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Higher-fitness yeast genotypes are less robust to
deleterious mutations
Milo S. Johnson1,2,3, Alena Martsul4, Sergey Kryazhimskiy4*, Michael M. Desai1,2,3,5*

Natural selection drives populations toward higher fitness, but second-order selection for adaptability
and mutational robustness can also influence evolution. In many microbial systems, diminishing-returns
epistasis contributes to a tendency for more-fit genotypes to be less adaptable, but no analogous
patterns for robustness are known. To understand how robustness varies across genotypes, we measure
the fitness effects of hundreds of individual insertion mutations in a panel of yeast strains. We find
that more-fit strains are less robust: They have distributions of fitness effects with lower mean
and higher variance. These differences arise because many mutations have more strongly deleterious
effects in faster-growing strains. This negative correlation between fitness and robustness implies that
second-order selection for robustness will tend to conflict with first-order selection for fitness.

T
he dynamics and outcomes of adaptive
evolution depend on the genetic varia-
tion available to a population. Because
mutations interact epistatically, the avail-
ability and strength of beneficial and de-

leterious mutations can vary across genotypes
(1). As “first-order” natural selection drives pop-
ulations toward higher fitness, “second-order”
selection can favor genotypes with better pro-
spects for future evolution, steering popula-
tions into regions of the fitness landscape with
better uphill prospects (i.e., that are more adapt-
able) or into “flatter” regions with fewer or less
steep downhill paths (i.e., that aremore robust to
deleterious mutations) (2–5). Although second-
order selection has been observed inmicrobes,
viruses, and digital organisms (4–8), our un-
derstanding of how and why genotypes dif-
fer in their robustness and adaptability is
incomplete.
Many laboratory microbial populations dis-

play a consistent pattern of declining adapt-
ability, such that less-fit genotypes adapt more
rapidly than more-fit genotypes (9–13). This
is at least partially explained by “diminishing-
returns” epistasis, in which individual benefi-
cial mutations become less beneficial inmore-fit
genetic backgrounds (12–15). In contrast to
adaptability, genetic variation in mutational
robustness has not been systematically char-
acterized, and no analogs to diminishing re-
turns or the rule of declining adaptability are
known. There is evidence for both antagonist-
ic and synergistic epistasis between pairs of
deleteriousmutations (16–19), but little is known

about how the entire distribution of fitness
effects (DFE) of deleteriousmutations changes
across different genetic backgrounds andwhether
robustness, like adaptability, depends system-
atically on fitness.
There are several ways to define and mea-

sure mutational robustness (2–4). In this work,
we consider only the single-step mutational

neighborhood of a genotype. We define robust-
ness on the basis of theDFEof singlemutations
and refer to strains in which these mutations
are more deleterious on average as less robust
(though the appropriate precise definition of
mutational robustness can depend on the full
DFE and the specific population genetic ques-
tion). To understand genetic variation in single-
stepmutational robustness, we aim tomeasure
how the DFE varies across genotypes and how
these differences arise from epistasis at the
level of individual mutations. To do so, we
would ideally like to measure the fitness ef-
fects of identical large sets of random muta-
tions in multiple genotypes. This would allow
us to compare the DFE of these mutations
across genotypes and to identify the genetic
basis of differences in robustness.
To this end, we developed a pipeline to mea-

sure the effects of sets of specific insertion mu-
tations in a panel of Saccharomyces cerevisiae
genotypes (Fig. 1). Briefly, we transform yeast
strains with transposon mutagenesis libraries
derived from (20), in which each plasmid is
tagged by multiple specific DNA barcodes.
Homology-directed repair then creates the
same set of transposon insertion mutations
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Fig. 1. Schematic of mutagenesis and fitness-assay pipeline. Plasmids with different colors indicate
different regions of homology from the yeast genome. BC, barcode; Seg., segregant; Tn7, transposon 7.
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in each strain. We propagate the resulting
mutant pools in batch culture and measure
barcode-frequency trajectories to estimate the
fitness effect of each mutation in each strain
(21) (figs. S1 and S2). Using this approach, we
conducted two experiments to measure mu-
tational robustness in F1 segregants derived
from a yeast cross between a laboratory and
a wine strain (BY and RM). These segregants
differ at more than 35,000 loci and have pre-
viously been sequenced and phenotyped (22).
They vary in fitness (across a 22.5% range) in
our focal environment, and those with lower
fitness are more adaptable (9).
In the first, “large library” experiment, we

transformed 18 randomly chosen segregants
from (9) with libraries consisting of 1147muta-
tions (fig. S3) (21). Although these are not a
random sample of all naturally occurring mu-
tations in yeast, they represent an unbiased set
of genomic disruptions. Because of gene essen-
tiality, differences in cloning or transformation
efficiency, or other complications, we were un-
able tomeasure the fitness effect of everymuta-
tion in every segregant [analysis of the effects of
missing data is in (21) and fig. S4]. We success-
fullymeasured the effects of 710mutations in at
least one segregant (on average, 414 per segre-
gant). Of these 710, 457 (64%) had no detectable
fitness effects in any segregant. Most remaining
mutations were deleterious, and their DFE
varied systematically across strains. Specifical-

ly, the mean fitness effect of these mutations
decreases with the background fitness of the
segregant (i.e., more-fit segregants tend to be
less robust with respect to random insertion
mutations, P = 0.03, two-sided t test) (Fig. 2, A
and B, and fig. S5).
Because we only measured fitness effects

across 18 segregants in our large library exper-
iment, and 64% of the mutations were indis-
tinguishable from neutral, we were unable to
detect more-subtle changes in the DFE or to
connect DFE-level changes to patterns of epis-
tasis for individual mutations. To address this
limitation, in our second experiment we trans-
formed a larger group of 163 randomly chosen
segregants with a “small” library, created by
selecting a subset of 91 insertions from our
large library that had significant fitness ef-
fects in the largest number of segregants (21).
This small library filters out insertions with
undetectable or rare effects but is otherwise
unbiased.
Again, we find that the mean of the DFE

decreases as segregant fitness increases (Fig. 2,
C to E). We also find significant correlations
between background fitness and the variance
and skew of the DFE:more-fit segregants have
wider DFEs that are skewed toward more-
deleterious mutations (Fig. 2, C, F, and G, and
fig. S6). These results imply that mutational
robustness is negatively correlated with back-
ground fitness. This suggests that second-order

selection for robustness could be constrained
by conflict with first-order selection for fitness.
The DFE is composed of individual muta-

tions. To understandwhy the shape of the DFE
varies between segregants, we examined how
the effects of these individual mutations vary.
We observe a variety of types of epistasis (Fig. 3
and fig. S7), including nearly constant effects
across backgrounds (e.g., PAH1, MME1) and
diminishing returns (e.g., SIR3). However, the
most frequent pattern (48 cases) is “increasing-
cost” epistasis such that the mutation is more
deleterious in more-fit segregants (Figs. 3 and
4A). This is the deleterious-mutation analog of
diminishing-returns epistasis. Notably, this
effect can cross zero: Some mutations are ben-
eficial in the least-fit segregants, neutral in
intermediate-fitness segregants, and deleteri-
ous in higher-fitness segregants (e.g., RPL16A).
This negative correlation is not universal; six
mutationsexhibit theoppositepattern (e.g., KRI1).
In addition to background fitness, specific

genetic loci can influence the fitness effects of
individual mutations (e.g., NOP16) (Fig. 3). We
used the same procedure as in (9, 22) to iden-
tify such quantitative trait loci (QTLs) for each
mutation (fig. S8). To quantify how theseQTLs
and background fitness explain the variation
in the fitness effect of each mutation, we fit
three linear models to our data (21). The “fit-
ness” model includes segregant fitness as the
only predictor. The “QTL”model includes only
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Fig. 2. DFEs of
insertion mutations.
(A) DFEs in the
large library experiment.
Segregants are organized
by background fitness.
Color represents the
fraction of mutations
for each segregant in
each fitness-effect
bin (scale bar at right).
(B) Relationship
between background
fitness and the mean
of the DFE for the large
library experiment
(P = 0.03, two-sided
t test). (C) DFEs in the
small library experiment.
Color represents the
fraction of mutations
for each segregant in
each fitness-effect bin
(scale bar at right).
(D) Combined DFE of
most-fit and least-fit
quartile of segregants in
the small library experi-
ment. (E to G) Relationship between background fitness and DFE statistics for the small library experiment (P = 4.13 × 10−31, P = 7. 83 × 10−14, P = 4.08 × 10−12,
respectively, two-sided t test).
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segregant genotype at a small number of QTLs.
The “full model” includes both segregant fit-
ness and QTL effects.
We find that at least one of these three

models is significantly better than the null
model without epistasis for 71 of the 80 muta-
tions for which we have measurements in at
least 50 segregants (Fig. 4B). For mutations
in which the fitness model has explanatory
power (64 cases, 80.0%), most are more dele-
terious in more-fit backgrounds (58 cases),
and most of these are deleterious on average
(i.e., exhibit increasing-cost epistasis, 48 cases).
QTLs have explanatory power in 60 cases
(75.0%), but because many QTLs also affect
segregant fitness, QTL and fitness contribu-
tions are confounded. To understand which of
our models best explains the fitness effects of
each mutation while involving as few param-
eters as possible, we compare the Akaike in-
formation criterion (AIC) of each model. The

AIC is lowest for the background fitness mod-
el for 10 mutations (12.5%), the QTL model
for 16mutations (20%), and the full model for
45 mutations (56.25%). However, even when
the background fitness model does not have
the lowest AIC, inmany cases it explains close
to asmuch variation as the QTL or full model.
One potential explanation for increasing-cost

epistasis is that mutations have effects during
the saturation phase of our batch culture prop-
agation, and more-fit strains are less robust
because they spend longer in saturation. We
measured fitness within a single growth cycle
and found that this is not the case. Instead, dif-
ferences in fitness arise almost exclusively dur-
ing exponential growth (21) (figs. S9 to S11).
To understand why faster-growing strains

are less robust, we looked for functional simi-
larities among genes disrupted by mutations
with similar epistatic patterns [by mutations
whose fitness effects were modified by the

sameQTL (fig. S12) or bymutationswith strong
fitness-mediated epistasis (21)]. We found en-
richment in several GeneOntology (GO) terms
among such genes at P < 0.05 (though none
remain significant after multiple-hypothesis
correction) (table S1) (23). Most notably, the
fitness-mediated epistasis set and the set asso-
ciated with the most commonly observed QTL
are enriched for ribosome- and translation-
related functions. This QTL is also the stron-
gest background fitness QTL and includes
variants in KRE33, a gene involved in small
ribosomal subunit assembly (9). Metabolic con-
trol theory provides a possible link between
this functional information and increasing-
cost epistasis. Specifically, it predicts that a
deleterious mutation in one enzyme will have
a weaker effect if other enzymes in any se-
quential biological pathway are already de-
fective, given that fitness is correlated with
metabolic flux through that pathway (18, 24).
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Fig. 3. Patterns of
epistasis for individ-
ual mutations. Fitness
effects of 12 representa-
tive insertion mutations
are plotted against
segregant background
fitness. The top-left
mutation is one of five
putatively neutral
insertions used as
controls. Allelic state
at the largest-effect QTL
for the fitness effect
of each mutation is
shown by yellow (BY) or
blue (RM) color; allelic
state at the second-
largest–effect QTL is
shown by closed (BY)
or open (RM) symbol.
If no significant QTLs
were detected, all data
points are black. Analo-
gous plots for all
insertion mutations are
shown in fig. S7. Error
bars represent SEs (21).
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This also applies to sequential pathways in
transcription and translation (25), so increas-
ing costs epistasis could arise because more-fit
segregants have a better-optimized ribosome
synthesis or protein synthesis pathway and
therefore experience greater costs when dele-
terious mutations affect these pathways. Al-
though these results are not definitive, they
suggest that further generalizations could be
drawn from a deeper understanding of the cell-
physiological basis of fitness-mediated epistasis.
Our results are limited to the analysis of in-

dividual gene disruptionmutations in a specific
set of yeast strains, and it is possible that other
types of mutations (e.g., regulatory changes or
second-step mutations) exhibit different pat-
terns. However, to the extent that the patterns
of fitness-dependent epistasis observed in this
research and in previous work on beneficial
mutations (9–15) hold more broadly and over
multiple mutational steps, their net effect is a
predictable change in the local properties of
the fitness landscape as populations adapt.
This local mutational neighborhood becomes
less favorable in more-fit genotypes: Uphill
steps become flatter or even change to down-
hill, andmany downhill paths become steeper.
On such landscapes, first-order selection for
high-fitness genotypes conflicts with second-
order selection, and populations evolve toward
more-fit but less robust and less adaptable
genotypes. Thus, even if true fitness peaks exist,
populations may never attain them, instead

reaching a dynamic balance between benefi-
cial and deleterious mutations (26).
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Fig. 4. Genetic determinants of fitness effects. (A) Histogram of regression slopes between fitness
effect and background fitness for each mutation. Significant negative and positive correlations are
shown in blue and yellow, respectively. (B) For each mutation, the standard deviation (std dev)
of fitness effect across segregants and the square root of the variance explained by each of the
three models. For each mutation, the variance explained by models that were not significantly better
than a no-epistasis model are not plotted. Mutations shown in red or black are insertions in or near
the corresponding gene, respectively; stars indicate the mutations shown in Fig. 3. Only mutations with
fitness-effect measurements in at least 50 segregants are shown.
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