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Abstract 

As organisms evolve, the effects of mutations change as a result of epistatic interactions with other mutations 
accumulated along the line of descent. This can lead to shifts in adaptability or robustness that ultimately shape 
subsequent evolution. Here, we review recent advances in measuring, modeling, and predicting epistasis along evo-
lutionary trajectories, both in microbial cells and single proteins. We focus on simple patterns of global epistasis that 
emerge in this data, in which the effects of mutations can be predicted by a small number of variables. The emer-
gence of these patterns offers promise for efforts to model epistasis and predict evolution.
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Predicting evolution requires an understanding 
of epistasis
Individual mutations often have phenotypic effects that 
vary widely depending on the genetic background in 
which they occur, due to interactions with other variants 
both within the same gene and elsewhere in the genome 
(Fig.  1; Box  1). These genetic interactions, known as 
epistasis, can provide clues into functional relationships 
and physical interactions within and between impor-
tant proteins, pathways, and modules within the cell. 
For example, epistatic interactions can reflect physical 
contacts between residues within protein complexes or 
alterations in the function of enzymes involved in cou-
pled metabolic pathways. This has driven widespread 

interest in systematic screens for epistasis (e.g., between 
all pairs of gene deletions in yeast [1]). Numerous stud-
ies have shown that epistatic interactions are also com-
mon among mutations that accumulate along the line of 
descent in adapting laboratory microbial populations [2, 
3], and play an important role in a variety of natural evo-
lutionary processes (e.g., in maintaining binding to host 
cell receptors during the evolution of antibody escape in 
SARS-CoV-2 [4-6]). Epistasis has the potential to shape 
the course of evolution by opening up or closing off 
potential adaptive trajectories, and by collectively shift-
ing the entire distribution of fitness effects (DFE) of new 
mutations available to the adapting population.

The DFE influences the dynamics of adaptation — for 
example, the rate of fitness increase or the accumulation 
of deleterious load — in analytically tractable ways [7-9]. 
Thus predicting evolutionary dynamics requires predict-
ing how this distribution changes as mutations accumu-
late during evolution. In recent years, high-throughput 
experimental techniques have begun to make it possible 
to empirically quantify these effects (Fig. 2). This body of 
work suggests that, even when individual epistatic inter-
actions between specific mutations are largely unpre-
dictable, we may still be able to predict “macroscopic” 
changes in the DFE as populations evolve, at least in 
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the context of relatively short-term evolution of labora-
tory microbial populations [10-13]. However, it remains 
unclear how broadly these patterns will apply across 
other biological systems or over longer evolutionary 
timescales.

Whether we are trying to predict how the DFE changes 
during short-term laboratory adaptation or how the effect 
of one mutation will differ in two distantly related strain 
backgrounds, we face a difficult, high-dimensional prob-
lem. In the worst-case scenario, the fitness effect of each 
mutation depends irreducibly on the state of every other 
locus in the genome. In a best-case scenario, mutations 
combine additively with respect to fitness, such that pre-
dicting the fitness effect of a mutation is as simple as meas-
uring its effect once on any genetic background. Recent 
evidence suggests that the reality lies between these two 
extremes: epistasis is common, but structured in a way 
that sometimes allows us to predict the effects of muta-
tions from relatively few predictors or parameters. These 
simplified forms of epistasis have been generically termed 
“global,” “nonspecific,” or “unidimensional” [14-16], though 
the specific phenomenology depends on the context.

In microbial evolution, the single best predictor of 
mutational effects is often fitness itself: the effects of 
mutations and certain aspects of the DFE can sometimes 
be predicted based only on the fitness of the genetic 
background on which these effects are measured. The 
most commonly observed form of fitness-correlated 
epistasis in microbes is “diminishing-returns,” in which 
a beneficial mutation is less beneficial on more fit back-
grounds (Box 1).

In this review, we start with recent studies describing 
examples of diminishing-returns epistasis, before turning 
to consider how this work motivates broader questions 
about epistasis and evolution:

1)	 How often do we see fitness-correlated epistasis dur-
ing evolution? What other patterns of global epistasis 
emerge over shorter and longer evolutionary time-
scales?

2)	 What models can explain global epistasis?
3)	 Can we infer patterns of global epistasis and use 

them to predict phenotypes or forecast evolutionary 
outcomes?

Fig. 1  Illustration of types of epistasis. See Box 1 for definitions of these terms
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Patterns of global epistasis in microbial evolution 
experiments
Diminishing‑returns epistasis can explain declining 
adaptability in evolving populations
A common observation in experimental microbial evolu-
tion is declining adaptability: populations tend to adapt 
quicker at the beginning of an evolution experiment. Fur-
ther, among closely related strains, the best predictor of 
adaptability is often the initial fitness of the population, 
such that populations which have lower initial fitness 
adapt more quickly (reviewed in Couce and Tenaillon 
[17]). This pattern is best reflected in the E. coli long-
term evolution experiment (LTEE), where the rate of fit-
ness increase has declined dramatically and reproducibly 
across tens of thousands of generations [10, 18]. Declin-
ing adaptability has also been observed in yeast strains 
that differ by a few mutations [14], tens of thousands of 
mutations [19], in different bacteriophage isolates [20] 
and in panels of bacteria, phages, and yeast that have 
disruptive or deleterious mutations (often referred to as 
compensatory adaptation or repair experiments [21-27]).

A potential explanation for patterns of declining adapt-
ability is diminishing-returns epistasis. Diminishing-
returns epistasis often manifests as a simple negative 
linear relationship between the fitness effect of individ-
ual mutations and the background fitness and has been 

observed in many microbial evolution experiments [2, 3, 
13, 14, 27-34]. Wünsche et al. [12] showed that the aver-
age strength of beneficial mutations sharply decreased as 
populations gained fitness in the LTEE by using marker 
divergence experiments to track the prevalence and 
effects of beneficial mutations. This experiment convinc-
ingly showed that declining adaptability results primar-
ily from a shift in the beneficial DFE due to epistasis, 
in contrast to the scenario where the number of ben-
eficial mutations decreases while their effects remain 
constant. Several recent transposon mutagenesis stud-
ies have shown a reduction in the beneficial DFE dur-
ing the LTEE, though we should note that these studies 
only include loss-of-function mutations [35-37]. A recent 
study in yeast has also shown that fixation of even a sin-
gle beneficial mutation can lead to a shift towards a DFE 
with less beneficial mutations [13].

While evidence for declining adaptability and dimin-
ishing-returns epistasis is now widespread, it is useful to 
identify exceptions to this rule. For example, when Rojas 
Echenique et al. [24] allowed yeast gene-deletion strains 
to evolve, initial fitness predicted some, but not all, of the 
variation in the rate of adaptation: this study found that 
the functional module in which genes were deleted also 
played a role (i.e., in some cases two strains with simi-
lar initial fitness adapted at significantly different rates). 

Fig. 2  Illustration of methods for measuring the fitness effects of a large number of mutations in a number of genetic backgrounds
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Smith et  al. [38] evolved four highly diverged E. coli 
strains (the two most diverged strains only shared 57% of 
their genes), starting populations with one of three engi-
neered mutations, and found that while declining adapt-
ability held across mutated populations of each strain 
(when initial genotypes differed by single mutations), 
it did not hold across strains. However, we note that in 
Kavvas et  al. [39] the initially less fit genotypes among 
a different panel of E. coli strains did gain more fitness 
during evolution than their higher-initial-fitness counter-
parts. In contrast to diminishing-returns epistasis, many 
studies have reported specific cases of synergistic epista-
sis between beneficial mutations that drive important 
evolutionary dynamics [3, 40-43]. Thus a key question, 
which we will return to later in this review, is when and 
why we should expect to find patterns of diminishing-
returns epistasis, and when we might expect to see some-
thing different.

Increasing‑costs epistasis can lead to a reduction 
in mutational robustness during evolution
We recently used a transposon mutagenesis system in 
yeast to show that a set of 91 mostly deleterious insertion 
mutations became, on average, more deleterious over 
the course of 10,000 generations of evolution in one lab 
environment [11]. We had previously used this library 
to show that these mutations also tend to be more del-
eterious in higher-fitness strains isolated from a cross 
between two diverged yeast strains [44]. In both cases, 
these DFE-level patterns did not emerge from a con-
sistent decrease in the fitness effects of each mutation. 
Instead, we observed highly variable patterns of epista-
sis: some mutations have a constant effect independent 
of genetic background (no epistasis), some have specific 
interactions with individual loci, and others show con-
sistent patterns of diminishing-returns, increasing-costs, 
or decreasing-costs epistasis. While increasing-costs 
epistasis was widespread enough to cause consistent 
changes to the DFE in the strains isolated from the yeast 
cross and from one of our evolution environments, fewer 
mutations showed this trend in another evolution envi-
ronment, suggesting that the nature of selection acting 
on the evolving population can influence whether this 
trend is reliably observed.

Three recent studies have used transposon mutagen-
esis to study how the fitness effects of mutations change 
during the LTEE, focusing on overall changes to the dis-
tribution of fitness effects [35], changes in gene essential-
ity [36], and the effect of ecological interactions between 
coexisting lineages on the effects of mutations [37]. None 
of these LTEE-based studies documented a reduction in 
the mean of the distribution of fitness effects. However, 
Limdi et  al. [36] showed that more genes transitioned 

from non-essential to essential than vice versa. That is, 
insertions in some genes became highly deleterious or 
lethal over the course of evolution.

Together, these studies suggest that as microbial pop-
ulations adapt to laboratory conditions, deleterious 
insertion mutations show a tendency towards becom-
ing more deleterious (increasing-costs), though their 
effects change less consistently than beneficial mutations. 
Again, the key question is when and why we expect to see 
increasing-costs epistasis leading to a reduction in muta-
tional robustness. How do these phenomena depend 
on the environment, biological system, or evolutionary 
timescale?

Patterns of epistasis within proteins
To start asking whether we should expect to see pat-
terns of global epistasis in other systems or on other 
timescales, we first consider another level of biological 
organization on which data on epistasis is being rapidly 
accumulated: within-protein evolution. The advent of 
deep mutational scanning technologies (which screen the 
local mutational neighborhood around a focal genotype; 
reviewed in [45] and [46]), along with ancestral recon-
struction techniques and high-throughput assays for pro-
tein function, have opened the door to directly study how 
the array of mutational effects possible for a given protein 
sequence changes as the protein evolves (Fig. 2).

Deep mutational scanning studies have frequently 
observed a pattern of global epistasis in which mutations 
have additive effects on an unobserved trait (which pre-
sumably represents one or several biophysical properties 
such as stability or enzyme activity) that in turn maps 
nonlinearly to the observed phenotype (often binding 
affinity or fluorescence) [15, 47]. This simplification of 
the genotype–phenotype map allows us to predict the 
effects of mutations using relatively few parameters (i.e., 
the additive effects of mutations on the unobserved trait 
and the form of the nonlinearity). However, we note that 
this form of global epistasis is distinct from fitness-cor-
related global epistasis: for example, two mutations that 
have the same effect on one genetic background will have 
the same effect on another, which is not necessarily the 
case for fitness-correlated epistasis.

Epistatic drift makes the effects of mutations 
less predictable as proteins evolve
While the models of within-protein global epistasis 
discussed above were built from deep mutational scan-
ning datasets in which genotypes differ by a few muta-
tions, these methods have now been combined with 
ancestral sequence reconstruction to study epistasis 
along long-term evolutionary trajectories. For example, 
recent work has quantified how the effects of mutations 
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change as the DNA binding domain of steroid hormone 
receptors evolved over 700 million years [48], and as 
the receptor-binding domain (RBD) of the spike pro-
tein evolved in the family of sarbecoviruses containing 
SARS-CoV-2 [4]. It is difficult to look for phenotype-
correlated epistasis (e.g., diminishing-returns) in these 
datasets for three reasons: (1) there are fewer genetic 
backgrounds than in multi-mutation deep mutational 
scanning datasets, (2) in some cases (e.g., Park et  al. 
[48]), we do not have measurements of the phenotypes 
of the relevant genetic backgrounds, and (3) the lim-
ited dynamic range of these assays can present statisti-
cal challenges. Presumably for these reasons, neither 
of these studies specifically investigate phenotype-cor-
related epistasis. However, as these approaches grow 
more common and produce even larger datasets, it 
will be interesting to study whether patterns of global 
epistasis hold predictive power over long evolutionary 
timescales.

While these studies do not directly analyze global 
epistasis, they do find a consistent pattern: the effects of 
different mutations “drift” randomly during evolution, 
and each mutation has a different characteristic speed 
at which its effect drifts. Park et al. [48] show that these 
mutation-specific rates of change are consistent in dif-
ferent parts of the phylogenetic tree (proportional to 
the number of background substitutions on the branch). 
Starr et al. [4] find a similar pattern, in which mutational 
effects at different sites in the RBD drift across increas-
ingly different genetic backgrounds, again with site-spe-
cific speeds. Together, these studies show that certain 
mutations are more likely to have unchanging effects 
over evolutionary timescales, while others will change 
rapidly as a result of epistatic patterns that are currently 
difficult to simplify. These different rates of epistatic drift, 
which can in principle be estimated from much smaller 
datasets, can tell us how likely it is that the phenotypic 
effect of mutating a particular site is similar to its effect 
on another background. This is a useful parameter for 
large-scale Bayesian models seeking to predict epistasis 
[49].

Models of global epistasis
Our best hope for building predictive models of epista-
sis during evolution is to reduce the dimensionality of 
the mapping between genotypic configurations and fit-
ness, often referred to as the fitness landscape. The com-
monality of global or fitness-correlated epistasis suggests 
that these reductions are sometimes possible, but as we 
have seen above, these patterns are not universal. Instead, 
they depend on environmental conditions, the level of 
biological organization considered, and the genetic dis-
tance over which we are trying to predict epistasis. What 

we need, then, are models that can tell us, using either 
biological knowledge and/or sparse datasets as inputs, 
what forms of epistasis to expect. In this section, we will 
review a few nascent efforts towards this end.

Statistical models
One way to understand the emergence of patterns such 
as fitness-correlated epistasis is to describe statistical 
models of the genotype to phenotype map that could 
lead to such phenomena (Diaz-Colunga et al. [50] pro-
vide an in-depth review of these types of explanations 
for patterns of global epistasis). Recent studies [51, 
52] have proposed models where diminishing-returns 
and increasing-costs epistasis arise when a mutation 
has a large number of epistatic interactions with the 
genetic loci that vary in the background. These studies 
show that extensive idiosyncratic epistasis can lead to 
a general pattern of fitness-correlated global epistasis. 
Intuitively, in a highly epistatic fitness landscape, fit-
ter genotypes will tend to have a larger excess of posi-
tive (relative to negative) interactions between loci. 
Consequently, a mutation that interacts with many of 
these loci will disrupt, on average, a larger number of 
positively-contributing interactions when it occurs 
on a fitter background. Provided that the mutation 
has numerous interactions with the background loci, 
a mathematical argument based on the central limit 
theorem shows that the mutation’s fitness effect has a 
negative linear dependence on background fitness, irre-
spective of whether the mutation is beneficial or delete-
rious on average [51, 52].

In this framework, mutations can be broadly classi-
fied into three classes: (1) additive mutations that have 
an effect independent of the background, (2) mutations 
which have strong and specific epistatic interactions with 
one or a few other genetic loci, and whose fitness effect 
can be positively or negatively correlated with back-
ground fitness, and (3) mutations that have epistatic 
interactions with numerous loci and thereby show a neg-
ative linear dependence on background fitness. Figure 3 
shows example mutations from [44] that correspond to 
these three cases. The model predicts that for mutations 
of the third class, the negative slope of the linear trend is 
proportional to the variance of the residuals around this 
trend, which is consistent with data from Bakerlee et al. 
[53].

Another feature of the data from Bakerlee et al. [53] is 
that the negative slope of the fitness-correlated trend var-
ies significantly across mutations. This variation in slope 
could arise if mutations with steeper slopes are involved 
in more biological pathways that contribute to fitness, 
and therefore have a larger number of interaction terms 
(Fig.  3b). [52] introduced a Gaussian fitness landscape 
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model to quantify this intuition, which also predicts that 
the rate of adaptation should decline as a power law with 
time and that the DFE of beneficial mutations should be 
exponential when the organism is well-adapted to the 
environment. If acquired mutations are uncorrelated 
with fitness, this model also leads to epistatic drift at a 
site-dependent rate.

While this theory assumes that mutations have numer-
ous epistatic interactions with other loci, diminishing-
returns epistasis has also been observed across lineages 
that have acquired fewer than ten mutations. For exam-
ple, a recent study used a hierarchical CRISPR gene 
drive system to construct 875 of the 1024 possible com-
binations of 10 mutations that affect diverse functions 
in yeast [53]. By directly measuring higher-order epista-
sis terms, this work shows that fitness-correlated linear 
trends can emerge even from a small number (~ 5–10) of 
idiosyncratic interactions (Fig. 3c).

Functional models
Another class of explanations for patterns of global 
epistasis derives from a mechanistic perspective on bio-
logical systems. Lehner [54] provides an excellent review 
of a diverse set of potential molecular mechanisms 
underlying epistasis, including protein stability thresh-
olds, functional redundancy, and metabolic pathway 
structure. Here we review recent work that has attempted 
to devise functional models of global epistasis.

Several studies have attempted to explain patterns of 
fitness-correlated epistasis through the lens of meta-
bolic control theory (MCT), which is a framework used 
to relate the sensitivity of the flux through a metabolic 
pathway to changes in enzyme concentration or to muta-
tions that modulate enzyme kinetics [55, 56]. MacLean 
[57] applied the basic ideas of MCT beyond metabolic 
pathways into the core processes of transcription and 
translation, showing that strains that grow more slowly 

Fig. 3  Statistical models of epistasis. a The fitness effects of three example insertion mutations on background strains obtained from a yeast 
cross (data from [44]). These examples illustrate a mutation that shows no detectable epistatic interactions (left), a mutation that has a specific 
interaction with one locus in the background (middle) and a mutation that shows a negative linear trend (right), which arises if a mutation has 
many idiosyncratic interactions with background loci. b Theory predicts that the slope of the linear global epistasis trend depends on the number 
and magnitude of interactions the mutation has with background loci. The variability in slopes across mutations can potentially be explained by 
their involvement in a variable number of pathways that contribute to fitness. c An empirical fitness landscape with ten mutations (85% complete) 
shows a linear global epistasis trend for mutation PMA1. This trend emerges as terms of increasing orders of epistasis are added to the model. Data 
from [53]
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are more robust to a ribosome-inhibiting antibiotic. 
This relationship provides a functional explanation for 
increasing-costs epistasis in transcription or translation 
machinery: as flux through this pathway increases, muta-
tions become more costly. We have also recently used an 
MCT framework to rationalize why patterns of diminish-
ing-returns and increasing-costs arise in microbial evolu-
tion experiments [11]. We explore these ideas further in 
Box 2 and Fig. 4.

More recently, Kryazhimskiy [58] used MCT to show 
how epistasis between two mutations within a given sub-
pathway can change as we zoom out to consider their 
effect on the larger pathways in which this sub-pathway 
is embedded. Under a linearity assumption, this analy-
sis finds a non-trivial asymmetry in how positive and 
negative epistasis propagate: negative epistasis at smaller 
scales remains negative on larger scales, while positive 
epistasis can change sign. This could lead to a skew in the 
distribution of epistatic coefficients that can in principle 
lead to global epistasis, though the paper is careful to 
point out that the specific structure of the metabolic net-
work itself can also lead to different likelihoods of nega-
tive and positive epistasis.

Husain and Murugan [59] take an alternative physics-
inspired approach, relating patterns of global epistasis 
in proteins to the collective relaxation modes of protein 
conformations. For example, if a single mode dominates 
the relaxation dynamics of a protein and the measured 
phenotype is predominantly influenced by protein con-
formation, then mutational effects will show changes 
primarily along this dominant relaxation mode. If these 
mutational effects act additively on the dominant mode, 

the genotype–phenotype map can be approximated as a 
nonlinear function applied to an additive trait. More gen-
erally, if the relaxation dynamics of a system are domi-
nated by k modes, then epistatic effects should span a k
-dimensional subspace, provided that mutational effects 
are small and specific epistasis mediated by direct con-
tacts is negligible. This argument provides a physical 
explanation for global epistasis, which can be further 
tested by measuring the dimensionality of epistatic 
effects (possibly acquired through deep mutational scans) 
on a protein and its normal mode spectrum.

Predicting epistasis, predicting evolution
Inference of landscape structure
While many of the models described in the previous 
section make a priori predictions about global epistasis, 
we can also use them alongside data-driven inference 
approaches that aim to find simpler patterns in epistatic 
effects. A common goal of these methods is to predict the 
phenotypes of unobserved genotypes using a relatively 
limited set of genotype–phenotype measurements.

One conceptually straightforward approach to this prob-
lem is to model the fitness of each genotype as a sum of 
additive effects of individual mutations, along with pair-
wise and higher-order interactions between them. We can 
then infer the additive effects and interaction coefficients 
(typically up to some maximum order, and potentially 
with some regularization term) from genotype–pheno-
type data. This defines a model that can be used to predict 
phenotypes of unobserved genotypes. Bakerlee et al. [53] 
and Poelwijk et  al. [60] took this approach to infer epi-
static effects in combinatorially complete or near-complete 

Fig. 4  Diminishing-returns and increasing-costs epistasis in simple models of enzyme kinetics. (Left) The dependence of flux on two enzymes in 
a serial metabolic pathway, given by J = a/(1/E1 + 1/E2 + b) [56]. (Right) Michaelis–Menten kinetics. In the unsaturated regime, the downstream 
flux depends multiplicatively on kon and kcat . Mutations that increase log kon experience diminishing-returns, whereas mutations that reduce log kcat 
incur larger costs at larger values of log kon.
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libraries spanning sets of mutations across and within 
genes, respectively. Both found that a relatively small num-
ber of epistatic terms can explain the vast majority of the 
variation in phenotype. In other words, strong epistatic 
effects on phenotypes are sparse, such that it is possible to 
accurately predict phenotypes for the entire set based on 
a sparse sample of phenotypic measurements (e.g., 6–11% 
of the combinatorially complete set of measurements 
in Poelwijk et  al. [60]). Poelwijk et  al. [60] also demon-
strates that epistatic coefficients can be accurately inferred 
from the subset of sequences that cross some phenotypic 
threshold, suggesting that it may be possible to predict 
these coefficients from the set of extant, presumably func-
tional, sequences of a protein.

A second category of inference uses genotype–pheno-
type data to infer the functional architecture of biological 
systems, which can later be used to predict the effects of 
mutations. The most comprehensive work in this direc-
tion has aimed to characterize the genetic organization 
of budding yeast based on measurements of epistatic 
interactions between gene knockouts and knockdowns 
[1]. While this type of work can provide the foundation 
for genome-scale models of microorganisms that pre-
dict how changes in gene activities will affect phenotypes 
(reviewed in Fang et al. [61]), the data generally requires 
careful curation and typically cannot model the effects of 
individual mutations.

A third category of approaches is to assume that the 
genotype–phenotype map has a low-dimensional struc-
ture. For example, a global epistasis model analyzed by 
Otwinowski et al. [47] assumes that the observed pheno-
type is a nonlinear function of a continuous additive trait. 
To build a predictive model, these authors use training 
data to infer the effect of each mutation on the additive 
trait, as well as the nonlinear function that maps this trait 
to the measured phenotype. An alternative approach is 
to use some dimensionality reduction method on large-
scale genotype–phenotype data sets to infer the map 
between genotype and a low-dimensional latent space 
and between the latent space and observed phenotypes. 
For example, [62] used singular value decomposition to 
infer a latent space, and then used the inferred structure 
to predict the fitness effects of many mutations across 
many environments in yeast.

These dimensionality reduction approaches are also 
present in new machine-learning methods for predict-
ing patterns of epistasis, which we expect to become 
more common and accurate in the coming few years 
[63, 64]. For example, Tareen et al. [64] present a flex-
ible method for learning the relationship between gen-
otype and phenotype. This method includes additive, 
pairwise, or neural-net-based models to produce a sin-
gle latent phenotype, which may then be related to the 

measured phenotype through a nonlinear function, as 
described in Otwinowski et  al. [47]. In contrast, Ton-
ner et  al. [63] use a hierarchical Bayesian model that 
explicitly attempts to identify a relatively small number 
of uncorrelated latent variables that collectively deter-
mine phenotypes. In three within-protein datasets, 
their model identifies 3–5 latent dimensions, some of 
which may be interpretable in terms of biologically 
meaningful traits such as ligand binding affinity.

Given good data, the goal of predicting fitness effects 
of mutations is well-defined, in the same way that 
protein structure prediction has been well-defined 
for decades. A combination of machine learning 
and functionally motivated approaches should make 
high-accuracy phenotype prediction possible, at least 
among relatively closely related genotypes. The ques-
tion will be whether we can predict effects more widely 
using sparse or mutationally distant datasets. Cur-
rently, we are limited both by data and by our modeling 
approaches. As these both improve, we will approach 
the limits set by the true dimensionality of the pheno-
types produced by biological systems.

The concept of “epistatic drift” provides one simple 
framework to think about these limitations: we should 
expect our ability to predict epistasis to decline as the 
genetic distance between the backgrounds in our data 
set and our prediction target increases, and we should 
expect this effect to vary between mutations [4, 48]. 
Importantly, we can use this relationship between 
genetic distance and fitness correlations to build pri-
ors that take into account the structure of higher-order 
epistasis [49]. As we gather more high-throughput 
datasets on within-protein epistasis, we hope it will be 
possible to connect these patterns of epistatic drift to 
functional and structural properties of proteins, such 
that even when using sparse mutation data, structural 
information can be used to bolster predictive models.

Predicting evolution
Characterizing how the fitness effects of mutations 
change during evolution is essential if we are to pre-
dict evolutionary dynamics. The work reviewed here 
shows that this is a difficult task. While the effects of 
some mutations follow predictable fitness-correlated 
patterns, these patterns are not universal: they depend 
on the biological system and phenotype under selec-
tion (e.g., a protein’s binding efficiency, a microbial cell’s 
growth rate) and the timescale (e.g., strains separated by 
few mutations and generations or by hundreds of thou-
sands of mutations and generations). We are cautiously 
optimistic that as we gain the ability to predict epistasis 
in different systems and to identify the functional basis 
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of the latent phenotypes that generate this epistasis, 
we will improve our ability to predict when phenom-
ena such as declining adaptability or robustness, among 
other patterns of changing mutational effects, will occur 
as cells or proteins evolve in nature.

Box 1: Epistasis terminology
Epistasis is a concept laden with overlapping termi-
nology. Here we provide a brief glossary and com-
parison of terms.

Epistasis: When the effect of a mutation on a 
phenotype, such as fitness, depends on the genetic 
background on which it arises. For two mutations, 
epistasis is quantitatively defined as the sum of 
effects of the individual mutations subtracted from 
the effect of the double mutant.

Positive versus negative epistasis: Epistasis between 
two mutations is positive (negative) when the effect 
of the double mutant is greater (smaller) than the 
sum of the effects of the two individual mutations.

Synergistic versus antagonistic epistasis: Epistasis 
between two beneficial or two deleterious mutations 
is synergistic (antagonistic) if the absolute value of 
the effect of the double-mutant is larger (smaller) 
than the absolute value of the sum of the effects of 
the two individual mutations. Note that this is subtly 
different from the distinction between positive and 
negative epistasis.

Sign/magnitude epistasis: When the mutation’s 
effect across genetic backgrounds varies in magni-
tude but not in sign (magnitude epistasis) or when 
its sign also varies (sign epistasis).

Statistical epistasis: The average epistasis between 
two mutations when measured on genetic back-
grounds (at other loci) that are randomly sampled 
from a population.

Distribution of Fitness Effects (DFE): The probability 
that a random new mutation has a particular fitness 
effect. The DFE can in principle vary depending on the 
genetic background on which the mutations arise.

Macroscopic versus microscopic epistasis: The 
dependence of the distribution of fitness effects on the 
genetic background (macroscopic epistasis), in contrast 
with the dependence of effects of specific mutations on 
the genetic background (microscopic epistasis).

Specific/idiosyncratic epistasis: When the fitness 
effect of a mutation depends in some specific way on 
the allelic state at other sites, for example, due to pro-
tein–protein interactions or direct contact between 
residues in a protein, we refer to this as “idiosyncratic” 
epistasis because it depends on all the particular 
details of these physical interactions.

Global/unidimensional/nonspecific epistasis: When 
the effect of a mutation on diverse genetic back-
grounds can be described usingrelatively few param-
eters. In microbes, global epistasis often manifests as 
a linear dependence of the mutation’s fitness effect on 
background fitness. In proteins, global epistasis gener-
ally refers to a situation where the measured pheno-
type is well-approximated by a nonlinear function of 
an unobserved additive trait.

Diminishing-returns and increasing-costs epistasis: 
Forms of global epistasis where the fitness effect of a 
mutation is negatively correlated (often linearly) with 
background fitness. When the mutation is on average 
beneficial this is referred to as diminishing-returns, 
while if it is deleterious it is termed increasing-costs (a 
mutation can exhibit both if its effect crosses zero as a 
function of background fitness).

Functional epistasis: Distinct from the genetic defini-
tion of epistasis, this term is used to describe protein–
protein interactions, for example between proteins that 
physically interact or belong to thesame pathway.

Box 2: A speculative model of diminishing 
returns and increasing costs in evolving 
microbial populations
Why do we sometimes observe fitness-correlated epista-
sis in evolving microbial populations? Let’s speculate!

First, let’s make a distinction about redundancy, by 
thinking about two extreme functions which describe 
how biological phenotypes (e.g., the activities of genes, 
pathways, or modules) are integrated to produce a 
higher-level phenotype.

Function 1: Maximum. The two phenotypes are 
completely redundant, such that the higher-level phe-
notype depends only on the maximum value of the 
two lower-level phenotypes.

Function 2: Product. The higher-level phe-
notype is the product of the lower-level pheno-
types, such that they are non-redundant and the 
limiting lower-level phenotype primarily controls the 
higher-levelphenotype.
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These two cases qualitatively correspond to parallel 
and serial pathways, respectively.

Our first claim here is that while Function 1 is likely 
to underlie many specific cases of epistasis (e.g. syn-
thetic lethals), Function 2 is, on the whole, more com-
mon in microbial cells under selection forgrowth, 
because the core processes of growth and the pro-
cesses underlying growth largely work with non-
redundant components.

Our second claim is that selection in labora-
tory microbial evolution experiments is primarily 
for loss-of-function mutations clustered in a small 
number ofbiological modules. Consistent with this 
hypothesis, numerous experiments have found that 
replicate populations fix loss-of-function mutations 
in similar pathways, even though the specific muta-
tions differ across replicate lines. Notable examples 
in yeast include repair mutations that compensate 
for disrupted pathways (e.g the adenine biosynthesis 
pathway) and mutations in nutrient response path-
ways (e.g., Ras/PKA, TOR/Sch9), which integrate 
intracellular and extracellular signals and act as key 
regulators of gene expression. Within these mod-
ules (and perhaps between them), beneficial loss-of-
function mutations will interact negatively: because 
the genes act non-redundantly to produce a function 
that is detrimental to fitness, mutations breaking 
them will exhibit diminishing-returns epistasis.

Since we have claimed that Function 2 is morecom-
mon, we can think of the effect this has on cellular fit-
ness in a simple multiplicative model:
F =

i
αi , where αi represents the efficiency of some 

process related to fitness.
As populations fix beneficial loss-of-function muta-

tions and increase the  value associated with the mod-
ule under selection, the cost of decreasing any of the 
unchanged  values will become more severe (increas-
ing costs).

Notably, this model implies that when we see 
gain-of-function beneficial mutations in core, non-
redundant processes related to growth, we expect to 
see positive epistasis between them.  Chou et  al. [40] 
provides a striking example of this pattern, in which 
a promotercapture mutation which increases cobalt 
uptake is more beneficial in faster growing strains. In 
this context, it seems likely that the pattern of declin-
ing adaptability will often arise during short-term 
adaptation to a new environment, but might not over 
longer evolutionary timescales or when adaptation 
proceeds primarily through gain of function (e.g., as 
the result of horizontal gene transfer)
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