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Ideas, behaviors, and opinions spread through social networks. If the probability of spreading to a new indi-
vidual is a non-linear function of the fraction of the individuals’ affected neighbors, such a spreading process
becomes a “complex contagion”. This non-linearity does not typically appear with physically spreading infec-
tions, but instead can emerge when the concept that is spreading is subject to game theoretical considerations
(e.g. for choices of strategy or behavior) or psychological effects such as social reinforcement and other forms
of peer influence (e.g. for ideas, preferences, or opinions). Here we study how the stochastic dynamics of such
complex contagions are affected by the underlying network structure. Motivated by simulations of complex
epidemics on real social networks, we present a general framework for analyzing the statistics of contagions
with arbitrary non-linear adoption probabilities based on the mathematical tools of population genetics. Our
framework provides a unified approach that illustrates intuitively several key properties of complex contagions:
stronger community structure and network sparsity can significantly enhance the spread, while broad degree
distributions dampen the effect of selection. Finally, we show that some structural features can exhibit critical
values that demarcate regimes where global epidemics become possible for networks of arbitrary size. Our re-
sults draw parallels between the competition of genes in a population and memes in a world of minds and ideas.
Our tools provide insight into the spread of information, behaviors, and ideas via social influence, and highlight
the role of macroscopic network structure in determining their fate.

Individuals on a social network are subject to influence by
their neighbors, affecting their adoption of information [1]],
ideas [2]], and behaviors [3]. The likelihood that a given indi-
vidual adopts a new idea depends on how many of her neigh-
bors have adopted the idea already. For physically spreading
infections, as encountered in traditional epidemiology [4]], this
dependence is typically linear and leads to a “simple conta-
gion”. By contrast, social reinforcement and other forms of
peer influence [3l 6], as well as game theoretical considera-
tions of behavior [7], can result in a non-linear dependence of
an individual’s likelihood of adoption on her neighbors’ status
[S, I8H16]. A spreading process with such a non-linear likeli-
hood of adoption is a “complex contagion”, whose properties
can differ significantly from simple contagions [17, [18]. The
spread of complex contagions is related intimately to the in-
terplay of network structure and adoption patterns, relying on
locally high prevalence and multiple peer influence in order to
spread.

The empirical evidence for complex contagions is accumu-
lating [[1} [19-23] and several structural features influencing
spread have been identified [18| 23H26]. Beyond adoption
characteristics and network structure, other factors influenc-
ing spread likely include individual heterogeneity, personal
characteristics, strategic or reactive adoption, as well as global
influences such as mass media [21},[27-29].

Generalized dose response models [30, 31]] and threshold
models [32] provide a simple and elegant way to capture non-
linear adoption. In some cases, the relevant parameters of the
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model, such as the probability of contagion spreading given
one or two exposures, can be empirically measured to cali-
brate the model [31]. However, these models do not address
the temporal dynamics of the contagion or connect its behav-
ior to specific structural properties of the underlying network.
In some cases, assuming locally random tree-like networks
(i.e. in the absence of significant clustering), general con-
ditions for global spread can be derived [9, 133]. These ap-
proaches, however, do not illustrate the dynamics of “small”
contagions that never reach macroscopic size, and do not ap-
ply to community based or highly clustered networks. They
do illustrate a subtle tradeoff between threshold level and de-
gree heterogeneity that we build on in this paper: When an in-
dividual’s threshold is a function of the fraction (as opposed to
the absolute number) of affected neighbors, low degree nodes
are easily susceptible, but don’t pass on the contagion easily,
while high degree nodes are harder to activate but pass it on
more widely. It is thus not obvious what effect changing de-
gree heterogeneity may have on the spread of such contagions.

Game theoretic and threshold models have been used suc-
cessfully to illustrate the key insight - supported by recent em-
pirical work [34} 35] - that clustering and communities can
accelerate the spread of a complex contagion by allowing it to
quickly reach locally high levels and spread one community at
a time [7, 136], whereas simple contagions converge faster for
high-dimensional networks dominated by “long ties”. Inci-
dentally, similar insights emerge in the context of synergistic
coinfections, whose coupled epidemiological dynamics also
exhibit non-linearities and thus complex contagion properties
[[L6]. These theoretical studies use approaches focused on de-
terministic mean field dynamics and convergence times, and
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are restricted to the regime of strong positive selection (i.e.
where convergence is essentially guaranteed) [7]].

In this paper, we provide a unified framework for study-
ing complex contagions and formulating the conditions under
which they propagate based on the mathematical tools and in-
tuition from population genetics, which offers a straightfor-
ward frame for analyzing contagion dynamics at all scales of
a network, from the local neighborhood to the community to
the global scale. We aim to formulate the general network
conditions under which complex contagions propagate. While
the influence of clustering, community structure, sparsity, and
degree distributions has been illuminated in previous work
[17, [18]], our approach builds on and supplements prior work
by providing a general framework for intuitive derivations for
key properties of complex contagions and their dependence on
the above network features, accounting for their full stochastic
dynamics subject to arbitrary nonlinear adoption patterns and
selection regimes, all in the language of population genetics.
The mathematical approach highlights parallels between the
competitions of genes in a population and the competition of
memes in a world of minds and ideas.

In particular, we study here the fate and adoption of a newly
arising idea on a network, giving rise to a complex conta-
gion. We model this process in the framework of evolu-
tionary game theory by considering individuals as the nodes
of an undirected graph, with edges representing interaction
and communication patterns (?? (a,b)). We introduce the
new idea as a single randomly chosen type B node on a net-
work in which all other nodes are initially of type A. Both
types spread by contagion. In particular, we assume that in-
dividuals update their type as a continuous stochastic process,
where the rate of switching depends on the fraction of neigh-
bors of a given type: a type A node becomes type B at rate
r1 = y[1+ fi(y)] and type B nodes become type A at rate
ro = [1 —y][1+ f2(y)], where y is the local fraction of
type B neighbors at a given node. Our main aim is to un-
derstand how successfully the new idea spreads through the
network by calculating how the overall fraction of type B in-
dividuals, y(t), changes over time.

In a simple contagion, the rates of switching are propor-
tional to the local density of type B individuals, so f; and fo
are independent of y [4}[37H39]]. This is typical in many mod-
els of epidemics, where the rate at which a susceptible indi-
vidual becomes infected is often assumed to be proportional
to the number of infected neighbors. However, we consider
here complex contagions, in which f; and f5 can be functions
of y. This non-linear dependence on y has been observed in
the propagation of online contagions [} |3 [19]. The com-
peting effects of clustering and “long ties” on such complex
epidemics have been studied theoretically [6} (7, 13} [14] and
empirically [40], and deterministic models studying how het-
erogeneous adoption thresholds [8} 9] and the form of adop-
tion functions [11]] interact with node degree on random net-
works have also been analyzed. However, this earlier work
focuses largely on the deterministic mean-field behavior of
large epidemics, or on stochastic analysis characterizing how
specific network properties affect the probability of large or
global “cascades”. In contrast, the effects of general network

features on the stochastic dynamics of epidemics of a range
of sizes (both the statistical distribution of rare events as well
as the probabilities of global cascades) remain poorly char-
acterized. Here we present a unified framework to analyze
these stochastic dynamics for arbitrary forms of complex con-
tagions, and apply our model to understand the effects of key
network properties such as sparsity, community structure, and
degree distributions.

For concreteness we focus primarily on the simple illus-
trative case where f1(y) = ay and fo(y) = B, with posi-
tive o and . This models “positive frequency dependence”
[41]], where an idea is unpersuasive while rare but becomes
more attractive as it is more widely adopted [6} (7} [13]]. This
is a natural assumption in many contexts (e.g. political views,
preferences, games, or communication habits). However, we
note that some ideas may be positively selected at all frequen-
cies (i.e. negative [3), in which case they will always tend to
spread, and negative frequency dependence (i.e. negative )
may also be relevant in other scenarios (e.g. fashion trends
or baby naming). We further assume that o, 5 < 1, which
implies that the strength of selection is relatively weak, such
that a preference for one or the other type only emerges on a
collective population level (in the opposite case, the idea will
tend to very quickly either spread or be eliminated).

To some readers this model may appear reminiscent of SIS
or SIR models in epidemiology [42]]. Indeed, these models
are encompassed by our framework. However, in SIS or SIR
models the rate of recovery of a given individual is generally
not subject to neighbor influence, while the rate of spread is
linear in the neighbors. This leads to simple contagion dy-
namics for low values of y and a diverging negative frequency
dependent selection for large values of y (see SI). Therefore,
small epidemics are well described with simple contagions,
with the additional trivial consequence that large epidemics
become exponentially unlikely. We do not study this case
here. Instead, our paper is focused on the rich behavior re-
sulting from positive frequency dependence once a sufficient
prevalence y is reached. In this case, dynamics for low y are
not well described with simple contagion models, considera-
tions of social proof [5} 19] and evolutionary game theory are
relevant, and the conclusions and intuitions gained from the
model can differ substantially from those implied by epidemic
models [7]].

In ?? (c-e), we explore how the spread of such a complex
contagion is influenced by network structure. For this pur-
pose, we consider the Facebook network from the Stanford
Large Network Dataset collection [43]. We construct a se-
quence of networks with variable clustering but unchanged
degree sequence by randomly swapping pairs of edges, and
study contagions on this set of graphs. We find that the spread
of simple contagions is largely insensitive to network struc-
ture. However, for complex contagions there is a critical level
of clustering required to allow the contagion to spread glob-
ally. Below this level, the contagion becomes exponentially
unlikely to fix across large networks. We also find that the
epidemic fixes one community at a time when clustering is
sufficiently high, but for moderate or low clustering values,
all communities move through y space more or less in unison.



To analyze these effects, we begin by calculating the global

rate at which type A individuals become type B. In our model
of epidemic dynamics, this is

Ratea g = N(1—y)Ealy(1+ f1(y))] = N(1 —y) (Ealy] + aEaly?]) . Q)

Here N(1 — y) is the number of type A individuals, and the
expectation value gives the mean rate r; as averaged over all
of these type A nodes. Crucially, this depends on the distribu-
tion of y seen by type A individuals, which will depend on the
network structure. The rate of the reverse process Rateg_a
has an equivalent form. The relative difference between these
rates determines a selection pressure, s, which we define in
the standard way from population genetics [44],

2 (RateA_ﬂg — RateB_m)
Rates_,p + Ratea_,p
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This selection pressure determines whether the contagion will
on average tend to grow (s > 0) or shrink (s < 0).

In a well-mixed population, where every node is connected
to all other nodes, all individuals see the same global value
of y. Thus Ea[y?] = 2, and hence s(y) = ay — /3, con-
sistent with our model of an idea that is negatively selected
when rare but becomes more popular as it increases in fre-
quency. The critical threshold frequency above which the idea
becomes positively selected is y = y,, = g However, stan-
dard results from population genetics [44] imply that when-
ever the number of type B individual is small compared to the
inverse of the selection pressure (i.e. when Ny|s| < 1), the
random stochasticity of the process dominates over the effects
of selection, and the frequency of the idea is dominated by
random “genetic drift.” In contrast, when Ny|s| > 1, selec-
tion dominates over random drift, and the idea will tend to
deterministically spread or be eliminated from the population.

We define P,..qcn(y) as the probability that the epidemic
reaches a given value of at least y before becoming extinct.
This function captures the ability of the new idea to invade
the population and describes the statistical behavior of the
process at both small and large values of y. The selection
regimes described above then define various different behav-
iors of Preqen(y). When drift dominates, Pr.cqcp(y) falls off
as Niy as in a neutral random walk. In regimes of positive
selection, a contagion reaching a given value of y is almost
certain to reach continuously higher values of y, SO Preqcp 1S
approximately constant. By contrast, when negative selection
dominates, the contagion becomes exponentially less likely to
reach ever higher values of y, so P, falls off exponentially.

In a complex contagion, where s is a function of y, the pro-
cess can encounter various such regimes of selection, as illus-
trated in figure Figure 2| (a-b). In our example where s(y) =
ay — B, the epidemic begins with a neutral regime at low y.
Depending on the total network size NV, the epidemic may
then encounter a regime of negative selection before eventu-
ally reaching the regime of positive selection above frequency
Yn. In our example, the boundaries between these regimes are
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defined by the points at which Ny|s| = 1, while in the more
general frequency dependent case for arbitrary s(y) this gen-
eralizes to N|S(y)| = 1, where S(y) = [ s(z)dz captures
the integrated effect of selection up to y (see SI, Extended
Data Figure|[T).

One simple but critical aspect of network structure is that
not all nodes are connected. To focus on the effects of this
sparsity, we next consider the spread of a contagion on a ran-
dom regular graph, where each node is connected at random
to exactly k other nodes [45]. In such a network, each node
will no longer see the “global” value of y, but rather some lo-
cal value that reflects the fraction of its neighbors that happen
to be type B. In principle, determining these local values of
y is a complicated problem. However, because the network is
random, we expect no strong locality in how type B individu-
als are distributed, so the neighbors of each type A individual
form an approximately random sample of size £ of the whole
population (the “annealed approximation” [46}47]]). This con-
trasts with the case of a spatial network (e.g. a square lattice)
where locality is fundamental to the network geometry (in this
case the epidemic becomes a front propagation problem and
must be treated differently [48]). We show the accuracy of
our assumption in Extended Data Figure 2] and contrast it
with the case of spatial networks in Extended Data Figures[3]
and @

In our approximation, E4[y] = y, so a simple contagion is
unaffected by network sparsity. However, due to limited con-
nectivity, some type A nodes will have more type B neighbors
than others, and hence E[y?] > Ealy]?> = y?. Thus for
a complex contagion, sparsity increases r; and enhances the
spread of the epidemic. Specifically, we find (see SI for de-
tails) that for large networks where N > k (and assuming
a, B < 1), the selection pressure acting on the contagion is

<y+(1_ky)>—ﬁ- ©

This reduces to the well-mixed solution s(y) = ay — § as
k becomes large, but for small k selection is significantly en-
hanced, as shown in Figure E] (¢). The key point is that for
small k, some nodes will happen to have more type B neigh-
bors than others, and because the transition rates increase non-
linearly with y, the increased positive selection on the few in-
dividuals that see high values of y outweighs the effect of the
reduced value of y seen by individuals with few type B neigh-
bors. It is important to note that this distribution of type B
individuals is influenced by the network structure for any con-
tagion process, but it is only for complex contagions that it
affects the spread (see “Simple Contagion” in the SI).

This example illustrates a general pattern. The structure
of the network influences how type B individuals are dis-
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tributed during the contagion. This distribution, according to
the expectations in Eq. (I)), interacts with the specific form
of fi/2(y) to produce s. This selection strength then deter-
mines regions of selection and the overall behavior of the con-
tagion. Moreover, s defines an effective diffusion process [44]
(see “Basic Model” in the SI) capturing the behavior of y(¢),
which we can easily solve using standard methods to obtain
Prcach(y), the fixation probability Py, properties of the tem-
poral evolution [[14]], or any other quantities of interest. Thus
we can reduce the problem to calculating the distribution of
y in the neighborhoods of type A and type B individuals. In
general, s at any point in time will depend on the full config-
uration of the type B individuals on the network. However,
using key assumptions about the dynamics, we can often sig-
nificantly reduce the degrees of freedom on which s depends.
In the above example, by assuming no locality, we reduced
the complexity of the process to a single degree of freedom:
y. Figure[3|shows that the resulting theory accurately predicts
the results of numerical simulations of the process.

Another key feature of networks is community structure. To
analyze this effect, we consider random graphs that consist of
randomly connected communities of m individuals each. In
particular, we assume every individual has exactly k; random
connections within the community and k. outside of it, where
k; + k. = k. By tuning k;/k, we can vary the strength of
community structure. As k;/k — 1, we have very strong and
cohesive communities, while k;/k — % reduces to the case
of a random regular graph of degree k. To analyze the conta-
gion on such a graph, we must understand how type B individ-
uals distribute themselves across the network for a given fixed
value of y. We make the key assumption that for any given
vy, the distribution of y as seen within a community reaches
a quasi-steady-state before y can change significantly across
the whole graph. This approximation assumes that within-
community dynamics are fast compared to global changes of
y across the whole network; we expect this to hold when com-
munities are small and well-connected compared to the overall
network. By finding the steady state of a non-linear dynami-
cal system that tracks the number of communities with a given
fraction of type B individuals (see SI), we compute this equi-
librium distribution of type B individuals, which then allows
us to compute the distribution of y as seen by any given node
(we show that this approximation accurately predicts the re-
sults of simulation in Extended Data Figure [5). From this
distribution, we can find the effective selection strength acting
on the contagion (Figure [Z] (d)). The agreement between our
theoretical predictions and numerical simulations are shown
in Figure[3](d-f).

When communities are cohesive, type B individuals are
concentrated in just a few communities. The resulting dis-
tribution of y as seen by type A individuals is broad, and the
spread of the contagion is enhanced. The concentration arises
because for high k;, the many connections within a commu-
nity can “conduct” influence between the types and thus cause
rapid fluctuations of y within the community, but only slow
fluctuations between communities (see SI for details). The
rate of fluctuations are fastest when there are approximately
equally many type B and type A individuals in a community.

By contrast, fluctuations are slow when nearly all the nodes
within a community have the same type. The values of y
within a community (which are subject to random diffusion)
will therefore spend most of their time at extreme values of
y — 0 ory — 1. This intuition is confirmed in that we ob-
serve a critical level of community strength % above which
the equilibrium distribution of y within a community turns
from a narrow distribution (concentrated around the global
mean y across the whole network) to a U-shaped distribution
(same mean, but concentrated at the extreme values), as shown
in Extended Data Figure [5| The resulting variance in y as
seen by individuals is high, and selection is enhanced. Intu-
itively, it is much easier for the contagion to randomly reach a
“critical mass” of popularity within a single community and
experience positive selection there, compared to across the
whole network. The contagion simply fixes one community
at a time, as visualized in Extended Data Figure [§] as well
as Supplementary Videos 1-3. These effects explain our ob-
servations on the role of clustering and community strength on
real social networks in Figure[] It is important to note that the
unequal distribution of type B individuals among communi-
ties (just like the broader distribution of ¥ in sparse networks)
is again a feature purely of the network structure and arises
with or without complex contagion. However, it is only in the
former case that this distribution has an effect on the spread.

Finally, we consider graphs with variable degree distribu-
tions. In this case, it is no longer possible to calculate a
selection strength s that depends only on y. Instead, we
must compute the fraction of nodes of each degree k' that
are type B, yi/. This requires an explicit analysis of the frac-
tion of type B individuals for each degree k', which leads to
a high-dimensional diffusion process. We can solve this pro-
cess using the no-locality approximation, in which nodes of
degree k see a distribution of y identical to that for a k-regular
random graph, with the global frequency y replaced by the ef-
fective frequency z, = > ,, P(k’|k)ys, where P(k’|k) is the
neighbor degree distribution of a node of degree k (see SI).

To vary both the mean and variance of the degree distri-
bution continuously, we consider graphs where the degree of
each node is drawn from a Gamma distribution with mean k
and variance o,. We compare our predicted local distribution
of y to observations in Extended Data Figure[7| Our theoret-
ical predictions show excellent agreement with full numerical
simulations on networks, as demonstrated in Figure [3] (g-i).
We find two competing effects. On the one hand, high degree
type B nodes are able to convert many other nodes. How-
ever, it is easier to convert low degree nodes to type B for the
same reason that low k increases selection for the random reg-
ular graph. Overall, we find that broader degree distributions
dampen the effects of selection (whether positive or negative)
on the epidemic, both for simple and for complex contagions.
Another effect is the consistent suppression of the epidemic
for very low y (see Figure 3] (h)), which is enhanced for dis-
tributions with significant degree correlations (see Extended
Data Figure [§). We give intuition and a derivation for this
effect in the SI.

Whenever it is possible to compute an s(y), our framework
implies a simple condition under which the contagion can



spread globally with finite probability even in arbitrarily large
networks (i.e. global cascades are possible, see “phase transi-
tions” in the SI): the width of a region of negative s(y) around
y = 0 must scale as N~7, with v > 1. That is, the contagion
must need to tunnel through at most a finite number of individ-
uals to reach a frequency above which it is positively selected.
Otherwise, the process encounters negative selection and is
exponentially unlikely to spread globally for large V. Usmg
Eq. lb this leads to the critical sparsity ke.;; = i =
below which global contagion is possible (Figure [4] (a)) For
community-based networks, we find that the effective selec-
tion strength s(y = 0) = —f3, but jumps higher as y — 3
(see Figure E] (d)). Thus global contagion is possible pro-
vided that s(%;) > 0. We find this implies a critical commu-
nity strength k;/k above which complex contagions are able
to spread globally by appearing popular and reaching critical
mass in one community at a time, even though they do not
have critical mass on the global network (Figure @] (b)), as
seen in our initial simulations of contagions on real social net-
works Figure[1](c-e).

Our results demonstrate the broad importance of interac-
tions between non-linear adoption probabilities and network
structure on the dynamics and outcomes of complex conta-
gions. Our general framework for analyzing these dynamics
makes it possible to calculate how network structure interacts
with arbitrary non-linear adoption probabilities to modulate
the effects of both selection and stochasticity. This determines
the statistical properties of both large and small contagions,
as well as the probability of global cascades. These results
help explain why the spread of even initially unpopular ideas
and opinions can be enhanced both by overall sparsity and
by cliques and other forms of community structure. They
also show that in contrast to simple contagions (where the
existence of highly-connected individuals always enhances
spread), broad degree distributions dampen both positive and
negative selection for complex contagions and hence have
more subtle effects.
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FIG. 1: Model and simulations on real social networks. a, We model a complex contagion on a network where each
individual can be type B or type A. We denote the global frequency of type B individuals as y, but each node sees a local
fraction of type B neighbors (node labels). b, Transition rates between type B and type A individuals occur at rates r; and 72;
the form of f; 5(y) determines the non-linear adoption probabilities in complex contagions. ¢, Simulations on networks of
variable clustering derived by swapping pairs of edges in a Facebook network[43]] (N = 4039, k = 43) show that the spread of
complex (but not simple) contagions are highly sensitive to clustering. d,e, Example frequency trajectories for contagions that
fixed in our simulations. Each colored line shows the frequency within a given community as detected by a standard
community detection algorithm [49], while the black line shows overall frequency. If the community structure is strong, the
contagion fixes one community at a time, rapidly gaining and maintaining local popularity which helps the spread (d,
Clustering C' = 0.6). If the community structure is weaker (but still detectable [49]), the contagion instead spreads uniformly
across the entire network (e, C' = 0.2). This is much less likely, so Py, is lower in this case. Simulations assume f;(y) = oy,
fa(y) = B, =0.25,and 8 = 0.05.
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FIG. 2: Selection and genetic drift in complex contagions.
a, The condition N|s(y)|y = 1 distinguishes regimes where
contagion dynamics are dominated by genetic drift, negative
selection, or positive selection (this is an approximation to
the exact condition N|S(y)| = 1, see SI). b, A contagion can
spread globally if it reaches high enough frequency to be
positively selected; this may require “tunneling” through a
regime of negative selection at lower frequencies. ¢,d,
Sparsity (¢) and community structure (d) can change the
shape of s(y) and hence alter the contagion dynamics.
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FIG. 3: Network structure and the dynamics of complex contagions. a, [llustration of networks that are more (right) or less
(left) sparse. b, Theoretical predictions (solid lines) and simulated results (for N = 10, 000; dots) for P,.c..x(y) for networks of
different sparsity. Theoretical predictions for the transition to the regime of negative and positive selection are shown as black
or white arrows respectively. ¢, Theoretical predictions (solid lines) and simulated results (dots) for the fixation probability
Pyiz(y) as a function of network size V. We show results for five values of k, corresponding to sparsity above (blue),
approximately on (purple), and below (red) the phase transitions allowing for global spread, as well as for a large value
(yellow) that approximates a fully-connected graph (dotted line). d, Illustration of networks with more (right) or less (left)
community structure. e,f, Theoretical predictions (solid lines) and simulated results (dots) for Prcqcp,(y) (€) and Py, (f) for
networks with different strengths of community structure. g, Illustration of networks with high (right) or low (left) variance in
degree distribution. h,i, Theoretical predictions (solid lines) and simulated results (dots) for Pycqcn(y) (h) and Py, (i) for
networks with variance in degree distribution o3, = 30 for contagions with 5 = 0.1 (h), 5 = 0.05 (i), and three different values
of a corresponding to the values of y,, shown. For comparison, dotted lines show theoretical predictions for regular graphs (i.e.
with o, = 0). Parameters: o = 1.0, 5 = 0.1 (b), « = 0.4, 8 = 0.04 (¢), « = 0.88, 8 = 0.1 (¢), « = 0.2, 8 = 0.025 (f).
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FIG. 4: Phase transitions for complex contagions. a,b,c, Ratio of Py;, on a network of size IN; = 50000 to Py;; on a
network of size Ny = 2000 for contagions with 5 = 0.025, different values of « and varying sparsity (a), community structure
(b), or degree distributions (c). Values close to one correspond to cases where Py;, does not scale strongly with IV, so global
cascades are possible even in large networks. Solid white lines in (a,b) denote the theoretically predicted phase transition, and
the thick dashed white line indicates an observed ratio of 1/5 = /N7 /N3 (the empirical location of the phase transition; see
“Phase Transitions” in the SI for details). In (c), the empirical phase transition correctly approaches the theoretical prediction
(regular graph limit, white arrow) as o, — 0. Since wider degree distributions weaken the effect of selection, the “transition
regime” becomes noticeably wider for large oy.



Methods
1. Numerical Methods

a. Analytical predictions of contagion statistics For the
sparse network we can obtain an analytical solution for the
function s(y), while this function is the solution of a numeri-
cal procedure for the community based networks (see SI). In
both cases, we then numerically evaluate the appropriate stan-
dard integrals from diffusion theory [44] to obtain solutions
for Preach (y)

For the degree distribution network, we explicitly run a sim-
ulation of the multi-dimensional diffusion process (see the
section “Multi dimensional diffusion” in the SI). For each
simulation run, we sample the degree sequence from the full
degree distribution. We also choose the initial degree of the
first type B individual at random from the degree distribution.
From then on, for every time step, we calculate y; — the fre-
quency of type B individuals among nodes of degree k — for
all k. Given yy, we calculate the rates of switching type A and
type B individuals of a given degree. We sample the number
of switching events from a binomial distribution, where the
number of individuals constitutes the number of trials, and the
switching rate multiplied by a small time step (chosen such
that the success probability is < 0.1) constitutes the probabil-
ity of success. We have verified that the results of the simula-
tion do not change noticeably with a smaller time step.

b. Network simulations In order to simulate the process
on real networks, we generate random graphs according to
the structural features in question. We then perform a large
number of simulations to obtain statistics on Py.cqc(y) and
Pyiy. In particular, each simulation begins with a network of
all type A individuals, with a single randomly placed type B
individual. We then update the types of all nodes according to
a Gillespie algorithm, where the rates are given by the rates r;
and ro from the main text. The algorithm is terminated when
the absorbing states of y = 0 (extinction) or y = 1 (fixation)
are reached.

c. Local distributions of y In Extended Data Figures 2-
5, we compare the predicted distributions of y as seen by in-
dividual nodes to those observed in simulations, for a given
global value of y. Since the global value of y varies over
time in simulations, we run simulations as usual starting with
y = %, and use data from all nodes during all time steps
where the global value of y is equal to the desired value. Data
is collected for 20 separate simulation runs.

2. Generating random networks

a. Real social network with variable clustering For Fig-
ure[T](c-e), we construct a sequence of networks based on the
Facebook network (N = 4039, k£ = 43) from the Stanford
Large Network Dataset collection [43]. By considering ran-
dom A—B,C—D — A—C, B— D swaps, we reduce cluster-
ing until a desired value is reached, while keeping the degree
sequence intact. To test the impact of this reduction in cluster-
ing on the community structure of the network, we measure
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“community overlap” between the original and modified net-
works, by perform a bipartite matching of communities found
by a standard community detection algorithm [49]. We find
that the communities still overlap to 80% when clustering is
reduced from the original value of 0.6 to 0.2. Community
overlap finally drops to below 0.2 as clustering is reduced to
that of a random network.

b.  Community based network For the community based
network model, random graphs are generated such that in the
resulting graph every node and community in the network is
statistically equivalent. Every community has exactly m indi-
viduals, and every individual has exactly k; random connec-
tions to nodes within its community, and k. random connec-
tions to nodes outside the community, where k; + k. = k.
In other words, the network structure is a regular random
graph of communities, where each community is itself a reg-
ular random graph. First each community is sampled as a
regular random graph. Then the connections between com-
munities are sampled on a community basis by sampling the
supergraph of community connectivity as a regular random
graph (with duplicate edges allowed) with mk. edges per
community. Then the edges incoming to each community are
evenly distributed among its member individuals. The result-
ing inter-community connectivity pattern is then rewired ran-
domly without changing the degree sequence (by considering
random A—B,C—D — A—C, B— D swaps) until all edges
are valid (i.e. no duplicate edges).

c. Variable degree distributions Random graphs are
generated by sampling a degree sequence from the specified
degree distribution. In our simulations, we choose a Gamma
distribution with a given mean & and variance o7. These de-
grees are then matched up with the stub connect algorithm.
The resulting connectivity pattern is then rewired randomly
without changing the degree sequence (by considering ran-
dom A— B,C — D — A— C, B — D swaps) until all edges
are valid (i.e. no duplicate edges).

d. Lattice networks The lattice networks in Extended
Data Figures 3 and 4 are generated as linear (1D) and square
(2D) lattices with periodic boundary conditions. On the 1D
lattice, we connect each node to its k nearest neighbors. On
the 2D lattice, we connect each node to its closest neighbors
(k = 4), or all its second neighbors (k = 24).

3. Code and Data availability

All simulations and numerical calculations were performed
with Julia 1.1. Our code is open source and available at www .
github.com/jnkh/epidemics. The network data used
is publicly available [43]].


www.github.com/jnkh/epidemics
www.github.com/jnkh/epidemics
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Extended Data Figure 1: Scaling regimes for positively frequency dependent complex contagions. The quantity NS(y)
determines the various selection regimes. A linearly increasing selection strength of the form s(y) = ay — S leads to a
quadratic S(y) = §

y? — By which we can then compare to the relevant scale % There are three possibilities: a, S(y) dips
below the — % line and thus enters a regime of negative selection. Once the difference from the lowest point of S(y) to the
current position becomes %, the selection becomes positive (see SI for details). b,e, S(y) never dips below the —% line, so the
process experiences neutral drift until S(y) grows by % from its minimum value. This happens at yy = y,,, at which point

positive selection takes over. It follows that Py;; = ﬁ If S(y) dips below 0 initially (b), the fixation probability scales like
N~1. Otherwise (c¢), the fixation probability does not scale with N, and global cascades are possible for arbitrarily large
networks.
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Extended Data Figure 2: Local distribution of y for
regular random graphs. The figure shows the expected
distribution according to the assumption of “no locality” (see
main text) as the black line, and compares with the observed
distribution from simulations (dots) on random regular
networks of size N = 1000. The error bars denote standard
error. a, Comparison of the distributions for k = 4 and
k = 30, for a situation where y,, = 0.2, and the global value
of y = 0.05. Since y < y,,, almost no individuals experience
positive selection when k is large and observed values of y
are tightly concentrated around the global value. However,
for small k, a significant number of nodes do experience
positive selection “just by chance”. b, Predicted and
observed values on a network with £k = 10 and y = 0.1. The
lower inset shows the residual mismatch between the
prediction and the observed values, while the upper inset
shows the residuals in simulations where the location of
type B individuals is shuffled at every time step (making the
no locality assumption exactly true by definition). Shuffling
causes the mismatch to disappear.
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Extended Data Figure 3: Local distribution of y for 1D
lattice networks. The figure shows the expected distribution
according to the “no locality” assumption for random regular

graphs (black line, see main text), and the observed
distribution (dots) for a contagion on a 1D lattice network
with y = 0.1, N = 1000 and k£ = 6 (a) as well as k£ = 30 (b).

The error bars denote standard error. The bottom plots show
the same data as the top, but on a logarithmic scale. It is clear
that the “locality” on the lattice causes more extreme y values

that depart significantly from the “no locality” prediction.
These patterns arise purely due to the network structure, even
for simple contagions (here « = 0 and S = 0).
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Extended Data Figure 4: Local distribution of y for 2D
lattice networks. The figure shows the expected distribution
according to the “no locality” assumption for random regular

graphs (black line, see main text), and the observed
distribution (dots) for a contagion on a 2D lattice network
with y = 0.1, N = 1600 and k£ = 4 (a) as well as k = 24 (b).
The error bars denote standard error. The bottom plots show
the same data as the top, but on a logarithmic scale. It is clear
that the “locality” on the lattice causes more extreme y values
that depart significantly from the “no locality” prediction.
These patterns arise purely due to the network structure, even
for simple contagions (here « = 0 and 8 = 0).
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Extended Data Figure 5: Local distribution of y for
community based networks. The figure shows the expected
distribution according to the equilibrium assumption (black
line, see main text), and the observed distribution (dots) for a
contagion on a network with N = 1000 and k = 20. We
show distributions for y = 0.1 (a) and y = 0.5 (b). The error
bars denote standard error. The bottom plots show the same
data as the top, but on a logarithmic scale. The theoretical
prediction matches well. When clustering and community
strength reaches a critical value, the distribution shifts from a
tightly concentrated one to a broad distribution with
significant probability mass at the extremes. These patterns
arise purely due to the network structure, even for simple
contagions (here & = 0 and 8 = 0).
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Extended Data Figure 6: Contagion over time for community based networks. The figure shows the temporal evolution of
a contagion on a community based network. In the case of high community strength (a), as in the high clustering case of the
real network in Figure[I]d, each community fixes one at a time. In the opposite case (b), the y values in each community are

tightly coupled to the global value, as in Figure[T]e. Parameters: N = 400, y,, = 0.2 (dashed horizontal line), size of
communities m = 40, k; = 39 (a) and k; = 1 (b).
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Extended Data Figure 7: Local distribution of y for
networks with degree distributions. The figure shows the
expected distribution of y as seen by nodes of degree 5, 10

and 20 according to the “no locality” assumption (black line,
see main text), as well as the observed distribution (dots), for

a contagion on a network with N = 1000, mean degree
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denote standard error. The theoretical prediction matches
well.
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Extended Data Figure 8: Effect of the neighbor degree
distribution. The figure shows P,.cq.r(y) as computed
according to the “no locality” assumption for a contagion on
a network with N = 10000, mean degree k = 10, degree
standard deviation o}, = 30, and strong positive degree
correlations (see SI for details). The lines show the
prediction assuming the “expected” neighbor degree

distribution P(k|k') = %(k) (dashed), as well as the actual
neighbor degree distribution P(k|k’) taking degree
correlations into account (solid). The error bars denote
standard error. Once the full neighbor degree distribution is
taken into account, the results agree well with simulations
(dots). We have verified that the residual mismatch at high y
disappears when type B nodes are shuffled at every time step
(keeping their degree constant), showing the mismatch is due
to the “no locality” assumption not being exactly true.
Parameters: o = 1.0, 5 = 0.1.
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