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ABSTRACT The accumulation of beneficial mutations on competing genetic backgrounds in rapidly adapting populations has
a striking impact on evolutionary dynamics. This effect, known as clonal interference, causes erratic fluctuations in the frequencies of
observed mutations, randomizes the fixation times of successful mutations, and leaves distinct signatures on patterns of genetic
variation. Here, we show how this form of “genetic draft” affects the forward-time dynamics of site frequencies in rapidly adapting
asexual populations. We calculate the probability that mutations at individual sites shift in frequency over a characteristic timescale,
extending Gillespie’s original model of draft to the case where many strongly selected beneficial mutations segregate simultaneously.
We then derive the sojourn time of mutant alleles, the expected fixation time of successful mutants, and the site frequency spectrum of
beneficial and neutral mutations. Finally, we show how this form of draft affects inferences in the McDonald–Kreitman test and how it
relates to recent observations that some aspects of genetic diversity are described by the Bolthausen–Sznitman coalescent in the limit of
very rapid adaptation.

THE effects of linkage between beneficial mutations in
altering evolutionary dynamics and the structures of ge-

nealogies in adapting populations has been recognized for
nearly a century, particularly in the context of the evolutionary
advantage of sex (Muller 1932). In both asexually reproduc-
ing organisms and in regions of low recombination in sexual
organisms, the chance congregation of beneficial mutations
on competing genetic backgrounds skews evolutionary dy-
namics. Because of this “clonal interference” effect, the suc-
cess of a mutation depends not only on its fitness effect, but
also on the quality of the genetic background in which it
occurs and the fortune of the mutant’s progeny in amassing
more beneficial mutations (Smith and Haigh 1974; Gerrish
and Lenski 1998; Gillespie 2000, 2001; Kim and Orr 2005).

Recent work in experimental evolution has confirmed
that clonal interference is widespread in large adapting
laboratory microbial and viral populations (de Visser et al.
1999; Miralles et al. 1999; de Visser and Rozen 2006; Kao

and Sherlock 2008; Lang et al. 2011, 2013). Several recent
studies also suggest that classic “hard” selective sweeps may
be rare in Drosophila (Sella et al. 2009; Karasov et al. 2010)
and humans (Pritchard et al. 2010; Hernandez et al. 2011),
implying that models that better account for linkage be-
tween sites need to be explored. As a result, in recent years
there has been an influx of theoretical work describing the
effects of clonal interference on the evolution of large pop-
ulations (see Park et al. 2010 for a recent review).

This work has provided a good understanding of evolu-
tionary dynamics in the regime of rare interference, where the
number of strongly beneficial mutations segregating in a pop-
ulation is rarely more than two (Gerrish and Lenski 1998;
Gillespie 2000, 2001; Kim and Stephan 2003; Park and Krug
2007). However, in large populations many beneficial muta-
tions can segregate simultaneously and the population can
maintain substantial variation in fitness. This decreases the
importance of each mutation’s intrinsic fitness effect relative
to the quality of the genetic background on which it occurs.
Long-term evolutionary dynamics in these populations are
therefore driven primarily by the stochastic introduction of
mutants at the high-fitness tip of the population’s fitness dis-
tribution and the fluctuation in the lineage sizes of these
super-fit mutants when rare. Several models have been intro-
duced to study evolution in these strong selection, strong
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mutation regimes (Tsimring et al. 1996; Rouzine et al. 2003;
Desai and Fisher 2007; Hallatschek 2011). This work has
successfully described the rate of adaptation and the variation
in fitness within a population (Desai and Fisher 2007; Park
et al. 2010; Rouzine et al. 2008), and the fitness effects of
fixed mutations (Fogle et al. 2008; Neher et al. 2010; Good
et al. 2012; Fisher 2013), while ignoring the specific mutations
that underlie these population-wide quantities.

In this work, we use these earlier theoretical treatments as
the basis for analyzing the evolutionary dynamics of individual
mutations (i.e., their frequencies over time and their eventual
fates). To do so, we study the forward-time dynamics of specific
mutant lineages on the backdrop of the population’s fitness
distribution, concentrating specifically on quantities relevant
and measurable in experiments: the trajectories and sojourn
times of polymorphic sites, fixation times of successful mutants,
and some basic patterns of genetic diversity.

We begin by introducing our model and briefly summariz-
ing earlier results that describe the dynamics of the popula-
tion’s fitness distribution. We then demonstrate that the
growth of the high-fitness “nose” of this distribution is dom-
inated by a small number of successful, founding mutants.
Since this high-fitness nose will eventually come to dominate
the population, the long-term success of a given polymor-
phism is largely determined by its representation (or lack
thereof) among this small class of stochastically fluctuating,
high-fitness individuals. This allows us to model adaptation as
a series of replacements of each fittest class by a new, fitter
class over a typical replacement timescale. We show how this
leads to a distribution of transition probabilities that describe
how the frequency of each polymorphism changes in each
stochastic jump from one fittest class to the next. This process
bears some resemblance to several recent models of adapta-
tion in populations with highly skewed offspring distributions
(Schweinsberg 2003; Eldon and Wakeley 2006; Der et al.
2012). However, whereas in these earlier models a jump in
offspring frequency is assumed to be an explicit feature of the
offspring distribution, in this work these jumps emerge organ-
ically from the dynamics of the underlying model.

We next use our derived transition probabilities to
calculate various diversity statistics, providing an alternative
forward-time perspective that complements earlier struc-
tured coalescent approaches to these questions (Desai et al.
2013). We first calculate the site frequency spectrum of
beneficial and neutral mutations, which has not yet been
explicitly derived for this class of models. We then use our
results to make predictions regarding the fates of mutations
in experiments, particularly on the sojourn time of these
mutations and the time to fixation of a successful mutant.
Finally, in the Discussion we describe a decay to neutrality
exhibited by mutations in these populations, comment on
the relationship between our results and the Bolthausen–
Sznitman coalescent, analyze the implications of our results
for interpreting widely used tests for adaptation, and con-
sider the extension of our model to evolution on more com-
plex fitness landscapes.

Our work complements earlier analysis of related ques-
tions in facultatively sexual populations (Neher and Shraiman
2011), which neglects new mutations and focus instead on
fluctuations in the frequencies of individual polymorphisms
driven by recombination into higher or lower fitness back-
grounds. By contrast, we focus on either asexual populations
or on tightly linked genomic regions of sexual populations,
where recombination can be neglected compared to selection
and new mutations, and study instead the fluctuations in
polymorphism frequencies driven by new mutations. Despite
the different sources of draft explored in these two models,
our results bear some similarities to the findings of Neher and
Shraiman (2011), a parallel that we revisit in Discussion.

Model

We study the evolution of a large asexually reproducing
population of constant size N, using the model introduced in
Desai and Fisher (2007) (summarized below). This model
assumes that beneficial mutations of a single fitness effect s
occur at a constant beneficial mutation rate Ub per genome
and are drawn from an effectively infinite number of possi-
ble sites. The use of a single fitness effect allows the fitness
of an individual in the population to be described solely by
the number of beneficial mutations k it carries, with the
absolute fitness of an individual given by wk = (1 + s)k �
1 + ks for s � 1. More complicated effects, such as fre-
quency-dependent selection and epistasis, are neglected in
this analysis (although the model is easily modified to in-
clude some simple sign epistasis; see Discussion). Finally, we
assume that the population is evolving in the strong selec-
tion, strong mutation regime. Specifically, this means that
Ns � 1, s/Ub � 1, NUb � 1, meaning that the selective
forces, selective forces relative to mutations, and incoming
mutations per generation are all large.

In the next few paragraphs we review the primary
features of this model that are pertinent to our analysis,
which are justified in detail by Desai and Fisher (2007). This
model describes the population as a traveling wave in fitness
space, wherein the deterministic evolution in the bulk of the
wave is combined with a careful stochastic treatment of the
birth and fluctuation in lineage sizes of mutants at the high-
fitness nose of the distribution. Specifically, the population is
characterized according to the number of individuals nk in
each fitness class k, where the term fitness class refers to the
class of individuals carrying k beneficial mutations. At each
generation, nk changes according to the effects of genetic
drift, incoming and outgoing mutations, and selection. If nk
is sufficiently large, then selection trumps the effects of the
other two evolutionary forces, and the rate of change of nk is

dnkðtÞ
dt

� nk
�
ks2 hksi�; (1)

where t is taken in units of generations and hksi is the (time-
dependent) mean fitness of the population. A fitness class
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will enter this regime of deterministic growth shortly after
the effect of selective forces overcomes the effect of drift,
which occurs shortly after the entire fitness class reaches
a population size � 1/(k 2 hki)s, at which point we say that
it is established. Given our assumption that s � Ub, the prob-
ability for a fitness class that has not yet established to gen-
erate a more fit establishing lineage is extremely low. Thus,
the population is well described by a deterministically grow-
ing/shrinking set of fitness classes fnkmin ; nkminþ1; . . . :; nkmax21g
and one stochastically fluctuating class fnkmaxg, where
kmin; kmax are defined to be the minimum/maximum k s.t.
nkmin ; nkmax 6¼ 0.

Although in principle one could consider the transient
dynamics by which an initially clonal population attains
a steady distribution of relative fitnesses, we are instead
interested in the regime where this equilibrium distribution
has already been reached and is maintained over timescales
that are long compared to the typical establishment time of
a new fitness class. In other words, the population has been
evolving long enough to attain some typical steady-state fitness
profile, but not long enough to begin to deplete the supply of
beneficial mutations (which validates our infinite-sites approx-
imation). In this case, the width of the distribution is set by an
equilibrium between the influx and growth of highly fit
mutants (which increases the width of the distribution) and
the advancement of the mean fitness (decreasing this width).
The size of this width q (defined as the mean number of muta-
tions between the mean fitness class and the largest not-yet-
established class) is given to a good approximation by

q � 2  logðNsÞ
logðs=UbÞ

(2)

(Desai and Fisher 2007, Equation 4), with higher-order cor-
rections given in Desai and Fisher (2007, Equation 39).
Similarly, tk, defined roughly as the random variable denot-
ing the time between the establishment of fitness class k2 1
and k, has expectation value

htki ¼
1

ðq2 1Þs log
�
s
Ub

q  sinðp=qÞ
pegE=q

�
(3)

(Desai and Fisher 2007, Equation 36), with gE � 0.577 the
Euler gamma constant. Note that the variable is called tq in
Desai and Fisher (2007), where it contains an erroneous
factor of (q 2 1) instead of q within the logarithm.

A more accurate derivation of the true time between es-
tablishments, accounting primarily for the non-negligible effect
of incoming mutations shortly after a class establishes, is deri-
ved in Brunet et al. (2008), whereas a more careful discussion
of the correct interpretation of tk is given in Desai and Fisher
(2007). However, the precise distribution of tk is not impor-
tant for our analysis because throughout the rest of this article
we take time in units of establishment of each new lead class.

If q is not small, the mean relative fitness of any individ-
ual class does not change too much in the course of one
establishment time. In this case, the dynamics of fitness

classes are excellently approximated by a staircase model,
in which the fitness of every class is held constant over the
course of the establishment of a new class. In the time it
takes each new class to establish, the mean fitness will typ-
ically increase by s, and hence the relative fitness of all
classes decreases accordingly. Thus, the number of individ-
uals in each class grows exponentially at a rate that is well
approximated as diminishing by discrete steps of s after each
establishment time tk. Under these assumptions, the num-
ber of individuals in a class k with ℓ mutations more or less
than the mean is approximately

nk �
1
qs

Yq21

i¼ℓ

  expðishtkiÞ �
1
qs

eshtkiðqðq21Þ2ℓðℓ21ÞÞ=2: (4)

A more detailed discussion of this formula is given in Desai
and Fisher (2007, p. 1774). Note that by averaging the
fitness distribution over all times we recover a Gaussian dis-
tribution with variance s2 = v = s/htki, where v is the rate
of adaptation.

We are primarily interested in the growth of fitness classes
when they are still expanding near the high-fitness tip of the
wave, which is where mutations destined to reach apprecia-
ble frequencies first occur. Thus, we examine the growth of
the class k = kmax, i.e., the largest not-yet-established class.
The number of individuals in this lead class at short times is
(Desai and Fisher 2007, Equation 31)

nkðtÞ ¼
eqsðt2tkÞ

qs
: (5)

Note thatwe have arbitrarily defined the origin of time such that
t = tk corresponds to the establishment time of class k, which
occurs when nk = 1/qs individuals. By a simple transformation,

nkðtÞ ¼
ske

qs
�
t2htki

�
2gE=ðq21Þ

qs
; (6)

where we have defined

sk ¼ e2qs
�
tk2htki

�
þgE=ðq21Þ: (7)

In formulation (5), the stochasticity of the growth is
encapsulated in the establishment time tk; in formulation
(6), the random variable sk encodes how much the class
deviates from its typical size at long times. The random vari-
able sk is chosen to have the simple generating function
[obtained by a transformation of the generating function
of nk(t) given in Equation 29 of Desai and Fisher (2007)],

he2zski ¼ e2z121=q
: (8)

Note that sk is singularly well suited for extracting the con-
tribution of independent lineages. To see this, we note that
nk(t) denotes the growth of class k, given that it is fed by an
exponentially (and deterministically) expanding class k 2 1
(which we simply call the feeding class)
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nk21ðtÞ ¼
1
qs

eðq21Þst; (9)

which is supplying mutants to class k of fitness qs at a rate Ub

per genome per generation. To probe the contribution of
particular haplotypes from the feeding class, we decompose
the growth of class (k 2 1) into

nk21ðtÞ ¼
P

ℓ xℓ;k21

qs
eðq21Þst;

X
ℓ

xℓ;k21 ¼ 1; (10)

where xℓ,k21 is the fraction of the feeding class constituted
by haplotype ℓ. Note that if each haplotype is plentiful
enough to expand deterministically (an assumption we dis-
cuss in more detail below), then each haplotype grows at the
same rate as the class as a whole, and the xℓ,k21 are time-
independent constants. In this case, the growth of the lead
class may be written as

nkðtÞ ¼
sk

qs
eqsðt2htkiÞ2gE=ðq21Þ ¼

P
ℓnℓ;k

qs
eqsðt2htkiÞ2gE=ðq21Þ;

(11)

where nℓ,k is the random variable denoting the contribution
from haplotype ℓ to class k from class k 2 1. Note that it is
not necessary that sk ¼

P
ℓnℓ;k ¼ 1; in fact, sk may deviate

strongly from unity if a mutation occurs and establishes in
the lead class anomolously early. As a result, nℓ,k is not the
frequency of the lineage derived from haplotype ℓ in class k.
Rather, nℓ,k is the random variable that encodes how quickly
that lineage establishes and expands in class k relative to its
typical growth. The frequency of the derived lineage, then,
is xℓ,k = nℓ,k/sk. This setup is illustrated in Figure 1. Since
each haplotype in class k 2 1 expands exponentially, the
lead class k is fed by m independent feeding processes,
where m is the total number of haplotypes in class (k 2 1).
From this, we can essentially repeat the derivation for the
generating function of sk done in Desai and Fisher (2007)
for nℓ,k by adding appropriate factors of xℓ,k21 in the growth of
the feeding class, eventually obtaining�

e2znℓ;k
�

¼ e2xℓ;k21z121=q
: (12)

Note that the assumption of independence between each nℓ,k
implicitly assumes that the size of the lead nk � N. In this
case, feedback effects, whereby the growth of each nℓ,k
affects the advancement of the mean fitness, and thereby
the growth of other nℓ,k, may safely be neglected. When class
k leaves the lead and this assumption begins to break down,
the frequency of each lineage ℓ derived from the correspond-
ing haplotype in class k 2 1 is already frozen in class k (an
assumption justified in detail in the Appendix) and the line-
age is expanding deterministically. Furthermore, because
the rate of expansion of both the lineage and the class as
a whole are set by the relative fitness of the class, at long
times the frequencies xℓ,k do not change. The process will

then begin anew, with a new set of haplotypes in class k at
frequencies xℓ,k feeding a new most-fit class, k + 1. Hence,
the number of individuals descended from a lineage ℓ at
a time t, h(t), is given simply by hðtÞ ¼ Pkmax

k¼kmin
xℓ;knkðtÞ.

Some objections to this formalism might immediately be
raised. First, the number of haplotypes m in class k 2 1 is
increasing in time due to incoming mutations from the pre-
vious class k 2 2. However, we show in the Appendix that
incoming mutations typically stop contributing significantly
to a class shortly after it establishes, and certainly by the
time that it itself begins feeding establishing mutants to the
next class. Thus, while m may be strictly increasing in time,
the combined contribution of these new haplotypes affects
the frequencies of all other sites only negligibly. Second,
a considerable fraction of these haplotypes could be at fre-
quencies xℓ,k21 such that xℓ,k21nk21(t) & 1/((q 2 1)s),
meaning that these haplotypes cannot be modeled deter-
ministically. This objection becomes important when consid-
ering fluctuations in the frequencies of haplotypes that are
rare in a given class. On the other hand, if a polymorphic site
xℓ,k21 is sufficiently common, its growth by the time the class
begins supplying establishing mutants may be modeled

Figure 1 Illustration of the stochastic process by which lineages in a class
k 2 1 contribute to a class k through further beneficial mutations. Shown
are the three fittest classes of the traveling wave. Class 1 is broken down
into haplotypes {0, 1, 2, . . .ℓ} at frequencies {x0,1, x1,1, . . ., xℓ,1} within class
1, which grow deterministically. At the instant illustrated here, haplotype
0 (at frequency x0,1 within class 1) has generated two beneficial muta-
tions. These mutations occurred at two different timepoints in the past,
grew stochastically, and now cumulatively form a significant fraction of
class 2. Individuals derived from haplotype 0 now form a fraction x0,2 =
n0,2/(n0,2 + n1,2 + n2,2) of this class. Analogous observations can be made
for the other haplotypes. Before class 2 begins generating mutants des-
tined to establish in class 3, the frequencies of its haplotypes will be
frozen up to small fluctuations, and the process repeats with a new set
of frequencies {x0,2, x1,2, . . ., xℓ,2}.
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deterministically. In this case, the above formalism is well
suited to predict the contribution of that lineage ℓ to sub-
sequent fitness classes.

In what follows, since we are interested only in the
dynamics of one particular lineage at a time, we drop the ℓ
subscript and set the initial fitness class (i.e., the fitness class
in which the lineage frequency first begins to be tracked) at
k= 0. The strengths and realm of validity for all of the above
assumptions have been studied by ourselves and others in
previous work (Desai and Fisher 2007; Brunet et al. 2008;
Rouzine et al. 2008; Desai et al. 2013; Fisher 2013).

Transition Probabilities

From the considerations of the previous section, we see that
evolutionary dynamics in these populations are driven by two
factors: the deterministic growth and decay of existing clones—
governing the short-time dynamics—and the stochastic in-
troduction and expansion of new super-fit mutants, which
govern the population’s long-term evolution. Furthermore,
the fate of any particular mutation is determined by two
factors: (1) the genetic background in which it occurs and
(2) the success of its progeny in amassing additional benefi-
cial mutations more quickly than competing backgrounds.
When many beneficial mutations segregate simultaneously,
the strictness of these two constraints requires that mutations
with any nonnegligible chance of fixing (or even rising to an
appreciable frequency) must have been founded near the
nose of the fitness distribution. The vast majority of beneficial
mutations are thus “wasted” on the bulk of the distribution,
where the mutant’s lineage is doomed to eventual extinction.

We are largely concerned with those mutations that
successfully rise to appreciable frequencies and thus largely
consider the dynamics of those mutations that are founded on
“good” genetic backgrounds. Once established, one of these
new, high-fitness clones will grow, stagnate, and diminish in
its class deterministically as dictated by Equation 1. At any
moment in time, the population can be divided into many
such expanding and contracting “bubbles,” which fully deter-
mine frequency dynamics over short timescales of O(tk).
However, many of the interesting long-term dynamics are
determined by the stochastic origination and establishment
of super-fit mutants from these deterministically expanding
clones, which drive the success or failure of particular line-
ages, mutations, or entire evolutionary trajectories.

These ideas are expressed more concretely in Figure 2,
which shows the distribution of fitness classes at three distinct
timepoints. A clone that is about to establish in the first time-
point is growing deterministically in the second timepoint
and diminishing in the third timepoint, before finally going
extinct as the population evolves to higher and higher fitness.
Normally, this would mean that the contribution of the clone’s
lineage is also extinct; however, the lineage avoids this fate by
jumping into the next fitness class through the creation of
a new, super-fit mutant when the class is still small and
expanding very rapidly. This new mutant establishes and

expands, and because it occurs very early, comes to form
a significant fraction of the next fitness class, as exemplified
in the second timepoint of Figure 2. Although only one of
these jumps is shown in Figure 2, a given lineage may jump
many times into the next class, with each successive jump, on
average, contributing a smaller and smaller fraction of indi-
viduals to that class. This new clone will then deterministi-
cally expand, contract, and go extinct in the new class,
although its lineage may survive by jumping into the next
fitness class sufficiently early to eventually constitute a signif-
icant fraction of that class, shown by the second jump in
Figure 2. The process continues ad infinitum, until the sum
of all the contributions of a given lineage to a class vanishes
or constitutes the entire class, in which case the lineage is
then destined to go extinct or sweep, respectively.

The key distribution describing these dynamics is the jump
probability r(xk|xk21, . . ., x0), the probability of finding a line-
age at frequency xk in fitness class k, given that it was at
frequencies xk21, xk22, . . . x0 in the k previous fitness classes.
Essentially, r(xk|xk21, . . ., x0) gives the probability distribution
of the sum of the frequencies of each clone in fitness class k
that originated from a lineage at some frequency x0 in fitness
class 0 and jumped through k 2 1 intermediate classes. Under
our particular model, the derivation of r(xk|xk21, . . ., x0)
becomes much simpler because the frequency of a lineage in
fitness class k is determined only by its frequency in fitness
class k 2 1. This is equivalent to the statement that when
a class begins feeding establishing mutants to the next class
(i.e., when the jumps in Figure 2 occur), the frequencies of
lineages in the feeding class are already frozen. In this case,

Figure 2 The frequency trajectory of a successful mutation on a high-
fitness background. The population’s fitness profile is shown for three
timepoints, along with one haplotype present in each class. A mutation
founded in the first timepoint (in red) expands and constitutes a significant
fraction of its fitness class in the second timepoint. As the population
adapts, the founding fitness class begins to shrink, along with the number
of individuals in the lineage constituting that class. However, this lineage
generates a beneficial mutant (shaded in blue) between the first and
second timepoints, as shown by the first arrow. This mutant drifts ran-
domly for a short while before establishing and eventually comprising
a significant fraction of the next fitness class. In this way, the original
successful mutation “jumps” into the next fitness class and is potentially
able to avoid extinction. This process repeats, as the second (blue) lineage
generates another successful (green) mutant that comes to populate
a significant fraction of the next class, and so on.
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one may consider the frequencies of lineages evolving in anal-
ogy to the entire population: the frequencies of lineages in the
classes fnkmin ; nkminþ1; . . . :nkmax21g are frozen, and the frequen-
cies of mutants in the lead fnkmaxg are fluctuating. Thus the
transition process is a Markov chain, meaning that the long-
time frequency of a lineage in fitness class k, xk, is simply
r(xk|xk21, . . ., x0) = r(xk|xk21). Of course this viewpoint sac-
rifices precision for the sake of clarity, since frequencies of
lineages in the lead will continue to fluctuate after the lead
establishes. It is only when a class typically begins to supply
establishing mutants to the nose that the frequencies of its lin-
eages will be frozen. Regardless, there will typically be one class
with fluctuating frequencies (either the lead or next-to-lead
class shortly after it establishes) and the rest of the population
with lineage frequencies already frozen. This is by no means an
obvious assumption and is discussed in detail in the Appendix.

In Equation 12, we gave the generating function of nk
(the contribution of a particular lineage to a fitness class

k, given that the frequency of the lineage in class k 2 1 is
xk21). In class k, the lineage will grow as

hkðtÞ ¼
xk
qs

eðq21Þsðt2tkÞ}
nk
qs

eðq21Þs
�
t2htki

�
; (13)

where the exact proportionality constant is not relevant for
our analysis. Similarly, we may denote the contribution of
that lineage’s complement by ~nk—that is, the contribution to
k from those individuals whose ancestors in class k2 1 were
not derived from the chosen lineage. Naturally, ~nk is de-
scribed by the following generating function,

D
e2~nkz

E
¼ e2ð12xk21Þza ; (14)

with nk þ ~nk ¼ sk, a ¼ 12 1=q and sk defined in Equation
6. Then, r(xk|xk21) is derived from the two generating func-
tions to be

rðxkj xk21Þ ¼
sinðpaÞxk21ð12 xk21Þ

xkð12 xkÞp
h
ð12xk21Þ2ðxk=½12xk�Þa þ x2k21ð½12xk�=xkÞa þ 2xk21ð12 xk21ÞcosðpaÞ

i; (15)

which is corroborated by results of forward-time simulations
(see Figure 3). This is readily extended to r(xk|x0), the
distribution of a given lineage frequency k fitness class steps
forward, by the simple replacement a / ak. The derivation
of Equation 15 and the extension to arbitrary time steps k
are given in the Appendix. Note that this transition probabil-
ity was also stated, without detailed derivation, in Desai
et al. (2013). Importantly, parameters such as N, s, and Ub

factor into this distribution only through the parameter a =
1 2 1/q � 1 2 log(s/Ub)/(2 log(Ns)).

Note that while the result for one time step is exact, the
generalization to several steps forward assumes that sk9� 1 for
0 , k9 , k, or that the rate of establishment of each new class
does not deviate too much from typical values. If this is the
case, then nk9� xk9, and each lineage may be assumed to grow
independently of its competition in each new establishment.
Errors introduced using this method start to become significant
for k � q, which is the timescale at which fluctuations in the
establishment time of new lead classes begin to affect the rate
of adaptation and mean fitness. We later demonstrate that
calculations using r(xk|x0) yield robust estimates for a variety
of diversity statistics and other population-wide properties,
supporting our claim that the above assumption does not sig-
nificantly change most quantitative predictions.

Although the analytic form of this jump probability is
somewhat cryptic, some illuminating properties can be
gleaned by considering the form of the distribution in the
limit of infinite population size, q/N:

rq/Nðxkj xk21Þ ¼
xk21ð12 xk21Þ
qðxk212xkÞ2

: (16)

Because this distribution has a fat tail, large jumps may
occasionally occur between adjacent fitness classes even in
the limit of a massively large population, indicating that the
dynamics described by this stochastic process are super-
diffusive. This nondiffusive property of genetic draft has
been observed many times for a number of different models
of adaptation (Gillespie 2001; Neher and Shraiman 2011;
Desai et al. 2013; Neher and Hallatschek 2013). One impor-
tant, commonly stressed consequence of this nondiffusivity
is that the stochastic dynamics of the population cannot be
fully encapsulated by a single rescaled variance effective
population size Ne.

Implications for Genetic Diversity

Whereas r is not directly measurable by itself—describing
transition probabilities between fitness classes and not the
population as a whole—genetic draft leaves distinct signa-
tures on the diversity of rapidly adapting populations, which
are both readily measurable and readily derived from r. In
what follows we derive some implications of the stochastic
jump process on the site frequency spectra of both beneficial
and neutral mutations.

The site frequency spectrum of beneficial mutations

One statistic that is strongly affected by the stochastic jumps
described above is the site frequency spectrum (SFS) of
beneficial mutations f(x), the expected density of mutations
between frequencies x and x + dx. In rapidly adapting pop-
ulations, the SFS is partitioned into two regimes: on one
hand, common mutations first arise at the distribution’s high
fitness nose and are strongly affected by the process of
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stochastic jumps. On the other hand, nearly private variants,
which constitute the majority of beneficial mutations, are
overwhelmingly founded near the distribution’s bulk and
are largely unaffected by this process. Thus, we expect the

high- and low-frequency spectra to be qualitatively different.
As a result, the derivation that follows is split into two seg-
ments: first, we derive the SFS of common alleles, which are
founded at the exponentially expanding wavefront. Since
our previous analysis describes only the dynamics of these
exponentially expanding nose classes, it does not describe
the frequency spectrum of extremely rare, nearly private
alleles. Thus, in the second part of this section we make
use of a different branching process method to derive the
distribution of these plentiful but extremely rare variants.

We begin by deriving the site frequency spectrum of
common alleles. For the moment, we may further simplify
the problem by considering the site frequency spectrum of
mutants in only one fitness class. Since the frequencies of
common mutations freeze shortly after a given class
establishes, we need only to calculate the distribution of
frequencies in a class that is near the nose of the wave. Once
the class leaves the nose, the frequencies of these common
mutants will be frozen and the class will have the same SFS
regardless of its position relative to other classes.

Now, as we have previously argued, almost every com-
mon polymorphism was once founded in a class that was at
the population’s high-fitness nose. Thus, given a fitness class
k that is near the distribution’s nose, we might decompose
the frequency spectrum of mutants in class k according to
which class they were founded in. Specifically, we consider
mutations founded in class k from class k 2 1 when class k
was at the nose; these mutations originate in class k. Next,
we may consider mutations that originated in class k 2 1
from class k 2 2 when class k 2 1 was near the nose, whose
lineages subsequently jumped into class k after acquiring
more beneficial mutations; these mutations originate in class
k 2 1. Analogously, we can consider the distribution of
mutants in class k that originated in classes k 2 2, when
these classes were at the distribution’s nose. The SFS f(x) in
class k is then the sum over all of these distributions.

Consider first the SFS of sites in class k that originate in k,
f1(x). We derive the SFS of these “new” mutations from the
transition probability r as follows: first, we observe that
class k 2 1 first begins supplying mutants to class k that
are destined to establish at a time of OðhtkiÞ since its own
establishment. Shortly before this time, we can decompose
the growth of class k 2 1 into 1/b independently growing
blocks of frequency b such that b � 1/q. If b is sufficiently
large, so that bnk21ðhtkiÞ � 1=qs, it is valid to model the
growth of each block deterministically. In this case, the fre-
quency x in class k of descendants of individuals in block b is
distributed as r(x|b). Since nk21ðhtkiÞ ¼ U21

b , we require
that 1=q � b � Ub=qs for the jumps from each b-sized
block into class k to be well described by r(x|b). Now, since
b � 1/q, it is unlikely that more than two founding mutants
originate from the same block. In other words, the contribu-
tion of each block to the next class is dominated by the
contribution of one most successful mutation, and the prob-
ability distribution of the frequency x of this most successful
mutation is well approximated by r(x|b). The expected

Figure 3 The transition probability r(x1|x0) plotted for different values of
x0, q, and other population parameters Ub, s, and N. Curves represent the
theoretical prediction for the transition probabilities given in Equation 15.
Circles and squares represent the results of forward-time simulations. The
circular and square points have identical values of q, but differ in pop-
ulation size by a factor of 10. Circles (small N) represent simulations run
with parameters s = 0.1, Ub = 0.001, and squares (large N) are run with
parameters s = 0.01, Ub = 0.0001. The three plots represent different
values of q, with q = 4 calculated from the approximate value in the text,
and q = 6.8, 8 calculated with higher-order corrections given in Desai and
Fisher (2007). These corrections become more important for higher q and
are the reason for the slight discrepancy between theorized and predicted
values for small N at q = 8. More information about the simulations may
be found in File S1.
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density of mutations between frequencies x and x + dx that
are introduced from class k 2 1 is then

f1ðxÞ ¼ rðxjbÞ
b

� sinðpaÞð12xÞa21

px1þa
: (17)

Analogously, the distribution of mutations in class k origi-
nally arising from the (k 2 i)th class is obtained by the
replacement a / ai, giving for the total SFS

fðxÞ ¼ PN
i¼1

sinðpaiÞð12xÞai21

px1þai

� 1
pxð12 xÞ

RN

0 dt  sinðpatÞ
�
12x
x

	at

¼ 1
pxð12 xÞlogðq=ðq21ÞÞ

R 1

0 dz sinðpzÞ
z

�
12x
x

	z
:

(18)

Although straightforward to evaluate numerically, this
integral has no simple closed-form expression. However,
a first-order Taylor expansion in the sine is a reasonable
approximation for 1 2 x � 1. This gives

fðxÞ � 12 2x
logðq=ðq2 1ÞÞlogðð12 xÞ=xÞx2ð12 xÞ; 12 x � 1:

(19)

For x / 1,

f � ðð12xÞlogð12xÞÞ21: (20)

Note that this predicts that very-high-frequency mutations
are actually more common than mutations at slightly lower
frequencies. This upswing at very-high-frequency muta-
tions is a widely recognized marker of selection for a
number of different models, with and without linkage
between sites (Wright 1938; Fay and Wu 2000; McVean
and Charlesworth 2000; Neher and Hallatschek 2013). Im-
portantly, it cannot be explained by many commonly stud-
ied forms of demographic history, such as population
expansions. Recently, Neher and Hallatschek (2013) de-
rived the upswing of the SFS arising from genealogies
obeying the Bolthausen–Sznitman coalescent. However,
to our knowledge, the excess of extremely common variants
arising from linked beneficial mutations has not previously
been derived directly from the forward-time dynamics of
any model.

Another point worth mentioning is the invariance of the
functional form of this distribution for different parameters
N, s, and Ub. Given that our assumptions about the popula-
tion hold, the spectra of different populations are identical
up to a scaling factor that represents the different absolute
numbers of common mutations in these populations, which
itself is somewhat insensitive to the specific choice of param-
eters. This observation highlights an inherent limitation in
inferring properties of adaptation through the functional
form of the site frequency spectrum.

We now argue that the above distribution is a good
approximation to the population-wide site frequency spec-
trum, instead of simply the frequency spectrum of mutations
in a single class. First, we observe that we can arbitrarily set
the distribution f(x) to describe the SFS of the mean class.
The above approximation, then, is equivalent to the state-
ment that the SFS of the mean class is a good approximation
to the SFS of the entire population. If q is not too large (the
relevant case for many biological populations), then the ap-
proximation holds because the vast majority of individuals
reside in the mean class at any given time. The contribution
of sites from other classes will then be a small perturbation
on the SFS of the mean class, particularly relevant at low
frequencies (where our approximation breaks down regard-
less, due to the contribution of mutants not founded at the
nose). On the other hand, as q increases, the mean class
constitutes a smaller and smaller fraction of the total pop-
ulation. However, the variance of the jumps in the frequen-
cies of mutant sites also decreases in proportion to 1/q.
Thus, while the mean class constitutes a smaller fraction
of the total population, sites in adjacent classes tend to shift
more slowly than for the case of smaller q (despite the fact
that, as we have previously noted, large jumps may still
occur occasionally). Thus the approximation should still be
valid even in the limit that q is large. The strength of these
arguments is corroborated by the close correlation of Equa-
tion 18 with site frequency spectra derived from our for-
ward-time simulations (Figure 4).

As we have previously mentioned, this distribution
describes only frequencies of mutations that are founded
in the exponentially expanding, high-fitness front of the
wave. As such, it fails for rare mutations, which are over-
whelmingly dominated by mutations that are introduced
when the class is near the mean of the distribution. A
different approach is then necessary for understanding the
spectrum of these extremely low-frequency mutations.

Fortunately, all the difficulties in accounting for effects of
genetic draft and the stochasticity of the wavefront are no
longer a factor when dealing with these rare variants. By
definition, the lineage of a rare variant never comprises
a substantial fraction of the population and only rarely
acquires further (establishing) beneficial mutations. Thus,
the site frequency spectrum of these individuals can be
studied using standard branching process methods given
some fixed death rate d = 1 and a diminishing birth rate
b(t) = 1 + y0 2 vt, where t is the time in generations, y0
is the initial (relative) fitness of the mutant, and v is the
mean rate of adaptation of the population. Furthermore,
because these mutants occur in the bulk of the fitness dis-
tribution, where the number of individuals is very large, we
can assume that they occur deterministically at some rate
Ubnk21(t).

In supporting information, File S1, we show that as a con-
sequence of these assumptions, the expected number of
mutations with lineage sizes n in a class at fitness y = 0,
Frare(n/N, 0), is given by
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Frareðn=N; 0Þ � UbNe2s2=ð2vÞ

n
ffiffiffiffiffiffiffiffiffi
2pv

p ; (21)

under the constraints that n � ffiffiffiffiffiffiffiffi
2=v

p
2 s=ð2vÞ and s � ffiffiffi

v
p

.
Significantly, the density of sites at the rare end of the fre-
quency spectrum, frare(n/N) } Frare(n/N, 0) } 1/n. Note that
in comparing to the Wright–Fisher results we must multiply
Equation 21 by a factor of �2, which reflects the different

stochastic dynamics of the branching process and Wright–
Fisher model.

It is important to observe that these frequencies are at the
extremely low end of what is colloquially considered to be
a “rare” variant, and hence we dub these mutations more
precisely as “nearly private” or “semiprivate.” For the fre-
quencies commonly measured in a reasonably sized popula-
tion sample, rare but non-singleton variants will still decay
as 1/x2, and the effect of this skew for nearly private muta-
tions will manifest itself as a smaller number of singletons
than that predicted simply by the 1/x2 extrapolation.

The frequencies of mutant sites thus fall into two regimes.
Common alleles founded at the wavefront have distributions
similar to those of exponentially expanding populations.
Conversely, semiprivate variants are largely founded recently
in the past and in the bulk of the distribution and as a result
exhibit a neutral SFS. This latter property is only to be
expected, since a mutant landing in the mean fitness class has
neutral relative fitness by definition, regardless of the specific
fitness effects of the mutations it carries. These findings are
supported by our forward-time simulations, demonstrated in
Figure 4.

There is necessarily some crossover region between the
regime of more common alleles and semiprivate variants,
occurring in the region of landing fitness y0 � (q 2 2)s.
Near these fitnesses, newly founded sites are no longer
well described as originating in the expanding, high-fitness
front of the wave; however, over the course of their exis-
tence a sufficiently significant number of them may reach
large enough lineage sizes to be affected by draft. In this
case, the distribution of site frequencies in fitness classes
near the population’s bulk is skewed by mutations that
were not founded near the nose, but still jumped into fitter
classes. Such lineages will certainly contribute a potentially
nonnegligible number of sites at the rare end of the spec-
trum (at lineage sizes larger than the semiprivate ones
we have studied). However, because they do not change
the results qualitatively, they are neglected in this work.
This choice is supported by the rapid crossover between
the 1/x rare variant decay and the (approximately) 1/x2

decay predicted for more common alleles, as exemplified
by Figure 4.

The site frequency spectrum of neutral mutations

Our method is similarly well suited for calculating the SFS of
neutral mutations. Once a mutation is present at some
frequency in a given class, its frequency in subsequent
classes is purely determined by draft. Thus, the only differ-
ence between the beneficial and neutral cases is in the dis-
tribution of mutations first introduced in a given class when
that class was at the distribution’s nose, f1(x). The effect of
draft on these mutations i classes later is then obtained by
convolution with the jump probability,

fneut;i. 1ðxÞ ¼
Z 1

0
fneut;1ðyÞri21ðxj yÞdy; (22)

Figure 4 (A) The site frequency spectrum of common mutations. The
dashed lines are the theoretical predictions from Equation 18 for the
two tested values of q. Colored lines are frequency spectra derived from
the results of 1000 forward-time simulations for each parameter set. For
each evolved population, 1000 individuals were sampled from the final
timepoint of an initially clonal population evolved for 15000 generations.
s and Ub for small and large population sizes are the same as those
quoted in Figure 3. (B) The site frequency spectrum of beneficial semi-
private variants (a magnification of A in the regime x � 1). The site
frequency spectrum for each parameter set is normalized by the number
of purely private mutations (i.e., sites with lineage sizes n = 1). The 1/n
dashed black line is the decay predicted from Equation 21 for small n, and
the 1/n2 dashed black line indicates the crossover to the (approximately)
1/n2 decay predicted for more common alleles. Dashed vertical lines rep-
resent the predicted realm of validity of the 1/n decay for each parameter
set, derived in File S1. Colored lines are frequency spectra derived from
the results of 1000 forward-time simulations for each parameter set. For
each evolved population, the total number of mutations carried by n
individuals were explicitly tabulated from the final timepoint of an initially
clonal population evolved for 15000 generations. Parameter sets are the
same as those quoted in Figure 3.
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where ri21(x|y) denotes the probability density of a muta-
tion at frequency x in a class i 2 1, given that it was at
frequency y in class 0. The total site frequency spectrum is
then obtained by summing over all timepoints, correspond-
ing to all possible originating classes:

fneutðxÞ ¼
XN
i¼1

fneut;iðxÞ: (23)

In File S1 we show that fneut,1(x) � Un/((q 2 1)sx2) to lead-
ing order, where Un is the per-genome neutral mutation rate.
Similarly, fben,1(x), the distribution of newly introduced benefi-
cial mutations in a given class, was derived in Equation 17 to be

fben;1ðxÞdx ¼ sinðpaÞ
p

dx

ð12xÞ1=qx221=q
/

dx
qx2

(24)

for q /N. In this limit, it is true that

fneut;1ðxÞ
fben;1ðxÞ

¼ Unp

sinðpaÞðq2 1Þs �
Un

s
: (25)

As a result,

fneut;iðxÞ ¼
R
fneut;1ðyÞri21ðxj yÞdy

� R Unp
sinðpaÞðq21Þs fben;1ð yÞri21ðxj yÞdy

¼ Unp
sinðpaÞðq21Þs fben;iðxÞ

(26)

and by extension (since this holds for each i),

fneutðxÞ � Unp

sinðpaÞðq2 1Þs fbenðxÞ/
Un

s
fbenðxÞ (27)

in the limit q / N. Thus, in the limit of rapid adaptation,
the neutral and beneficial site frequency spectra differ only
by a scaling factor set by the rate of neutral mutation rela-
tive to the strength of selection. This relationship demon-
strates the fact that, as beneficial mutations become more
common, the relative importance of a mutation’s intrinsic
fitness effect diminishes relative to the quality of its genetic
background. Thus, the relative site frequency spectra are
roughly set by the rate at which neutral mutations accrue
in the nose classes relative to beneficial mutations. Although
only strictly true in the infinite adaptation limit, our simu-
lations demonstrate that this approximation is already accu-
rate for q as small as 4 (Figure 5).

To compute the site frequency spectrum of neutral
semiprivate variants, the derivation follows identically as
for beneficial mutations, with s / 0, Ub / Un. The result
may then immediately be written down to be

fneut;rareðn=NÞ} Fneut;rareðn=N; 0Þ � UnN
n

ffiffiffiffiffiffiffiffiffi
2pv

p }
1
n
; (28)

which holds so long as n � ffiffiffiffiffiffiffiffi
2=v

p
. This 1/n dependence is

demonstrated in Figure 5.

Sojourn Times

So far, we have described the effect of genetic draft on the
frequencies of lineages as they jump through fitter and fitter
fitness classes and characterized the effects of these jumps in
skewing the resulting beneficial and neutral SFS. Now, we
are ready to make predictions regarding fates and trajecto-
ries of observed polymorphic sites in these populations. One

Figure 5 (A) The site frequency spectrum of common neutral mutations.
The dashed lines are the theoretical predictions using the exact scaling in
Equation 27 for the two tested values of q. Colored lines are frequency
spectra derived from the results of forward-time simulations for each
parameter set. For each evolved population, 1000 individuals were sam-
pled from the final timepoint of an initially clonal population evolved for
15000 generations. Parameter sets are the same as those quoted in
Figure 3, and additionally Un = Ub for each parameter set. (B) The site
frequency spectrum of neutral semiprivate variants (a magnification of A
in the regime x � 1). The site frequency spectrum for each parameter set
is normalized by the number of purely private neutral mutations (i.e.,
neutral sites with lineage sizes n = 1). The 1/n dashed black line is the
decay predicted from Equation 28 for small n, and the 1/n2 dashed black
line indicates the crossover to the (approximately) 1/n2 decay predicted
for more common neutral alleles. Dashed vertical lines represent the
predicted realm of validity of the 1/n decay for each parameter set, de-
rived in File S1. Colored lines are frequency spectra derived from the
results of forward-time simulations for each parameter set. For each
evolved population, the total number of mutations carried by n individuals
were explicitly tabulated from the final timepoint of an initially clonal pop-
ulation evolved for 15000 generations. Parameter sets are the same as those
quoted in Figure 3, and additionally Un = Ub for each parameter set.

1016 K. Kosheleva and M. Desai

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.156430/-/DC1/genetics.113.156430-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.156430/-/DC1/genetics.113.156430-1.pdf


of the most important predictions to be made is the time to
fixation of a beneficial allele.

In contrast to the strong selection, weak mutation regime,
in the strong selection, strong mutation regime, the lineage
carrying a particular mutation usually jumps through many
fitness classes before fixing in any one. Furthermore, it takes
time for the class in which the mutation first fixed to traverse
the length of the wave, adding �2qhtki generations before
the mutation is fixed in the population. Thus, in studying the
fates of mutations, there are two pertinent questions. First,
given a mutation at some measured frequency, how long does
it take before the mutation sweeps or goes extinct? Second,
given a newly established fitness class, how long does it take
any mutation introduced in this class to sweep (equivalently,
what is the expected time to fixation of a new mutation that is
destined to fix)?

Because our method assumes that lineages in the feeding
class are frozen once they begin to feed establishing mutants
into the next class, our method is poorly equipped to deal
with lineages at very high or low frequencies that are
strongly affected by drift. Furthermore, the pathologies of
our distribution (which, treating nk as a continuous variable,
allows for fractional numbers of individuals) introduces
errors in the regime of nk � 1. Nevertheless, we can calcu-
late the sojourn time of these mutants by predicting when
the frequency of a given mutation is expected to fall above
or below a small threshold frequency e. All the above prob-
lems may be circumvented if e is taken to be small, but large
enough for the lineage to be established in the feeding class
when it begins supplying establishing mutants (roughly, this
is fulfilled when 1 � e � Ub=qs). When a lineage falls be-
low frequency e or rises above frequency 1 2 e in a given
class, its probability of extinction or fixation is then 1 2 e,
which is nearly certain if e is sufficiently small. We note that
this scenario more accurately imitates what one could mea-
sure in an experimental setting, with a sample that is much
smaller than the total population size or (if performing
whole population sequencing) some finite-sequencing read
depth. In these experimental scenarios, the absence of a par-
ticular polymorphism in such a measurement may not mean
that the polymorphism is extinct entirely, but rather that it is
unlikely to be present in the population above a certain
frequency.

The distribution governing the sojourn time Psoj(k|x0)—
the probability that a site at a frequency x0 in fitness class
0 has a frequency xk in fitness class k that freezes below the
threshold e (or above 1 2 e)—is calculated as

Psojðkjx0Þ ¼
R e

0 rðxkjx0Þdxk þ
R 1

12e rðxkjx0Þdxk ¼
R z

0 P
�
~xk
��x0�d~xk þ RN

1=zP
�
~xk
��x0�d~xk

¼ x0
p Re

�R z

0
1

2 i
�
x0~xkþð12 x0Þ~x12ak

k eipak
� d~xk þ RN

1=z
1

2 i
�
x0~xkþð12 x0Þ~x12ak

k eipak
� d~xk�

¼ 1
akp

�
arctan

�
x0za

k
sinðpakÞ

12 x0þx0za
k
cosðpakÞ


þ arctan

�
ð12 x0Þzak sinðpakÞ

x0þð12 x0Þzak cosðpakÞ

�
;

(29)

where r and P are given in Equation 15 and Equation A7,
respectively, and z = e/(12 e). If the initial reference class is

assumed to be the mean class, this is the probability that the
mutation will be fixed or extinct in the mean class khtki
generations later. It will then require qhtki more generations
before the mutation is fixed or extinct population-wide, cor-
responding to the time for the mean fitness class to go ex-
tinct. Given a mutation at a measured frequency x0 at t = 0,
the true, population-wide sojourn time in generations is
then Psoj((k + q)htki|x0) = Psoj(k|x0). Both simulated and
predicted sojourn times for a number of different parameters
are shown in Figure 6.

A similar method is used to calculate the expected time
for fixation of any lineage in a given reference fitness class,
which we dub Pfix(k). Specifically, Pfix(k) is the probability
that one of the mutations founded in class 0 is past the
threshold 1 2 e, k fitness classes forward. Using the dis-
tribution of new mutations given in Equation 17, the prob-
ability that one is at frequency greater than (1 2 e) in class
k is

PfixðkÞ ¼
sin

�
pak�
p

Z 1

12e

ð12xkÞa
k21

xa
kþ1

k

dxk � ea
k

(30)

for e� 1 and k large. In this case, the expected fixation time
is

�
kfix

� ¼ XN
k¼1

k
dea

k

dk
� qðgE þ logðlogð1=eÞÞÞ � Oð2qÞ (31)

for q large, where the last relation holds for e � 1022. Thus,
it takes a time of about 2qhtki for a mutation destined to fix
to sweep in any class and an additional time of about 2qhtki
for that class to sweep through the population. The expected
sweep time for successful mutations is then O(4qhtki) �
O(4 log(s/Ub)/s) for q large.

We note that the time for any mutation to cross some
threshold frequency 1 2 e is closely related to the time it
takes a sample of n � 1 individuals to coalesce within some
fitness class, with e } 1/n. In this case, for the coalescence
time we recover the formula q(log(log(n)) + O(1)) derived
by both Desai et al. (2013) and Neher and Hallatschek
(2013) for the corresponding backward process (for the lat-
ter work, the factor of q must be replaced by the model
independent Tc, the coalescence time of two individuals in
the high-fitness nose).

Discussion

We have used a simple, infinite-sites model of adaptation
featuring a single beneficial selection coefficient to
carefully account for the effects of genetic drift, muta-
tion, selection, and by extension, genetic draft in de-
termining the evolutionary dynamics of polymorphic
sites. In what follows we discuss the connection between
the dynamics of rapid adaptation and the Bolthausen–
Sznitman coalescent, and comment on applications of
our results for interpreting frequency trajectories and
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inferring the action of positive selection on sequence
data. We also discuss pertinent similarities between our
model and other models of genetic draft. Finally, we note
that our method might be applied toward understanding
evolution on populations with strong epistasis between
evolutionary trajectories.

Rapid adaptation and the Bolthausen–
Sznitman coalescent

Having established the effect of genetic draft on the
frequencies of polymorphic sites, we then explored the
effect that the stochastic jumps characterizing the process
have on genetic diversity. In particular, we derived the
site frequency spectrum of both beneficial and neutral
mutations. As expected, we found that nearly private
variants—which overwhelmingly occur and drift near
the mean class—decay according to the well-known 1/x
behavior predicted for unlinked neutral sites, whereas
common mutations exhibit site frequency spectra more
closely related to those of exponentially expanding
clones, with the additional feature of an upswing at high
frequency that is characteristic of adaptation for many
models (Messer and Petrov 2013; Neher and Hallatschek
2013).

Of particular interest is the diversity of populations in
the limiting case of q / N, whose genealogies obey the
Bolthausen–Sznitman coalescent. Note that in this case,
the Bolthausen–Sznitman coalescence rates apply for indi-
viduals in the lead, with each “generation” taken over the
time of a new fitness class establishment (elaboration on
this setup can be found in Desai et al. 2013). Although this
genealogical structure was observed previously in Desai
et al. (2013), in the context of these stochastic jumps its
origin is intuitive: in the high-q limit, the contribution of
one individual at the wavefront to the next class falls off as
1/x2, which can be seen by taking xk21 /0 in Equation 16.
As proven by Schweinsberg (2003), the genealogies of pop-
ulations with offspring distributions that decay as x22 con-
verge to the Bolthausen–Sznitman coalescent in the limit of
N /N. The 1/x2 decay is also well known to describe the
frequency spectrum of exponentially expanding popula-
tions and in the case of adapting populations results from
the exponential expansion of new mutants at the front of
the wave. The Bolthausen–Sznitman coalescent has been
associated with a growing number of different adaptive
models (Brunet and Derrida 2012, 2013; Desai et al.
2013; Neher and Hallatschek 2013), suggesting that such
genealogies may be a universal limiting feature of rapid
adaptation.

Quasi-neutrality over long timescales

When many beneficial mutations segregate simultaneously,
frequency dynamics of mutations begin to exhibit a quali-
tatively different behavior than those in the strong selec-
tion, weak mutation regime. After the introduction and
establishment of a mutation in the fittest class, a mutation’s
fixation probability is equal to its frequency in that class,
regardless of its intrinsic fitness effect. To see this, assume
a mutation first freezes to some frequency x0 in its founding
class. Then, since xk/N 2 {0, 1} (i.e., at long times the
allele is either fixed or extinct), this implies that the fixa-
tion probability

Figure 6 The sojourn probability Psoj(k|x0) plotted for different values
of x0, q, and other population parameters Ub, s, and N. Curves repre-
sent the theoretical prediction for the sojourn times given in Equation
29. Circles and squares represent the results of forward-time simula-
tions. The circular and square points have identical values of q, but
differ in population size by a factor of 10. Circles represent simulations
run with parameters s = 0.1, Ub = 0.001, and squares are run with
parameters s = 0.01, Ub = 0.0001. The three plots represent different
values of q, with q = 4 calculated from the approximate value in the
text, and q = 6.8, 8 calculated with higher-order corrections given in
Desai and Fisher (2007). For both simulated and theoretical curves,
mutations were considered extinct or fixed in a given class when they
fell below or rose above a cutoff of e = 0.03 or (1 2 e) = 0.97, re-
spectively. More information about the simulations may be found in
File S1.
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Pfix ¼
R 1

121=N rðxNjx0ÞdxN
¼ 1

�R 1

121=N rðxNjx0ÞdxN
	
þ 0

�R 1=N
0 rðxNjx0ÞdxN

	
¼ hxNi ¼ x0:

(32)

Essentially, this means that once a mutation founded at the
high-fitness wavefront freezes to a particular frequency in a
class, its likelihood of success depends only on its frequency in
that class (at least, without more information about its
frequency in fitter classes). Note, however, that the above
formula technically holds only for mutations at high enough
frequencies to have necessarily been founded near the distribu-
tion’s nose class, since mutations founded away from the wave-
front have fixation probabilities that are virtually zero. However,
since these latecomers never reach more than a negligible fre-
quency in their class, the above formula still describes the fixa-
tion probability of a randomly selected mutant reasonably well.

Now, once a mutation freezes in the fittest class, it will
typically be present in the mean fitness class a time qhtki later.
This corresponds to the timescale for the fittest class to become
the mean class. Since the mean class consists of the majority of
individuals in the population, the measured frequency of the
mutant at this time is a good approximation to its frequency in
the mean class. Barring any information about the frequency of
the mutation in fitter classes, its measured frequency at this
time is then roughly its fixation probability. (A better approxi-
mation is straightforwardly obtained by taking into account the
fact that the mutation’s frequency in classes below the mean is
identically 0 at this time.) This equality becomes (nearly) exact
at a time ofO(2qhtki), when the founding fitness class becomes
the least fit in the population, and the mutation’s frequency in
all classes is determined solely by draft.

These considerations have important consequences for
predicting the fate of polymorphic sites in experimentally
evolving populations. In a population that is adapting rap-
idly enough for a stratification of fitnesses to always be
present, sites that are polymorphic for sufficiently long have
dynamics that are indistinguishable from neutral mutations
at comparable frequencies in these populations, because
they are determined only by genetic draft. Once the frequency
of a mutation is frozen in a particular fitness class, its fitness
effect alone is no longer important in determining its future
success. This is because it is only the net fitness of the mutant
and its genetic background that is important in determining
its dynamics, and not the fitness effect of the mutation itself.
Because it takes a time of O(2qhtki) for a mutation founded
at the nose to occupy all strata of fitnesses in the population,
common mutations in these rapidly adapting populations can
be thought to have a relaxation time of 2qhtki, beyond which
their population-wide frequency approaches their frequency
in the mean class, and the fitness of their founding haplotype
decouples from their population-wide dynamics.

In short, the significance of this finding is simple: if
a mutation—regardless of its fitness effect—has been mea-

surable in the population for longer than 2qhtki generations,
its fixation probability is equal to its frequency in the pop-
ulation. This approximation should already be quite good
(albeit consistently too low due to the inclusion of less-fit
classes where the mutation is absent) at a time qhtki.

These considerations provide a parallel to Haldane’s for-
mula for the fixation probability of a beneficial mutation in
the successive sweep regime, Pfix = s. Whereas this formula
gives the likelihood of a mutation to fix despite the stochas-
tic effects of genetic drift, the probability of a long-standing
polymorphism to fix despite the randomizing effect of draft
is simply Pfix = x, where x is the frequency of the mutation in
the population. The two forces are similar in that they sto-
chastically amplify the fluctuations in the trajectories of
polymorphic sites, but the length- and timescale of the fluc-
tuations caused by draft are much greater.

Implications for the McDonald–Kreitman test

Another useful application of our findings is the ability to
analytically correct for the effect of genetic draft on the
results of tests for signals of adaptation, such as the
McDonald–Kreitman test (McDonald and Kreitman 1991).
This test, along with many other widely used tests for selec-
tion, assumes that beneficial mutations are rare and segre-
gate independently. However, both assumptions are invalid
for rapidly adapting populations, and new analytical predic-
tions are needed. Fortunately, we demonstrate that our method
provides a simple way to correct for the effect of linkage be-
tween beneficial mutations. For the case of the McDonald–
Kreitman test, this correction is straightforwardly obtained by
accounting for the extra heterozygosity contributed by many
simultaneously segregating beneficial mutations.

The McDonald–Kreitman test approximates the fraction
aMK of nucleotide substitutions that are adaptive by consid-
ering relative quantities of fixed and polymorphic, synony-
mous and nonsynonymous sites between two diverged
populations. The fraction of adaptive substitutions is simply

aMK ¼ dþ
dn

� 12
ds
dn

pn
ps
; (33)

where d+, ds, and dn are the adaptive, synonymous, and
nonsynonymous substitution rates, and pn, ps are the num-
bers of nonsynonymous and synonymous polymorphisms in
one of the sampled populations, respectively. The last ap-
proximation arises from the assumption that

dþ ¼ dn 2 d � dn 2 dsðp=psÞ � dn 2 dsðpn=psÞ; (34)

where d is the substitution rate of nonadaptive, nonsynony-
mous mutations and p is the number of nonadaptive, nonsy-
nonymous polymorphic sites in the sample. Implicit in
Equation 34 are several assumptions: first, the rate of non-
adaptive nonsynonymous substitutions in the sample is equal
to the rate of synonymous substitutions, scaled by the relative
frequencies of nonadaptive nonsynonymous to synony-
mous polymorphisms. This implicitly assumes that deleterious
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mutations do not fix, that deleterious mutations do not sig-
nificantly contribute to the measured numbers of nonsynon-
ymous polymorphisms in the sample, and that the
population has not undergone any demographic change to
skew the distributions of polymorphic sites. Second, it is
assumed that the number of nonadaptive, nonsynonymous
polymorphisms is precisely equal to the measured numbers
of nonsynonymous polymorphisms. In other words, benefi-
cial mutations are rare and fix quickly upon arising; thus,
they are rarely present in the population as polymorphisms.

Of course, these assumptions break down when delete-
rious or beneficial mutations significantly contribute to the
number of polymorphic sites and when linkage between
sites skews the relative frequencies of mutations. These
issues usually result in a measured aMK that severely under-
estimates the true fraction of adaptive substitutions. A large
body of work has been put forward in an effort to correct for
this skew (Andolfatto 2008; Charlesworth and Eyre-Walker
2008; Eyre-Walker and Keightley 2009; Messer and Petrov
2013). For example, introducing a low-frequency cutoff for
measured polymorphisms significantly improves estimates
of aMK for the case of many weakly deleterious mutations
(Fay et al. 2001; Charlesworth and Eyre-Walker 2008), since
in the absence of genetic linkage few deleterious mutations
will ever reach high frequencies. However, few studies have
carefully analyzed the effect of linkage on aMK, particularly
the effect of linked beneficial mutations. One notable excep-
tion is the work of Messer and Petrov (2013), who used
a sophisticated extension of the McDonald–Kreitman test ac-
counting for demographic history and distributions of fitness
effects to infer aMK from simulated rapidly adapting popula-
tions. The authors found that the inference of a massive pop-
ulation expansion (derived from the site frequency spectrum
of the sample) resulted in superior estimates of aMK, although
no such expansion ever occurred in the simulation. The in-
tuition guiding this finding is that the site frequency spectrum
of a population undergoing rapid adaptation resembles that
of a population undergoing an exponential expansion. Re-
gardless, analytic corrections for the effect of genetic draft
have yet to be derived and would provide for a more straight-
forward way of accounting for this confounding factor.

Our results provide a simple analytical correction to aMK

for the case of tightly linked sections of the genome that
accounts for genetic draft. First, we note that the number
of polymorphic sites is closely related to heterozygosity p,
the average number of nucleotide differences between two
randomly drawn individuals, through

p ¼
*Xp
i¼1

2xið12 xiÞ
+

¼ 2p
�hxi2 �

x2
��
: (35)

Thus, the ratio pn/ps is simply

pn
ps

¼ pn
�hxis 2 �

x2
�
s

�
psðhxin 2 hx2inÞ

� pn

ps
: (36)

In general, the moments of the frequencies of synonymous
and nonsynonymous sites may be measured straightfor-
wardly from the site frequency spectrum of the sample.
However, as we have already demonstrated, in the rapid
adaptation limit the SFS of neutral and beneficial mutations
is similar in form. Thus, the heterozygosities of beneficial
and neutral mutations are largely determined by different
numbers of neutral and selected sites—i.e., by pn and ps—
rather than significantly different frequency distributions.

The heterozygosity for beneficial mutations is calculated
from the moments of r(xk|x0) (using the same method used
in the calculation of the beneficial SFS) to be p � 2(q 2 1),
with higher-order corrections given in Desai et al. (2013).
The neutral heterozygosity is simply 2UnT2, where T2 is the
expected coalescence time for two randomly chosen individ-
uals. The rate of beneficial substitutions is 1/htki, and the
rate of neutral substitutions is Un. Thus, given the rate of
synonymous mutations, Un,s, and the rate of neutral non-
synonymous mutations, Un,n, the expected, measured value
of aMK (by naively plugging in each measured value in Equa-
tion 33) will be

�
aMK;meas

� ¼ 12
ds
dn

pn
ps

� 12
ds
dn

pn

ps

¼ 12
�

Un;s

1=htki þ Un;n

�
2T2Un;n þ 2ðq21Þ

2T2Un;s


(37)

Clearly, only the first term of pn corresponds to nonadaptive
sites. Thus, we have

�
aMK;meas

� ¼ dþ
dn

2

�
Un;s

1=htki þ Un;n

�
2ðq2 1Þ
2T2Un;s



¼ dþ
dn

2
2ðq2 1Þds

dnps
: (38)

This gives for the fraction of adaptive substitutions

dþ
dn

¼ 12
ds
dn

pn
ps

þ ds
dn

2ðq2 1Þ
ps

¼ �
aMK;meas

�þ ds
dn

2ðq2 1Þ
ps

:

(39)

In practice, the parameter q is measurable from estimates of
N, s, and Ub or the distribution of fitnesses within the
population.

The interpretation of this correction is intuitively simple.
In populations where adaptation is rapid, the assumption
that beneficial mutations do not contribute significantly to
measured polymorphism breaks down. As a result, ascribing
all measured nonsynonymous polymorphism pn to neutral
(or deleterious) mutations results in an underestimate of
d+/dn. In fact, in the limit of infinitely rapid adaptation,
q / N, aMK,meas / 1/2, in contrast to the true fraction of
adaptive substitutions, d+/dn /1. Our model, then, provides
a simple correction for this underestimate by predicting the
expected fraction of observed nonsynonymous polymorphism
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(relative to synonymous polymorphism) that arises from ben-
eficial mutations.

Relation to other models of genetic draft

There is a natural connection between our model and the
classic model of genetic draft between a neutral locus and
a strongly selected locus, first studied by Gillespie (2000,
2001). In these seminal works, the diffusive random walk of
a neutral allele is coupled with the stochastic process of
a hitchhiking event occurring at rate R, which drives the neu-
tral allele to either fixation or extinction. In Gillespie’s model,
the time required to fix the strongly selected allele relative to
the time between substitutions is small enough that fixation/
extinction is assumed to occur instantaneously. One basic re-
sult derived under the assumptions of such a model are the
first two moments of the stochastic jump process: hDxi = 0,
hDx2i = Rx0(1 2 x0), for Dx = x1 2 x0 [here, x1 denotes the
frequency of the neutral allele after some time of O(htfixi) for
the strongly selected locus]. It turns out that the stochastic
process described by Gillespie emerges naturally as the weak
mutation limit of the model studied in this work.

To demonstrate this, we observe that the first two
moments of our jump distribution r(x1|x0) are hDxi =
0 and hDx2i= x0(12 x0)/q (the derivation, along with a gen-
eral formula for higher order moments, is given in File S1).
The similar functional dependence on x0 between the two
models is not particularly surprising, since it arises from a gen-
eral property of any exchangeable coalescent (because the
jump process describes the changing composition of each
new lead class, and because all individuals within the lead
have the same fitness, our model is exchangeable). However,
the prefactor for each moment depends strongly on the sto-
chastic dynamics predicted by different models. To compare
the stochastic dynamics described by the different works, we
first note that all of our results take time in units of fitness-
class establishments, which is equal to the substitution time of
beneficial mutations. In the weak mutation limit, we have
q / 1, so that hDx2i / x0(1 2 x0) = Rx0(1 2 x0), where
R is the substitution rate of beneficial mutations. Higher-order
moments of the two distributions are also similarly related, so
that Gillespie’s results emerge from our model in the limit
that q/ 1. Thus, our results generalize the stochastic process
describing genetic draft to the regime where the time be-
tween beneficial mutations is no longer large.

Next, we might ask how generalizable our results are
when compared with genetic draft arising from different
sources. For example, Neher and Shraiman (2011) recently
analyzed the effect of draft arising from infrequent recom-
bination events instead of de novo mutations. They intro-
duced an approach similar to ours to study how the
frequency of an allele changes over the course of a “meta-
generation” set by a typical turnover timescale. The resulting
dynamics are qualitatively similar to many features of our
model. Specifically, Neher and Shraiman (2011) found that
the origination of high-fitness clonal bubbles determines the
long-term frequency dynamics of an allele and showed that

these dynamics can be encapsulated in an effective offspring
distribution for recombinant genotypes, which decays asymp-
totically as x22. They then linked this effective offspring dis-
tribution to genealogies described by multiple merger
coalescents. As a consequence, they found that the asymptotic
form of the site frequency spectrum also decays asymptoti-
cally as x22 for both neutral and beneficial alleles, analogous
to our results here. The parallels between these two models
reflect some general effects of draft on the dynamics of linked
sites, which are robust to the specific source of the random-
izing effect.

Applications to forks and more complicated
fitness landscapes

Finally, because of the flexibility of our model with respect to
the underlying fitness landscape, it is straightforward to
extend our results to a small class of more general models
involving complex interactions between sites. Specifically,
we might consider the case in which two or more disjoint
and incompatible evolutionary pathways are possible. That
is, each individual can acquire one of two or more distinct
sets of beneficial mutations, but mutations from different
sets are incompatible. Note here that different evolutionary
pathways are effectively incompatible if there is sign
epistasis between them that is at least as strong as �s, so
that any individual that acquires mutations from two or
more pathways must leave the lead of the wave and is un-
likely to fix as a result. In this scenario, we can apply our
approach to analyzing the jumps from class to class for each
different pathway separately. Different relative mutation
rates for each pathway simply contribute a different prefac-
tor in the exponent of the generating function for each con-
tributing lineage (i.e., replacing the xℓ,k21 with some relative
rate mℓ in Equation 12). This allows us to apply our method
to answer questions about the probability that the popula-
tion will follow any given path, its time to fixation, and the
degree to which the population will simultaneously explore
the other pathways.

These considerations provide a different perspective on the
fates of populations evolving on rugged fitness landscapes,
and particularly on the effect of a larger population size in
avoiding local fitness peaks. Previous works have suggested
that over certain timescales, smaller populations may have an
advantage in adapting on these rugged landscapes, because
their trajectories are more heterogeneous, whereas larger
populations have an increased tendency to get stuck on local
fitness peaks (Rozen et al. 2008; Handel and Rozen 2009;
Jain et al. 2010; Szendro et al. 2013). However, our analysis
suggests that if the landscape is dominated by several distinct
uphill trajectories featuring mutational steps of similar size,
large populations may be capable of traveling for many steps
down multiple paths, effectively exploring the surrounding
landscape before settling upon one particular uphill trajec-
tory. For example, in the case of a simple fork with equal
mutation rates down each pathway, a large, rapidly adapting
population will typically explore about 2q mutational steps
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forward before a particular pathway is closed off. The transi-
tion between this behavior and that considered in the work
cited above evidently occurs between classical clonal interfer-
ence, in which adaptation is dominated by the rare emer-
gence of extremely fit mutants, and the multiple mutations
regime, in which most fixed mutations are of roughly the
same size. This, in turn, strongly depends on the distribution
of fitness effects of mutations, with long-tailed or short-tailed
distributions giving rise to dynamics dominated by clonal in-
terference or multiple mutations, respectively (Desai and
Fisher 2007; Fogle et al. 2008). The different outcomes pre-
dicted by these two regimes could explain the lack of exper-
imental consensus on the effect of population size on
outcomes of adaptation (Rozen et al. 2008; Schoustra et al.
2009; Miller et al. 2011).

Conclusions and Future Work

By using a simple model, we have made considerable
headway in understanding how genetic draft affects the
frequencies of mutations through a series of stochastic jumps,
how these jumps affect genetic diversity, sojourn times, and
fixation times of mutations, and why these statistics resemble
those derived from the Bolthausen–Sznitman coalescent. We
then showed how our method leads to a simple correction to
the McDonald–Kreitman test that accounts for linkage be-
tween beneficial mutations. Finally, we discussed how our
analysis might be extended to describe evolution on certain
classes of rugged fitness landscapes, which—although admit-
tedly very simple—nonetheless describe limiting behavior for
sign epistasis between multiple evolutionary pathways.

Still, our model has some shortcomings. First, we neglect
recombination, making our results applicable only to the
evolution of microbial populations and tightly linked regions
of the genomes of sexually reproducing organisms. Natu-
rally, in cases where recombination is no longer rare, the
effects of genetic draft are tempered as competing beneficial
mutations recombine onto a single genetic background.
Fitness classes that evolve disjointly in the asexual model
are then allowed to mingle at each reproductive step,
meaning that a series of stochastic jumps between classes
no longer correctly describe the dynamics. Fortunately, the
work of Neher and Shraiman (2011), which accounts for the
effects of occasional (facultative) outcrossing of clones pro-
vides a framework for combining these two sources of ge-
netic draft. In particular, since common mutations must at
one point propagate near the most-fit class, evolutionary
dynamics in these populations are still largely informed by
the distribution of haplotypes in the nose. This distribution
would then obtain contributions from both mutations from
the adjacent class and recombined haplotypes obtained from
mating between less-fit clones.

We also make use of the assumption of a single selection
coefficient. Indeed, two facets of our model that are key in
deriving analytical results—the organization of clones
according to fitness classes and the asymptotic freezing of

frequencies in each class—both break down when a single
selection coefficient is replaced with some distribution of
fitness effects. However, several works (Desai and Fisher
2007; Good et al. 2012) have shown that even in popula-
tions with a distribution of fitness effects, evolutionary dy-
namics are well described by the use of an effective, or
predominant selection coefficient, which coincides exactly
with the most common fixed mutational effect. Still, the
inclusion of a distribution of fitness effects, and the resulting
unified understanding of the effects of multiple mutations
and mutations of varying effect sizes in driving evolutionary
dynamics, remains a promising subject of future work.
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Appendix: Dynamics of the Transition Process
In this appendix we show that frequencies of mutant lineages are frozen when a class begins feeding mutants to the lead that
are destined to establish. We then explicitly derive the probability distribution rk of a transition in a mutation’s frequency
from a starting class 0 to some final fitness class k.

To prove that frequencies of mutant lineages are frozen when a class begins supplying establishing mutants to the next
class, we first note that the Lth establishing mutant in a given fitness class typically occurs at time tL such that

L ¼ qs|{z}
ðaÞ

�Ub

Z tL

0

eðq21Þst

qs
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðbÞ

; (A1)

where (a) is the establishment probability of one mutant and (b) is the total number of mutants introduced into the lead
class by time tL. Thus, using the same argument as in Desai et al. (2013), the amount that the Lth establishing lineage
contributes to a fitness class as a fraction of the first lineage is

hL;kðtÞ
h1;kðtÞ

¼ eqsðt2tLÞ

eqsðt2t1Þ ¼
1

Lq=ðq21Þ: (A2)

Note that this is an upper limit on the contribution of hL,k, since the growth of each subsequent lineage actually decreases
according to the rate of adaptation v. A fitness class typically establishes in a time htki and generates its first establishing
mutant a time t1 after that. If we neglect the decreasing growth rate due to adaptation of the population (valid for large q),
then at this point, the class below it has supplied

qsUb

Z t1þhtki

0

eðq21Þst

qs
dt � s

Ub
� 1 (A3)

establishing mutants.
In practice, however, few biological populations evolve with q . 4, in which case the diminishing growth rate becomes

important in the above calculation. A simple modification of the analysis gives the number of establishing lineages to be roughly�
ðq2 2Þðq21Þðq23Þ=ðq21Þ=ððq2 3ÞqÞ

	
ðs=UbÞðq22Þ=ðq21Þ

for q . 3, which, although considerably smaller than the asymptotic value of s/Ub is offset by the more rapid decay of
hL,k/h1,k for smaller q. Extensions for q = 2, 3 are likewise straightforward.

Thus, we have demonstrated that the contribution of subsequent mutations diminishes rapidly, and by the time a fitness
class begins feeding establishing mutants to the next class, it has O(s/Ub) � 1 mutations that are destined to establish in it.
As a result, the contribution of subsequent mutations after this time is already very small, meaning that the frequencies of
common lineages in the fitness class at this time may safely be treated as frozen.

The astute reader might also note that mutant lineages that are destined to go extinct may also contribute to shifting the
frequencies, which is certainly a contributing factor close to the time that the class establishes. Although not as straightforward
a calculation, if s� Ub then it is still true that by the time a class begins feeding establishing mutations, the contribution of these
“doomed lineages” is also small (File S1). Thus we are justified in treating the process as a Markov chain.

Now we are ready to derive the transition probability of a mutation at frequency x0 in class 0 to some frequency xk in class
k. Desai and Fisher (2007, Equation 29) showed that the contribution to class k, nk, from a lineage at frequency xk21 in class
k 2 1 is described by the generating function

�
e2nkz

� ¼ e2xk21za : (A4)

Thus, after class k establishes, the lineage grows as

hkðtÞ ¼
xk
qs

eðq21Þsðt2tkÞ }
nk
qs

eðq21Þs
�
t2htki

�
: (A5)

The generating function for the contribution nk+1 of the mutation 2 fitness steps forward is then obtained by averaging
over the intermediate value nk,
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he2nkþ1zi ¼ �
e2nkza

�
nk

¼
RN

0 e2nkzaPðnkjxk21Þdnk

¼ 1
2pi

RN

0

R iN
2iNe2nkzaenkze2xk21z

a

dzdnk

¼ 1
2pi

R iN
2iN

e2xk21z
a

za 2 z dz

¼ e2xk21za
2

;

(A6)

where the step in line 2 makes use of the standard formula for inverting the Laplace transform. Although technically the
average should be taken over the frequency xk (which is analytically intractable), an average over nk is a reasonable
approximation if sk, the growth of the entire class, does not deviate too much from its typical value, and if the growth of
the lineage nk in future classes may be taken independently of the growth of other lineages. Because the effect of this
approximation is compounded at each step forward, it introduces significant deviations at timescales of roughly q fitness
steps forward, which is the timescale over which fluctuations in the advance of the fitness wave become significant. Accept-
ing this approximation, it is then straightforward to show that

�
e2nkz

� ¼ e2x0za
k

: (A7)

Without loss of generality, we can index the class in which the mutant begins to be tracked to 0. The fitness class at k = 1
can then be divided into those individuals descended from a particular lineage in class 0, at frequency x0, and those not
descended from that lineage, at frequency (1 2 x0). Since, for each subsequent fitness class, new frequencies are frozen near
the nose, where the two sets of individuals proliferate independently, there are two independent variables encoding the fate
of the lineage: nk, denoting the contribution of the lineage to a class with k more beneficial mutations, and ~nk, denoting the
contribution of individuals not derived from that lineage, so that ~nk þ nk ¼ sk.

If we denote the probability densities of nk and ~xk ¼ ~nk=nk by Pk(nk|x0) and Pkð~xk
��x0Þ, respectively, then

Pk
�
~xk
��x0� ¼ RN

0 Pk
�
~xknk

��12 x0
�
Pkðnkjx0Þnkdnk

¼ 1
ð2piÞ2

RN

0

R eþiN
e2iN

R iN
2iNe~xknkz1enkz2e2ð12x0Þzak1 e2x0za

k
2 nkdz1dz2dnk;

¼ 1
ð2piÞ2

R eþiN
e2iN

R iN
2iN

e2ð12x0Þzak1 e2x0z
ak
2

ð~xkz1þz2Þ2 dz1dz2;

¼ 2 x0ak

2pið2~xkÞ12ak

R eþiN
e2iN

e2ð12x0Þzak1 2x0ð2~xkz1Þa
k

z12ak
1

dz1;

¼ x0ak

p Re
�RN

0
e2ð12x0ÞðizÞak2x0ð2~xkizÞa

k

ð2i~xkzÞ12ak
dz;

�

¼ 2 x0
~x12ak
k p

Re
�

1
i
�
x0~xa

k
k þð12 x0Þeipak

��;

(A8)

where e 2 ℝ, e / 02, and step 4 to 5 makes use of a transformation z = 2iz1 + ie. Simplifying gives

Pk
�
~xk
��x0� ¼ sin

�
pak�

~xkp
x0ð12 x0Þ

ð12x0Þ2~x2ak

k þ x20~x
ak

k þ 2x0ð12 x0Þcos
�
pak

�: (A9)

Finally, we perform a change of variables to xk ¼ 1=ð1þ ~xkÞ, giving the jump distribution,

rkðxkjx0Þ ¼
sin

�
pak�x0ð12 x0Þ

xkð12 xkÞp
h
ð12x0Þ2

�
xk

12xk

	ak

þ x20
�
12xk
xk

	ak

þ 2x0ð12 x0Þcos
�
pak

�i: (A10)

This function denotes the probability density of observing a mutation at frequency xk in class k, given that it was at frequency
x0 in class 0. The function cited in the text is r(x1|x0) = r1(x1|x0).
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FILE S1

SUPPLEMENTARY INFORMATION

Contribution of doomed lineages to a fitness class:

In deriving the transition probabilities, we argue that the frequency of competing mutant

lineages is frozen by the time a fitness class begins feeding mutants that are destined to

establish into the nose. We arrive at this conclusion by calculating the number of establishing

mutant lineages by the (typical) time this occurs. Since this number is typically large, and

the contribution of each subsequent establishing lineage vanishes (despite the fact that these

lineages arrive more and more quickly), the conclusion follows that the frequencies of lineages

by this timepoint are frozen. This comes from the fact that the deterministic lineage size

fraction, nL/n1 ∼ 1/Lq/(q−1) is convergent.

What could be the contribution of mutants that will not establish in a class, but may still

contribute establishing mutants to the next fitness class? There are many more mutants

introduced that will not establish relative to those that will, and these mutants grow roughly

proportionally to the size of the class below them (i.e., at rate (q − 1)s). By the time the

population starts supplying establishing mutants, if these doomed lineages still comprise

a significant fraction of the population, the result will be a deterministic drifting of the

frequency, as these doomed lineages (which, because they are plentiful, will typically be split

as x0) become less and less of a contributing factor. We would like to determine if these

combined lineages are negligible by the time a class begins feeding establishing mutants or

still constituting some non-trivial fraction of the class.

The total number of individuals at time t derived from lineages that are destined to go

extinct is given by

Ndoomed(t) =

∫ t

0

dTUb(1− qs)
1

qs
e(q−1)sT︸ ︷︷ ︸

(a)

〈n(t− T )|n(t→∞) = 0〉︸ ︷︷ ︸
(b)

, (1)

where (a) is the expected number of non-establishing mutants occurring in a small interval

dτ , and (b) is the expected number of these mutants that still persist at a time t− τ later,

given that these mutants are going to eventually go extinct. Here, 〈n(t− τ)|n(t→∞) = 0〉

is derived from standard branching process analyses.
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The probability distribution of doomed (but not yet extinct) lineages at time t is given

by

P (n > 0, t|doomed) = Pext(n)P (n, t)/Pext(t), (2)

where Pext(n) is the probability of extinction of a lineage composed of n individuals, Pext(t)

is the probability that a lineage destined to go extinct is not yet extinct by time t, and

P (n, t) is the probability that a single mutant created at t = 0 has n descendants at time t.

Note that by a “doomed” lineage we mean a lineage that is destined to vanish.

Now, following standard branching process analysis, a new mutant at fitness qs will have

the following distribution of ancestors a time t later (Desai and Fisher, 2007; Eq. 11):

P (n = 0, t) =
eqst − 1

(1 + qs)eqst − 1
, (3)

so that

P (n = 0, t|doomed) =
(1 + qs)(eqst − 1)

(1 + qs)eqst − 1
, (4)

and furthermore (Desai and Fisher, 2007; Eq. 10)

P (n > 0, t) =
(qs)2eqst

((1 + qs)eqst − 1)((1 + qs)eqst − 1− qs)

(
((1 + qs)eqst − 1− qs)

(1 + qs)eqst − 1

)n
. (5)

In the branching process analysis, all lineages are independent, so

Pext(n) = Pext(1)n =

(
1

1 + qs

)n
. (6)

Furthermore,

Pext(t) = 1− P (n = 0, t|doomed) =
qs

(1 + qs)eqst − 1
. (7)

Thus, using Eq. (2) gives

P (n > 0, t|doomed) =
qseqst

(1 + qs)eqst − 1− qs

[
eqst − 1

(1 + qs)eqst − 1

]n
. (8)

Finally, this gives us

〈n(t)|n(t) 6= 0, n(t→∞) = 0〉 =
∞∑
n=1

nP (n, t|doomed) =
qseqst

(1 + qs)eqst − 1− qs

∞∑
n=1

nξn (9)
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with

ξ =
eqst − 1

(1 + qs)eqst − 1
. (10)

This reduces to

〈n(t)|n(t) 6= 0, n(t→∞) =
((1 + qs)− e−qst)

qs
(11)

Now, we include the possibility that the lineage has gone extinct by time t:

〈n(t)|n(t→∞) = 0〉 =
((1 + qs)− e−qst)

qs
P [n 6= 0|doomed] = e−qst. (12)

A fitness class, naively, has O(1/Ub) individuals when it typically starts creating estab-

lishing mutants. Hence,

Ndoomed(t1 + τk)

nk((t1 + τk))
= U2

b

∫ (t1+τk)

0

(1− qs) 1

qs
e(q−1)sT e−qs((t1+τk)−T )dT

≈ U2
b e

qs(t1+τk)

2qs

≈ s

2
. (13)

Thus, given our assumption that s� 1, the contribution of doomed lineages is indeed small

and can be ignored.

Moments of the jump probability: The moments of the jump probability ρ are cal-

culated as follows, analogous to the method used in Desai et al. (2013). Using the fact

that (
1

σk

)n
=

∫ ∞
0

zn−1

(n− 1)!
e−zσkdz, (14)

the n-th moment (for the step k → k + 1) is derived as

〈xn〉 =

〈(
ν

σk

)n〉
=

〈∫ ∞
0

zn−1

(n− 1)!
e−zσkνndz

〉
=

∫ ∞
0

zn−1

(n− 1)!

〈
e−zσkνn

〉
dz

=

∫ ∞
0

zn−1

(n− 1)!

〈
e−z(ν+ν̃)νn

〉
dz
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=

∫ ∞
0

zn−1

(n− 1)!

〈
e−zν̃

〉 〈
e−zννn

〉
dz

=

∫ ∞
0

zn−1

(n− 1)!
e−(1−x0)z

(1−1/q) 〈
e−zννn

〉
dz. (15)

Now,

〈νne−zν〉 = (−1)n
dn

dzn
〈e−zν〉 (16)

and

〈e−zν〉 = e−x0z
(1−1/q)

. (17)

We can thus compute a general formula for the n-th derivative:

dn

dzn
e−x0z

(1−1/q)

= e−x0z
(1−1/q)

n−1∑
i=0

(−x0)n−i(1− 1/q)n−iz−(n−i)/q−i(−1)i
Γ(1/q + i)

Γ(1/q)
. (18)

Thus,

〈νne−zν〉 = e−x0z
1−1/q

n−1∑
i=0

xn−i0 (1− 1/q)n−iz−(n−i)/q−i
Γ(1/q + i)

Γ(1/q)
. (19)

This gives for the moments,

〈xn〉 =

〈(
ν

σk

)n〉
=

∫ ∞
0

z(n−1)

(n− 1)!
e−(1−x0)z

1−1/q

e−x0z
1−1/q

n−1∑
i=0

xn−i0 (1− 1/q)n−iz−(n−i)/q−i
Γ(1/q + i)

Γ(1/q)
dz

=
n−1∑
i=0

xn−i0 (1− 1/q)n−i
Γ(1/q + i)

(n− 1)!Γ(1/q)

∫ ∞
0

z(n−1)e−z
1−1/q

z−(n−i)/q−idz

=
n−1∑
i=0

xn−i0

Γ(1/q + i)Γ(n− i)
(n− 1)!Γ(1/q)

(
q − 1

q

)n−1−i
. (20)

The first two moments are

〈∆x〉 = 0, (21)

〈(∆x)2〉 =
x0(1− x0)

q
. (22)

Equation (20) is readily generalized to k steps forward through the usual substitution,
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1− 1/q = α⇒ αk, which gives

〈xnk〉 =
n−1∑
i=0

xn−i0

Γ(1− αk + i)Γ(n− i)
(n− 1)!Γ(1− αk)

(
αk
)n−1−i

. (23)

Site Frequency Spectrum of Nearly Private Variants:

In this supplement we flesh out the derivation of the site frequency spectrum of nearly

private variants. As noted in the text, several of the difficulties that arise in the derivation

of the site frequency spectrum of common mutations may be neglected when dealing with

rare variants. Specifically, the problem is vastly simplified with the inclusion of two approx-

imations. First, since the lineage sizes of extremely rare variants are small and destined to

go extinct, the lineages can be assumed to experience no further (establishing) beneficial

mutations (specifically, this approximation holds if nyUb � 1, where n is the lineage size

and y the fitness of the mutant created by the lineage). Second, we assume that muta-

tions are fed into a given fitness class k deterministically at rate Ubnk−1(t). This holds if

Ubnk−1(t)� 1 (certainly true in the bulk of the distribution), in which case fluctuations of

incoming mutants around the expected number are small.

Because these lineages never comprise a significant fraction of the population, they can

be studied through a standard branching process analysis with a constant death rate d = 1

and a time-varying birth rate b(t) = 1 + y0 − vt, where t is time in generations, y0 is the

initial fitness of the mutant, and v the mean rate of adaptation of the population. First,

we are interested in deriving the expected (time-averaged) number of mutations carried by

n individuals with relative fitnesses y, Frare(n/N, y). This is obtained by considering the

expected number of mutants introduced when a given fitness class was at relative fitness

y0 > y, and multiplying by the probability that, in the time it took for the relative fitness

of the class to decrease to y, the lineage size of any of these mutants has increased to n.

Frare(n/N, y) is then the integral over all possible landing fitnesses y0.

Clearly, the number of mutants introduced at an initial fitness y0 is simply UbN(y0 − s)

where N(y) is the expected number of individuals at relative fitness y. So long as the

individual does not reside in the distribution’s high-fitness nose, N(y) is well approximated
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by a Gaussian with variance v (Desai and Fisher, 2007):

N(y) =
N√
2πv

e−y
2/2v. (24)

Furthermore, a mutant that is introduced at initial fitness y0 will be at fitness y in a time

t = (y0−y)/v. Finally, the distribution in lineage sizes of a mutant with an initial birth rate

1 + y0 that is decreasing at a rate v per generation is a classic branching process problem

that was solved by Kendall (1948). The distribution in lineage sizes is

P1(n > 0, t) =
e−y0t+

vt2

2

(
∫ t
0
e−y0τ+vτ2/2dτ + 1)2

(
1− e−y0t+

vt2

2∫ t
0
e−y0τ+vτ2/2dτ + 1

)n−1

. (25)

As a result, Frare(n/N, y) is given by

Frare(n/N, y) =
1

v

∫ (q−2)s

y

P1(n, (y0 − y)/v)UbN(y0 − s)dx0

=
1

v

UbN√
2πv

∫ ∞
y

e
y2+2y0s−2y20−s2

2v

(
∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1)2

1− e
y2−y20

2v∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1

n−1

dy0.

(26)

where an arbitrary upper limit of (q − 2)s is imposed to restrict to regions where the de-

terministic supply rate of mutants is guaranteed to hold, with contributions from mutants

founded when the class was at fitness greater than (q − 2)s already negligible for very rare

mutations. The total SFS of semi-private variants is then obtained by integrating over all

final fitnesses y:

Frare(n/N) =

∫ (q−2)s

−qs
Frare(n/N, y)dy

=
1

v

UbN√
2πv

∫ ∞
−∞

∫ ∞
y

e
y2+2y0s−2y20−s2

2v

(
∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1)2

×

1− e
y2−y20

2v∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1

n−1

dy0dy. (27)
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To extract the leading order behavior, we consider frequencies just at the mean, y = 0:

Frare(n/N, 0) =
1

v

UbN√
2πv

∫ ∞
0

e
2y0s−2y20−s2

2v

(
∫ y0/v
0

e−y0τ+vτ2/2dτ + 1)2

1− e
−y20
2v∫ y0/v

0
e−y0τ+vτ2/2dτ + 1

n−1

dy0.

(28)

Examining the integral inside the integrand, we observe that

∫ y0/v

0

e−y0τ+vτ
2/2dτ =

√
2

v
e−y

2
1

∫ y1

0

ey
2

dy =

√
2

v
D(y1) (29)

for y1 = y0/
√

2v, and D(y1) is Dawson’s integral, a well-studied special function. If y1 is

small, then

D(y1) ≈ y1 −
2

3
y31 +

4

15
y51... (30)

Since we are considering only small lineage sizes n, the integral will obtain its main

contribution for y0 small (meaning that most nearly-private variants were founded recently

in the past). Thus we can use the first order expansion:

Frare(n/N, 0) ≈ UbN

v
√

2πv

∫ ∞
0

e
2y0s−2y20−s2

2v

(y0/v + 1)2

(
1− 1

y0/v + 1

)n−1
dy0

=
UbNve

−s2/(2v)
√

2πv

∫ ∞
0

exp

(
y0s− y20

v

)
yn−10

(y0 + v)n+1
dy0

≈ UbNve
−s2/(2v)

√
2πv

(∫ ∞
0

exp

(
−y20
v

)
yn−10

(y0 + v)n+1
dy0

+
s

v

∫ ∞
0

exp

(
−y20
v

)
yn0

(y0 + v)n+1
dy0

)
=
UbNe

−s2/(2v)
√

2π

(∫ ∞
0

e−ξ
2
ξn−1

(ξ +
√
v)n+1

dξ +
s√
v

∫ ∞
0

e−ξ
2
ξn

(ξ +
√
v)n+1

dξ

)
, (31)

where, in the last step, the substitution ξ = y0√
v

was performed. Performing each integration

separately:

∫ ∞
0

e−ξ
2
ξn−1

(ξ +
√
v)n+1

dξ ≈ 1

n
√
v
,∫ ∞

0

e−ξ
2
ξn

(ξ +
√
v)n+1

dξ ≈ −γ
2

+ log

(
1

n
√
v

)
+

1

n
(32)

for
√
v � 1. Note that the second approximation breaks down for n large; however, in the
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realm of validity of our approximation (derived below), the second term will generally be

much smaller than the first term because of the log dependence on n.

Thus, the leading order behavior is

Frare(n/N, y = 0) =
UbNe

−s2/(2v)
√

2πvn
. (33)

Small n approximation condition: We would like to derive a realm of validity for all of

our approximations. The primary assumption made in simplifying the Dawson’s integral and

exponential integrals is that y0/
√

2v � 1, which is justified if the dominant contribution

to the integral occurs for y0 satisfying this condition. Since we are integrating against a

Gaussian, the integral is sharply peaked around the maximum of

e
2y0s−2y20−s2

2v exp

− (n− 1)e
−y20
2v

e−y
2
0/2v

∫ y0/v
0

evy2/2dy + 1

 . (34)

Thus we would like to find the location of the maximum of the exponent’s argument:

2y0s− 2y20 − s2

2v
− (n− 1)e

−y20
2v

e−y
2
0/2v

∫ y0/v
0

evy2/2dy + 1
. (35)

Define

I = e−y
2
0/2v

∫ y0/v

0

evy
2/2dy. (36)

The equation to be solved for the peak ymax is

0 = s− 2ymax +
(n− 1)ymax

I + 1
e−y

2
max/(2v) +

(n− 1)ymaxIe
−y2max/(2v)

(I + 1)2
. (37)

Note that ymax = O(s/2), with some n dependent correction that necessarily increases the

location of the peak. Thus, for any of these Taylor expansions to hold for any n, we require

at minimum that s�
√
v.

In this case it is true that

ymax =
s

2
+

(n− 1)ymax
2(I + 1)

e−y
2
max/(2v)+

(n− 1)ymaxIe
−y2max/(2v)

2(I + 1)2
<
s

2
+

(n− 1)ymax
2(I + 1)

+
(n− 1)ymaxI

2(I + 1)2
.

(38)
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This may be solved numerically to find the exact location of the peak. However, if we

suppose that the n terms are a small perturbation on the s/2 peak, and (as we have already

assumed) s�
√
v, we are justified in a first order expansion of Dawson’s integral:

ymax <
s

2
+

(n− 1)ymax
2(ymax/v + 1)

+
(n− 1)y2max/v

2(ymax/v + 1)2

<
s

2
+ (n− 1)v. (39)

So long as (n − 1)v � 1, it is indeed true that the new maximum is a small perturbation

around the s/2 peak, and our original first order expansion of I was justified.

Thus, for the small n approximation to hold, we require that ymax <
s
2

+(n−1)v �
√

2v.

Thus, the small n approximation holds for

n�
√

2

v
− s

2v
. (40)

Derivation of the Neutral Site Frequency Spectrum:

In this section we derive the asymptotic form of the neutral site frequency spectrum for

common alleles. To derive this, we start from the assumption of a class that is growing

exponentially (and deterministically), such that

nk−1(t) =
e(q−1)st

qs
. (41)

This class supplies neutral mutants at a rate Un. Thus the expected number of individuals

with lineage sizes n at time t, F (n, t), is simply the integral over the expected number of

mutants introduced at time τ multiplied by the probability for a mutant to reach a lineage

size n in time t− τ :

F (n, t) =

∫ t

−∞
Unnk−1(τ)P (n, t− τ)dτ. (42)

The probability for a lineage to reach size n in a time t is given in Desai and Fisher (2007)

and in the first section of this SI. This gives

F (n, t) = ((q − 1)s)2
∫ t

−∞

Undτ

qs
e(q−1)sτ

(
(1 + (q − 1)s)e(q−1)s(t−τ) − 1− (q − 1)s)

((1 + (q − 1)s)e(q−1)s(t−τ) − 1)

)n
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× e(q−1)s(t−τ)

((1 + (q − 1)s)e(q−1)s(t−τ) − 1)((1 + (q − 1)s)e(q−1)s(t−τ) − 1− (q − 1)s)
. (43)

Defining σ = (q − 1)s, y = (1 + σ)eσk − 1− σ, we obtain

F (n, t) =
σUne

σt

qs

∫ ∞
0

dyyn−1

(y + 1 + σ)(y + σ)n+1
. (44)

An explicit series expansion in powers of n may now explicitly be derived. First we note

that
1

y + 1 + σ
=

1

y + σ

(
1

1 + 1
y+σ

)
=
∞∑
k=0

(−1)k

(y + σ)k+1
, (45)

which gives

F (n, t) =
σUne

σt

qs

∫ ∞
0

∞∑
k=0

dyyn−1(−1)k

(y + σ)n+k+1
=
Une

σt

qs

∞∑
k=2

(−1)k(k − 1)!Γ(n)

σk−1Γ(k + n)
=
Une

σt

qs

∞∑
k=2

(−1)kβ(k, n)

σk−1
,

(46)

where the Beta function β(k, n) is defined as

β(k, n) =
Γ(k)Γ(n)

Γ(n+ k)
. (47)

The above is well approximated by the following expansion:

F (n, t) =
Une

σt

qs

∞∑
k=2

(−1)k(k − 1)!

σk−1nk
≈ Une

σt

qs

(
1

σn2
− 2

σ2n3
+

6

σ3n4
...

)
. (48)

As expected, for σ →∞ or n→∞ we recover the characteristic n−2 decay of an exponen-

tially expanding population. Keeping the leading order term, we obtain

F (n, t) =
Une

σt

qsσn2
⇒ f(x)dx =

Undx

σx2
. (49)

Details concerning forward-time Wright Fisher simulations:

We validate some of our results in the text by comparing theorized predictions to sim-

ulations. Toward this end, we implemented forward-time simulations that closely resemble

evolution in the Wright-Fisher model. The details of the implementation of these simulations
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is described in detail in our previous work (Good et al., 2012).

To measure the transition probabilities and sojourn times of mutations between fitness

classes, an initially clonal population is allowed to evolve for 2(q + 1)〈τk〉 generations until

it reaches its steady state distribution of fitnesses. At this point, a mutation is seeded in at

a frequency x = 0.5 in each fitness class. A new class k is allowed to establish, and shortly

afterwords the mutation reaches some steady frequency xk in this class. The population is

then allowed to evolve until a class containing dk + qe beneficial mutations establishes. At

this point, class k is (roughly) at the population’s mean fitness, and the frequency of the

mutant in this class is recorded. This prescription certifies that frequencies of mutations

attain their long-time steady values long before they are measured. Upon the establishment

of class dk+ q + 1e, the frequency of the mutant in class k+ 1 is recorded. Generally, when

class dk + q + ie establishes, the frequency of the mutant in class k + i is recorded. In this

way, a vector of transitions {xk, xk+1, ..., } is generated, until xi = 0 or xi = 1 in the mean

class for some i. The transition and sojourn probabilities are then collected from 60,000

such runs for each parameter set.

Implementation of our code in Python (used to obtain transition and sojourn times) and

C (used to obtain site frequency spectra) are freely available upon request.
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