that beneficial mutations become more
common as a population accumulates deleterious mutations.
Silander et al. (2007) also provided a simple analysis of the
possible dynamic balance, but it did not extend beyond the
low mutation rate limit in which mutant alleles fix or go
extinct within an otherwise clonal population. The dynamics
of diverse populations subject to the combined effect of both
deleterious and beneficial mutations have remained under-
studied (for notable exceptions see Rouzine et al. 2003,
2008 and Pfaffelhuber et al. 2011).

We have shown that for any population size, mutation
rate, and selection pressure, there exists a proportion of
beneficial mutations, ec, which balances the accumulation of
deleterious mutations. Because beneficial mutations are fa-
vored by natural selection, a small-fraction beneficial muta-
tion can suffice to maintain stability, ec � 1. We have
demonstrated this by explicitly calculating ec as a function
of population size, mutation rate, and the strength of selec-
tion. There are two qualitatively different regimes for ec, as
shown in Figure 6. In the slow-ratchet regime, selection
stabilizes the fittest subset of the population at the nose of
the distribution, so ec is small and depends exponentially on
the population parameters Ns and l. On the other hand,
in the fast-ratchet regime, ec must be larger to balance rapid
accumulation of deleterious alleles, and it depends more
weakly on the population parameters Ns and l. The bound-
ary of the two regimes is approximately given by Nse2l = 1.

We note that Rouzine et al. (2003, 2008) studied popu-
lation dynamics under the combined action of purifying and
positive selection in a model similar to ours, finding both

simulation and analytical evidence for the existence of the
dynamic balance state. However, their analysis focuses on
the rate of the ratchet (with e� ec) or the rate of adaptation
(with e � ec) and does not apply as e / ec. Our work, by
contrast, focuses exclusively on the dynamic equilibrium
state and the critical ec required to maintain it.

Our analysis treats e as an independent parameter, even
though we expect it to depend on absolute fitness v. As
discussed above, we expect e(v) to decrease with increas-
ing v. In this case the steady state corresponding to dy-
namic balance at ec(N, l) is stable and is a global attractor
point. For e . ec mean fitness increases (dv/dt . 0), while
for e , ec mean fitness decreases (dv/dt , 0), which for
de(v)/dv , 0 guarantees local stability of the e = ec equi-
librium. While our presentation focused on the properties
of dynamic equilibrium, our approach also defines the ac-
tual rate of change of dv/dt = r+ 2 r2 as a function of
instantaneous e and N (note that, as in Rouzine et al. 2008,
in general r6 themselves become dependent on this “veloc-
ity”). This quantitative understanding of differential dynam-
ics, i.e., the rate of change of mean fitness conditional on a
given value of e, can be integrated for any given e(v) de-
fining the corresponding evolutionary trajectory as a func-
tion of time. This consideration can be readily generalized
(by allowing N to change along v) to include possible re-
duction in the size of the population that may follow reduc-
tion of absolute fitness. In particular, it is possible that under
some conditions the population will collapse—i.e., “muta-
tional meltdown” will occur—before the stable dynamic
equilibrium is reached (Lynch et al. 1993) (see File S1 for
more extended discussion). The possibility of such a melt-
down instability depends critically on precisely how e
depends on v and hence on details of the ecology of the
specific system. However, given any specific set of assump-
tions about e(v), this effect can be analyzed quantitatively in
terms of the dynamics formulated above.

Figure 6 The fraction of beneficial mutations ec necessary to maintain
the dynamic mutation–selection balance in a population with parameters
Ns and l ¼ U/s. The dashed line separates the slow- and fast-ratchet
regimes. Experiments with various model organisms with different pop-
ulation parameters are represented as points.

Figure 5 The critical fraction of beneficial mutations, ec, in the slow-
ratchet regime for sb = sd/z with z = 0.5, 1, 2 and many combinations
of U, s, and N. As in Figure 4, simulation results are shown as points, with
color indicating l. The dashed black line is the analytic solution given by
Equation 7.
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Our analytic results for ec in the dynamic equilibrium
were made possible by the explicit calculation of the shape
of the fitness distribution, given in Equation 4 and illustrated
in Figure 3. With increasing l and decreasing N this distri-
bution deviates from the Poisson distribution for the classic
mutation–selection balance (Haigh 1978), most notably re-
ducing the fitness of the top class, k⋆, relative to the mean.
Examining the properties of the dynamic mutation–selection
equilibrium over the full parameter range, shown in Figure
6, has revealed a strong asymmetry between beneficial and
deleterious mutations. For example, for a small population
Ns � 103 with high mutation rate l � 8, just 2% beneficial
mutations are enough to counteract the effect of deleterious
mutations. This indicates that purifying selection is remark-
ably effective even for conditions where Muller’s ratchet
would proceed extremely quickly in the absence of back
and compensatory mutations.

Populations with e . ec should adapt, while populations
with e , ec should decline in fitness. Experimental evolu-
tion of model organisms in controlled laboratory environ-
ments appears to be consistent with this expectation. In
particular, Silander et al. (2007) showed that bacterio-
phage uX174 converged to a population-size–dependent
fitness plateau, as our model would predict. For their pop-
ulation parameters (s � 0.08, U � 0.13) our theory predicts
ec ranging from 2% to 0.2% for their experiments (in which
N ranged from 100 to 200), consistent with the beneficial
mutation rates they infer. Their experiments with lower
population sizes (N & 30) are in the fast-ratchet regime,
and estimating ec requires further analysis of fluctuations
beyond the nose.

Other experiments with vesicular stomatitis virus found
that large populations adapt while small populations melt,
also consistent with our analysis (Moya et al. 2000). Similar
results have been observed in yeast (Desai et al. 2007; Lang
et al. 2011). In the long-term evolution experiments of Len-
ski and collaborators in Escherichia coli, parameters are such
that we expect the critical ec to be very small, ec � 10210,
consistent with their observation of continuous adaptation
even after tens of thousands of generations. On the other
hand, mutator strains of E. coli (Trindade et al. 2010) and
yeast (Desai et al. 2007) sometimes show decrease in fitness,
which could be used to further test the model. In Figure 6,
we show approximate estimates for the parameter regimes
in which each of these experimental systems lie. For exam-
ple, population parameters for human immunodeficiency
virus seem to place it close to the boundary between the
slow- and fast-ratchet regimes (Figure 6), so that its evolu-
tionary dynamics depend sensitively on the strength of
selection.

While a global “phase diagram” of population dynamics is
highly intriguing, our present attempt to construct it high-
lights the challenge of doing so. First, our analysis has as-
sumed that all mutations have the same selective effect s. In
general, however, mutations have a range of selective
effects. Mutations with a particular characteristic strength

may tend to dominate the dynamics, if more strongly se-
lected mutations are quickly eliminated by selection while
more weakly selected mutations are effectively neutral given
interference from selection on the other mutations. Thus,
our l parameter must be regarded as an effective parameter
corresponding to mutations with effect strength that domi-
nate the balance. The possibility of defining such an effective
l in the model of Muller’s ratchet with deleterious effects of
different size has been discussed by Soderberg and Berg
(2007) on the basis of numerical simulations. Yet the gen-
eral description of interference within an arbitrary distribu-
tion of (deleterious and beneficial) mutational effects that
would provide a precise definition of effective leff remains
an open problem and an important avenue for future work.
Second, our analysis has focused on asexual populations and
neglected recombination. Since even weak recombination
has the potential to significantly slow Muller’s ratchet, it
would be interesting to generalize our dynamic balance to
include its effects (Bell 1998; Gordo and Campos 2008).
Increasing recombination rates would presumably allow
the population to maintain better-adapted genotypes in this
steady state. Last but not least, better experimental charac-
terization of mutation effect distributions for different
organisms will be needed to fully achieve the synthesis
attempted in Figure 6.

The dynamic balance state has important implications for
patterns of molecular evolution. Recent analysis of the
effects of purifying selection on the structure of genealogies
has suggested that Muller’s ratchet plays a crucial role in
determining the structure of genetic variation in asexual
populations or on short distance scales in the genomes of
sexual organisms (Gordo et al. 2002; Seger et al. 2010).
However, these expectations must be revised if populations
exist instead in the dynamic state in which both beneficial
and deleterious mutations fix, without any continuous net
degradation or growth of fitness. This means that even
though no change in fitness occurs, signatures of both pos-
itive and negative selection are likely to be found in patterns
of molecular evolution, as has been suggested by earlier
studies (Hartl and Taubes 1996; Antezana and Hudson
1997). We argue that this state is the natural null expecta-
tion for the effects of mutations and purifying selection on
patterns of genetic variation; efforts to look for positive se-
lection that represent “true” adaptation should look for devi-
ations from this situation.

Finally, we note that although the dynamic balance we
have analyzed is stable, a population will typically fluctuate
around this steady state. A few beneficial mutations may
become established at the nose by chance, leading to a
temporary increase in mean fitness that is later balanced by
a reduction in e at this higher fitness, restoring the popula-
tion to the equilibrium state. Conversely, a few clicks of
Muller’s ratchet will occasionally lead to temporary reduc-
tions in population fitness before the corresponding increase
in e restores the steady state. These fluctuations around the
dynamic balance may be important to the clonal structure of
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the population and hence are likely to play a key role in
patterns of molecular evolution and in understanding the
effects of recombination.
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Rate of extinction of the fittest genotype in the slow ratchet regime. Stochastic fluctuations
of the fittest class can approximately be described by a diffusion equation:

∂tp(x, t) = −∂x [D1(x)p(x, t)] + ∂2
x [D2(x)p(x, t)] (1)

where p(x) is the probability distribution of the nose occupancy, x = N−1nk? being defined as the fraction
of the population in the ”top bin” k?. Diffusive ”drift” is represented by D2(x) = x(1−x)/2N and effect
of selection acting in the top bin is represented by D1(x) = ŝx(1 − x/x?), where x? = e−U/s is the
equilibrium nose occupancy, , where ŝ = γs and γ is a ”phenomenological” parameter introduced by
Haigh (1978). Both x = 1 (fixation) and x = 0 (extinction) are absorbing boundary conditions (Jain,
2008; Stephan and Kim, 2002). The density function for fixation/extinction time ϕ(t;x) satisfies the
backward Kolmogorov equation

∂tϕ(t;x) = D1(x)∂xϕ(t;x) +D2(x)∂2
xϕ(t;x) (2)

where t is the time interval between initial state x and fixation or extinction. The mean time to fixa-
tion/extinction starting at x = y at t = 0 is given by t̄(y) =

∫∞
0
tϕ(t; y)dt, which satisfies

−1 = D1(y)∂y t̄(y) +D2(y)∂2
y t̄(y). (3)

Using the integrating factor ϕ(x) = e
∫ x
0
dz

D1(z)

D2(z) , yields for the mean time to extinction of the fittest class:

t̄(x?) =

∫ x?

0

dy
1

ϕ(y)

∫ 1

y

dζ
ϕ(ζ)

D2(ζ)
, (4)

where
ϕ(x) = (1− ζ)

2Nŝ(1−x?)
x? e

2Nŝζ
x? , (5)

The second integral in the limit Ns� 1 can be approximated as

2N

∫ 1

y

dζ
(1− ζ)

2Nŝ(1−x?)
x? e

2Nŝζ
x?

ζ(1− ζ)
≈ 2N

∫ 1

y

dζ
e

2Nŝx?

(
2ζ
x?
− ζ

2

x2?

)
ζ

(6)

and for small x, ϕ(x) approximates to

ϕ(x) ≈ e2Nŝx?

(
2ζ
x?
− ζ

2

x2?

)
(7)

Using the above approximations and α = Nŝx?, n? = Nx? and changing the variables, η = y/x?− 1, z =
ζ/x? − 1 yields:

t̄(x?) ≈ 2nk?

∫ 0

−1

dηeαη
2

∫ 1/?−1

η

dz
e−αz

2

1 + z
(8)

For α� 1 the integral the second integral can be readily approximated yielding

t̄(x?) ≈ 2nk?

√
π

4α

∫ 0

−1

dηeαη
2 [
erf(
√
αβ)− erf(

√
αη)
]

(9)

where β = 1
k?
−1. Using η2 = 1− θ2/α allows the evaluation of the integral in the α� 1 limit and yields

t̄(x?) ≈ nk?
√
πα−3/2eα. (10)
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Assuming an exponential distribution for time of extinction of the fittest class, the rate of extinction
is given by r− = 1/t̄(x?). Replacing α = γsnk? yields:

r− ≈ e−γsnk?γs
√
γsnk?/π (11)

which we use to arrive at Eq. (11) of the main text.
This standard calculation of extinction probability has glossed over the non-trivial ”many-body”

element of the problem: the fact that the strength of selection acting on the fittest genotype is defined
relative to the population mean, which depends on the deviations from the steady state for all other,
less-fit, genotypes. The latter in turn depends on the history of the dynamics in the top fitness ”bin”. As
in all of the previous work, we deal with this problem here by introducing a phenomenological parameter
γ, known as the ”Haigh factor” (Gordo and Charlesworth, 2000a,b; Haigh, 1978; Stephan and
Kim, 2002). However, unlike earlier work we shall not assume this factor to be a constant and determine
its λ-dependence numerically (see discussion of the slow ratchet regime in the main text). An analytic
method for describing the effect of history dependence on the fluctuations of the top bin goes beyond
the scope of the present work and will be described in a separate publication (Neher and Shraiman,
submitted).

Asymptotic expressions for εc The matching condition used to determine εc in the fast-ratchet
regime can be rewritten as follows.

1

σ
√
εk?

= Ne−λ(1−2λ)+ k?
2 log 1−ε

ε Jk?(2α). (12)

In the limit of α � 1, the zero of the Bessel function is approximately at k? + 1 ≈ α and the Bessel

function at k? evaluates to roughly ∼ k2/3
? (Abramowitz 9.3.33 and 9.1.27). Hence we have

λ(1− 2ε)− λ
√
ε(1− ε) log

1− ε
ε

= logNs (13)

where we have neglected powers to the 1
6 and O(1) factors inside the logarithm. In the limit ε� 1 (but

λ2ε� 1), the matching simplifies to

1− 2ε+
√
ε log ε = λ−1 logNs (14)

which simplifies further to √
ε log ε ≈ λ−1 log(Ns)− 1 = −2z (15)

where we defined z for convenience. This can be solved for ε:

εc =
z2

W (−z)2
≈ z2

(log(z)− log(− log(z)))2
(16)

where W (x) is the −1 branch of Lambert’s W-function, i.e. the solutions of W (x)eW (x) = x. The linear
correction in Eq. 14 can be incorporated iteratively.

εi+1 =
(z + εi)

2

W (−z + εi)2
. (17)

This iteration converges for small C and ε. At larger C, the branch of the W (x) function is lost. The
result ε2 obtained after the first iteration, starting with Eq. 16, is also shown in Fig. S1 as dashed red
line.

Goyal et al. 3SI



0.0 0.1 0.2 0.3 0.4 0.5 0.6
s
U log(Ns)

0.0

0.1

0.2

0.3

0.4

0.5
ε c

1
2 −

(
3s
4U logNs

)1/3

z2

W (z)2 , z = s
2U logNs− 1

2

Numerical solution

1

10

102

103

Figure S1. Dynamic mutation-selection balance. The figure shows εc for many combinations of U , s
and N as a function of s

U logNs, while the color codes for εcU
2s−2. If εcU

2s−2 � 1, εc is solely a
function of s

U logNs and is well described by the numerical solution of Eq. 6 in Main text, shown as a
black line. The asymptotic approximations for large εc (Eq. 19) and small εc (Eq. 16) are shown as
green and red lines, respectively. The dashed lines correspond to the more accurate version mentioned
in the main text.

The other limit that is amenable to analytic calculations is the limit ε→ 1/2. To this end, we define
δ = 1

2 − ε and expand the right hand side of Eq. 14

1− 2ε−
√
ε(1− ε) log

1− ε
ε

=
4

3
δ3 +

44

15
δ5 +O(δ7) = λ−1 logNs. (18)

From this, we find

ε ≈ 1

2
−
(

3

4λ
log(Ns)

)1/3

. (19)

This expression is compared to simulation results in Fig. S1. The term proportional to δ5 can again be
included by iteration and the result is shown as the dashed green line in Fig. S1.

Convergence to the dynamic mutation-selection balance state. In the main text we discuss
the possibility that ε itself depends on the absolute fitness. As the simplest model of this dependence
here we consider the case of ε(k) = k/L which may be thought of as a ”genome” of length L, that for
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Figure S2. Evolution of the beneficial mutation fraction in the model with ε(k) = k/L. The figure
shows time evolution of ε towards ec for populations which start above or below the absolute fitness (i.e.
average number of mutations k̄ per genome) corresponding to the dynamic balance state which is
realized when ε(k) at the nose of the distribution is at εc. The rate of convergence depends on the
population parameters Ns, λ. Fluctuations around εc arise from the stochastic nature of the dynamic
balance state.

k = 0 cannot be improved in fitness, but allows for a k/L fraction of compensatory mutations, once
k > 0. Dependence of beneficial mutation fraction on absolute fitness is parameterized by L here set to
103, so that differences in ε within any population are relatively small as λ/L << 1. Figure S2 presents
the result of numerical simulations for this model, for different values of λ and different population sizes
(see Methods section of the main text for the description of the numerical method). We ran simulations
starting with populations in the high (k − 0) and low (k = L) fitness states and observed the dynamics
of population averaged fitness k̄ decrease or increase with time eventually approaching a statistically
steady state. This asymptotic state is characterized by average ε close to εc appropriate for the given
population parameters. This convergence is evident in Figure S2 which displays the time dependence of
population averaged ε normalized to εc(N,λ). Asymptotic value of the ε/εc(N,λ) deviates slightly from
unity because of the residual variation of ε within the population in the equilibrium state. The rate of
evolution towards dynamic balance slows down as the population approaches its εc, which is expected as
the v → 0 as ε→ εc.

Mutational Meltdown. While the focus of our analysis has been on understanding the properties of
the dynamic balance state, we have in the main text of the paper also discussed the global condition
for its stability: the monotonic increase in the beneficial mutation rate (i.e. ε) with decreasing absolute
fitness. That discussion however assumed constant population size, which may not be a good assumption
once the absolute fitness falls below certain threshold. Declining absolute population fitness can lead to a
reduction in population size, speeding Muller’s ratchet and leading to further declines in absolute fitness

Goyal et al. 5SI



and eventual extinction, a process is known as “mutational meltdown.” We now consider the conditions
under which the dynamic equilibrium state allows a population to avoid this mutational meltdown.

To address this question, we must first specify the relationship between absolute fitness and changes
in population size. This depends on the details of the population dynamics, and a variety of different
models are plausible. Here we use the framework proposed by Lynch et al. (1993), in which the average
number of offspring of an individual is Rw, where R is the average fecundity of a mutation-free individual
and w is its absolute fitness. In our model an individual with ` deleterious mutations has w = (1 − s)`.
The population then melts down when the average individual produces less than one offspring, which
occurs when

R(1− s)¯̀
< 1. (20)

To connect this condition to our analysis of the dynamic equilibrium state, we next need to specify the
relationship between ε and absolute fitness. This depends on the specific model of back and compensatory
mutations. Here we assume that ε increases linearly with the number of deleterious mutations,

ε =
c`

L
, (21)

where c represents the average number of back or compensatory mutations available per deleterious
mutation and L represents the total number of potentially deleterious sites.

Given these assumptions, our dynamic equilibrium state must satisfy

εc <
c

L

lnR

ln(1− s)−1
≈ c lnR

sL
(22)

in order to avoid mutational meltdown. We can simply apply our analysis as described above to compute
εc; if the resulting value is greater than this critical value given the relevant values of R, s, and L, the
dynamic equilibrium will not be stable due to reductions in population size, and meltdown will occur.
We note however that since εc is bounded above by 1

2 , meltdown can only occur for sufficiently strong
selection, sL > 2 lnR. At the same time, stronger selection tends to reduce εc. Thus meltdown will
typically be a concern only for a specific range of intermediate selection strengths.

The assumptions we made about population dynamics and the linear relationship between ε and
absolute fitness are of course arbitrary. Recent work by Silander et al. (2007) has argued that in fact ε
increases faster than linearly with `. In this case, mutational meltdown will be less likely than we have
suggested above (i.e. larger εc is required for meltdown). The alternative scenario where ε increases
less than linearly with ` is also possible in principle, in which case mutational meltdown becomes more
probable, though this scenario seems implausible given that back-mutation rates should increase linearly
with `.
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