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Pervasive genetic hitchhiking and clonal
interference in forty evolving yeast populations
Gregory I. Lang1*{, Daniel P. Rice2*, Mark J. Hickman3, Erica Sodergren4, George M. Weinstock4, David Botstein1

& Michael M. Desai2

The dynamics of adaptation determine which mutations fix in a
population, and hence how reproducible evolution will be. This is
central to understanding the spectra of mutations recovered in the
evolution of antibiotic resistance1, the response of pathogens to
immune selection2,3, and the dynamics of cancer progression4,5. In
laboratory evolution experiments, demonstrably beneficial muta-
tions are found repeatedly6–8, but are often accompanied by other
mutations with no obvious benefit. Here we use whole-genome
whole-population sequencing to examine the dynamics of genome
sequence evolution at high temporal resolution in 40 replicate
Saccharomyces cerevisiae populations growing in rich medium
for 1,000 generations. We find pervasive genetic hitchhiking: mul-
tiple mutations arise and move synchronously through the popu-
lation as mutational ‘cohorts’. Multiple clonal cohorts are often
present simultaneously, competing with each other in the same
population. Our results show that patterns of sequence evolution
are driven by a balance between these chance effects of hitchhiking
and interference, which increase stochastic variation in evolution-
ary outcomes, and the deterministic action of selection on indi-
vidual mutations, which favours parallel evolutionary solutions in
replicate populations.

Evolutionary adaptation is driven by the accumulation of beneficial
mutations. The traditional view is that these dynamics are dominated
by rare beneficial ‘driver’ mutations that occasionally survive drift and
increase in frequency until they fix (a ‘selective sweep’)9,10. This impli-
citly assumes that at most a single beneficial mutation is present in the
population at once. However, recent experiments have shown that
even for modestly sized populations of microbes and viruses, beneficial
mutation rates are large enough11,12 that multiple driver mutations
spread simultaneously, an effect known as ‘clonal interference’. This
means that the fate of each mutation depends not only on its own effect
on fitness but also on the rest of the variation in the population: neutral
or deleterious mutations can fix if they occur in very fit genetic back-
grounds, and beneficial mutations occurring in unfit lineages cannot
succeed13–17.

Recent work has uncovered important consequences of these clo-
nal interference effects. For example, interference alters the rate of
adaptation18,19, the fate of marked lineages20,21, and the distribution of
fitness effects of fixed mutations12,16,17. However, the underlying basis
of these effects at the genomic sequence level has not been observed
directly. A number of questions arise regarding the fate of those muta-
tions that occur, the changes in frequency of each mutation over time,
and the way in which these sequence-level dynamics determine the rate
and repeatability of adaptation. Recent studies have sequenced clones or
whole-population samples from microbial evolution experiments6,22–25,
but apart from studies in viral systems26–28, this work has been limited to
individual clones or populations or to widely separated time points that
lack the temporal resolution to address these questions.

Here we describe the first direct and detailed view of the dynamics of
genomic sequence evolution across many replicate microbial popula-
tions. In previous work21, we adapted approximately 600 replicate hap-
loid yeast populations to growth in rich medium for 1,000 generations,
half at ‘large’ (106) and half at ‘small’ (105) population sizes. Here we
report the sequencing of whole-population samples from 40 of these
populations (14 large and 26 small), chosen because we previously fol-
lowed a single marker above a frequency of 0.1 (ref. 21). Each population
was sequenced to 100-fold depth at 12 time points (approximately every
80 generations) for a total of 480 sequenced time points. Distinguishing
mutations from sequencing errors in this whole-population sequence
data is challenging. However, the high temporal resolution of our data
permits the identification of mutations even at relatively low frequency
by leveraging multiple time points. We developed two independent
pipelines for this purpose, which rely on the fact that real mutations
(but not sequencing or alignment errors) have frequencies that are cor-
related through time (Methods). This strategy allowed us to identify
mutations that rose to a frequency of at least approximately 0.1 and to
track these mutations through the rest of the timecourse. Across the
40 populations, we identified a total of 1,020 mutations, 253 of which
fix; we annotated each to a gene or intergenic region and classified
coding mutations as synonymous or nonsynonymous (Supplementary
Table 1). Figure 1 shows six representative populations; the remaining
populations exhibit similar patterns (Supplementary Fig. 1).

Averaged across all 40 populations, the rate at which mutations
appeared and subsequently went extinct or fixed was constant through
1,000 generations (Fig. 2a). The average within-population polymorph-
ism increased steadily through the first 600 generations, before saturat-
ing (Fig. 2a). In individual populations, however, the appearance of
mutations is highly punctuated. This leads to the most striking feature
of our results: selective sweeps are rarely single mutation or single phase
events. Instead, mutations often move through the populations as tem-
poral clusters (‘cohorts’) of functionally unrelated mutations, synchro-
nously escaping drift and tracking tightly with one another through
time. We quantify this temporal clustering of mutations in Fig. 2b,
showing that it leads to a significant overrepresentation of time points
at which either many or no mutations appeared, compared to the null
expectation of mutations reaching detectable frequency at a constant
rate (P , 1026).

Multiple mutations or cohorts of mutations are often present simul-
taneously, as is apparent in Fig. 1, and selective sweeps are often ‘nested’;
that is, one sweep initiates before the preceding sweep has completed.
Cohorts and nesting of mutations are forms of genetic hitchhiking, in
which individual mutations are helped (or hindered) by the genetic back-
ground in which they happen to arise. This includes both hitchhiking of
likely neutral synonymous mutations, as well as ‘quasi-hitchhiking’ of
multiple beneficial mutations that act together as co-drivers. In addi-
tion, frequent interference between competing cohorts often leads to
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the extinction of beneficial mutations even after they reach substantial
frequency. Drawing from the full aggregate data set as well as individual
‘case study’ populations, we now show how this pervasive hitchhiking
and interference strikes a balance between chance and determinism in
governing evolutionary outcomes.

To investigate the repeatability of adaptation and identify those
mutations that are driving adaptation, we looked for genes in which
we observed mutations more often than expected by chance. Of the
995 nuclear mutations we identified, 723 fall within coding regions. If
these mutations were distributed randomly over the 5,799 yeast genes,
we expect only two genes with three or more mutations. Instead, we find

24 genes hit three or more times (Table 1, Supplementary Table 2 and
Supplementary Fig. 2). This parallelism is at the gene level; mutations in
different populations are different at the nucleotide level, with four
exceptions (Methods). These 24 putative drivers represent approxi-
mately 0.6% of the yeast genome by size but account for 14% of
the observed mutations, and are more likely to fix in the population
(52/140, 37%) compared to all other nonsynonymous mutations
(110/476, 23%, P , 0.005). Only 1 of the 141 mutations in these puta-
tive drivers is synonymous (,1%), compared to 19% for the 472 muta-
tions that fall in genes that are hit only once (Supplementary Table 3).
Putative drivers are similarly depleted for missense mutations, and are
enriched for nonsense and frameshift mutations (Supplementary
Table 3). This mutational spectrum differs between functional catego-
ries of putative driver mutations. For genes in the mating pathway and
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Figure 1 | The fates of individual spontaneously arising mutations. We
show the frequency of all identified mutations through 1,000 generations in 6 of
the 40 sequenced populations. Non-synonymous mutations are solid lines with
solid circles, and synonymous and intergenic mutations are dotted lines with

open circles and squares, respectively. Populations in the left and right columns
were evolved at small (105) and large (106) population sizes, respectively. We
observe qualitatively similar patterns in the other populations (Supplementary
Fig. 1).
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Figure 2 | Statistical analysis across 40 replicate populations. a, The per-
population number of total mutations, fixed mutations, extinct mutations and
mutations that are currently polymorphic over the course of the
1,000 generations. b, The distribution of the number of new mutations detected
at each time point (solid blue line; see Methods for details) and a Poisson
distribution with the same mean (dashed red line). c, d, Mutation fixation
probability as a function of initial relative fitness. Data are mean 6 s.e.m.

Table 1 | Repeatedly hit genes are putative drivers of adaptation
Gene Hits Fixed Biological process*

IRA1 21 10 Negative regulator of Ras
ROT2 11 2 Cell wall biogenesis
YUR1 11 5 Cell wall biogenesis
ACE2 9 4 Cytokinesis
STE11 9 1 Mating
STE12 9 2 Mating
PDR5 8 5 Multidrug transport
WHI2 7 2 General stress response
STE4 6 1 Mating
IRA2 5 3 Negative regulator of Ras
KRE6 4 1 Cell wall assembly
SFL1 4 1 Regulation of flocculation genes
STE5 4 3 Mating
ANP1 3 1 Protein glysosylation
CNE1 3 2 Protein folding
GAS1 3 3 Cell wall assembly
GCN1 3 1 Regulation of translation
GPB1 3 1 Negative regulator of Ras
GPB2 3 1 Negative regulator of Ras
KEG1 3 0 Cell wall assembly
KRE5 3 1 Cell wall assembly
RPO31 3 0 RNA ploymerase III transcription
SET4 3 2 Unknown
YJL171C 3 0 Unknown

*Biological process was manually curated from the Saccharomyces Genome Database (http://
www.yeastgenome.org).
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negative regulators of Ras, we observe 14 missense, 8 nonsense, and
10 frameshift mutations, suggesting that selection at these loci is for
loss of function (Supplementary Fig. 2). In contrast, all 13 mutations
observed in cell-wall assembly genes are missense, suggesting that at
these loci selection is for alteration or attenuation, not loss, of function
(Supplementary Fig. 2).

This evidence argues that mutations in multi-hit genes provided
strong fitness advantages that made them parallel adaptive solutions
in multiple replicate populations (related arguments have been made
in bacterial6,7 and viral29 systems). However, the fate of each mutation
also depends on random hitchhiking and interference effects, which
increase variation in evolutionary outcomes. Even beneficial driver
mutations must often quasi-hitchhike as co-drivers with others in a
larger cohort if they are to succeed. For example, in population BYB1-
G07, a mutation in SPC3 began to sweep within the first 300 generations
(Fig. 3), before a competing cohort appeared containing mutations in the
multi-hit genes WHI2 and ROT2. The WHI2–ROT2 cohort rose in
frequency at the expense of SPC3, until the SPC3 genotype was partially
rescued by a mutation in the multi-hit gene YUR1. Finally, a second and
distinct mutation in WHI2 appeared in the SPC3–YUR1 background.
This genotype fixed, forcing the WHI2–ROT2 cohort to extinction.
These dynamics illustrate how a balance between the fitness advantages
of individual driver mutations and random hitchhiking and interference
effects determines evolutionary outcomes.

Although the dynamics of any individual population are highly
stochastic, a statistical analysis across replicate populations sheds light
on the factors that determine the fate of each mutation. To this end, we
measured the initial rate of increase in frequency of each mutation
(Methods). We have previously21 referred to this ‘initial relative fitness’
as sup. It measures the combined fitness effect of a mutation together
with the genetic background in which it arose, relative to the average
of all other genetic backgrounds currently in the population. The
probability that a mutation fixes increases with sup (Fig. 2c). Non-
synonymous mutations tended to have higher sup than synonymous
mutations (P , 0.05) and non-synonymous mutations in multi-hit
genes tended to have higher sup than those in single-hit genes
(P , 0.02), as we would expect if the former classes tend to confer a
larger fitness advantage. However, given a particular value of sup, all
types of mutations were equally likely to succeed. In other words, a

weak or neutral mutation on a good background is just as likely to fix as
a strongly beneficial mutation on a poor background; all that matters is
the initial relative fitness of the mutation combined with the back-
ground in which it occurred.

In theory, population size could be predicted to either increase or
decrease the patterns of reproducibility between replicate populations.
Larger populations will sample more possible mutations, and thus
favour the best genotypes in replicate populations13,16. But larger popu-
lations also maintain more genetic variation, making each mutation
more likely to be influenced by chance associations16. Our data make it
possible to determine experimentally the influence of population size
on the reproducibility of evolutionary outcomes. Of the 40 sequenced
populations, 14 were evolved at a large (106) and 26 at a small (105)
population size. We find that putative driver mutations are more com-
monly observed in large populations (Table 2, P , 0.025). However,
given a particular value of sup, a mutation is less likely to fix in a large
population—that is, subsequent chance associations are more likely to
interfere (Fig. 2d, P , 1025). Together, these results show that beneficial
mutations occur more consistently in larger populations, but that each
mutation has a more random fate once it has occurred.

To demonstrate how our system can be used to dissect the fitness
effects of the individual mutations that underlie these dynamics, we chose
for genetic dissection a population that displayed simple sequence-
level dynamics. In BYS1-A08, two mutations (ELO1 and GAS1) have
fixed and a third (STE12) is on its way to fixation by generation
545 (Fig. 4a). Clones from this time point had gained, on average, a
4.3% fitness advantage relative to the ancestor. To determine how these
three mutations contribute to fitness, we crossed three clones from
generation 545 to the ancestor and isolated 80 haploid progeny. Each
haploid was genotyped at these three loci and assayed for fitness,
enabling us to quantify the fitness effect of each mutation individually
and in combination. We find that mutations in both GAS1 and STE12
provide a selective advantage, while the mutation in ELO1 is a neutral
hitchhiker (Fig. 4b). Consistent with this, mutations in GAS1 and
STE12 are observed in three and nine replicate populations, respect-
ively (Table 1), but ELO1 only once.

Our analysis has shown that the combination of experimental evo-
lution and whole-genome whole-population sequencing over a dense
timecourse is a powerful tool. Our data demonstrate the importance of
pervasive hitchhiking and clonal interference among cohorts of muta-
tions in determining the molecular dynamics of adaptation. Further
work is needed to determine the mechanism underlying the formation
of these cohorts. Interestingly, cohorts and genetic hitchhiking have
been described in other systems, such as influenza evolution2 and the
somatic evolution of cancers30, suggesting that these dynamics repres-
ent a general mode of adaptation. Our data also highlight the relatively
small subset of genes that repeatedly provide driver mutations, sug-
gesting a limited number of open pathways to substantially increased
fitness. This work is a first step towards a complete understanding of
the dynamics of adaptation under conditions where multiple beneficial
mutations spread simultaneously, and illustrates the importance of
both chance and selection in determining evolutionary outcomes.
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Table 2 | Summary of the fates of nuclear mutations observed
throughout the experiment
Class of mutation All populations (40) Small populations (26) Large populations (14)

Total No.
fixed

Fixed
(%)

Total No.
fixed

Fixed
(%)

Total No.
fixed

Fixed
(%)

All 995 246 25 703 191 27 292 55 19
Intergenic 272 58 21 207 48 23 65 10 15
Synonymous 107 26 24 77 21 27 30 5 17
Nonsynonymous 616 162 26 419 122 29 197 40 20
Hit 13 381 86 23 273 65 24 108 21 19
Hit 23 95 24 25 63 17 27 32 7 22
Hit $33 140 52 37 83 40 48 57 12 21
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METHODS SUMMARY
Whole-population DNA samples were sequenced using the Illumina HiSeq plat-
form. Mutations were identified using Breseq (http://www.barricklab.org/twiki/
bin/view/Lab/ToolsBacterialGenomeResequencing; Pipeline 1), or BWA and
FreeBayes (http://www.bio-bwa.sourceforge.net and Marth Laboratory, Boston
College; Pipeline 2). Time-course information was used to distinguish real muta-
tions from spurious calls due to sequencing or alignment error. Mutations were
annotated to the yeast genome using NCBI-BLAST. Fitness of evolved or recon-
structed clones was determined by competition against a fluorescently-labelled
reference strain as described previously21.

Full Methods and any associated references are available in the online version of
the paper.
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2. Strelkowa,N.& Lässig,M.Clonal interference in the evolutionof influenza.Genetics
192, 671–682 (2012).

3. Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic
microorganisms. Trends Microbiol. 2, 76–81 (1994).

4. Greaves,M.& Maley, C.C.Clonal evolution in cancer. Nature 481, 306–313 (2012).
5. Sprouffske,K.,Merlo, L.M. F., Gerrish, P. J., Maley, C.C.&Sniegowski, P.D.Cancer in

light of experimental evolution. Curr. Biol. 22, R762–R771 (2012).
6. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335,

457–461 (2012).
7. Woods,R., Schneider, D., Winkworth, C. L., Riley,M. A. &Lenski, R. E. Tests ofparallel

molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl
Acad. Sci. USA 103, 9107–9112 (2006).

8. Saxer, G., Doebeli, M. & Travisano, M. The repeatability of adaptive radiation during
long-term experimental evolution of Escherichia coli in a multiple nutrient
environment. PLoS ONE 5, e14184 (2010).

9. Atwood, K. C., Schneider, L. K. & Ryan, F. J. Periodic selection in Escherichia coli.
Proc. Natl Acad. Sci. USA 37, 146–155 (1951).

10. Paquin, C. & Adams, J. Frequency of fixation of adaptive mutations is higher in
evolving diploid than haploid yeast populations. Nature 302, 495–500 (1983).

11. Joseph, S. B. & Hall, D. W. Spontaneous mutations in diploid Saccharomyces
cerevisiae: more beneficial than expected. Genetics 168, 1817–1825 (2004).

12. Perfeito, L., Fernandes, L., Mota, C. & Gordo, I. Adaptive mutations in bacteria: high
rate and small effects. Science 317, 813–815 (2007).

13. Gerrish, P. J. & Lenski, R. The fate of competing beneficial mutations in an asexual
population. Genetica 102–103, 127–144 (1998).

14. Desai, M. M. & Fisher, D. S. Beneficial mutation-selection balance and the effect of
linkage on positive selection. Genetics 176, 1759–1798 (2007).

15. Rouzine, I. M., Wakeley, J. & Coffin, J. The solitary wave of asexual evolution. Proc.
Natl Acad. Sci. USA 100, 587–592 (2003).

16. Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. The rate of
adaptation and the distribution of fixed beneficial mutations in asexual
populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).
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METHODS
DNA sequencing. Cells were grown by inoculating 8ml of each frozen population
from our earlier experiment21 into 20 ml YPD (yeast extract, peptone, dextrose) 1

ampicillin (100mg ml21) and tetracycline (25mg ml21) and grown overnight to
saturation. Cells were pelleted and washed once with water. Genomic DNA was
prepared using a modified glass bead lysis method. Cells were resuspended in
400ml of DNA extraction buffer (2% Triton X-100, 1% SDS, 100 mM NaCl,
10 mM Tris, pH 8.0, and 1 mM EDTA). To the resuspended cells, 600ml of acid
washed glass beads (425–600mm, acid-washed; Sigma) and 400ml of phenol:chloro-
form:isoamyl alcohol (25:24:1, Tris saturated) was added and the cells were mech-
anically lysed for 2.5 min using a bead beater. After centrifugation, the supernatant
was removed and incubated at 37 uC with RNaseA for 1 h, followed by a second
phenol:chloroform:isoamyl alcohol extraction. The aqueous supernatant was
removed and genomic DNA was precipitated with ethanol and resuspended in
water. Paired-end Illumina sequencing libraries of 500-bp fragments were pre-
pared at The Genome Institute, Washington University School of Medicine, and
the libraries were run on the Illumina HiSeq with average of 100-fold coverage.
Identifying mutations from raw sequencing data. We developed two independ-
ent methods for identifying mutations from the raw sequencing data and for
distinguishing bona fide mutations from spurious calls that resulted from either
sequencing or alignment errors by leveraging time course information. Both pipe-
lines identified base-pair substitutions (BPS), small insertion and deletion muta-
tions (InDel) and complex mutations involving both BPS and InDels. We note,
however, that neither pipeline is well suited to identify certain types of mutations,
such as copy number variation, inversions, or large insertions or deletions. Both
pipelines produced similar results. The data presented in the paper were produced
using Pipeline 1. Supplementary Table 1 reports the results of both pipelines.

In Pipeline 1, we used the software package Breseq (http://www.barricklab.org/
twiki/bin/view/Lab/ToolsBacterialGenomeResequencing) to align Illumina reads
and make initial polymorphism calls. We ran Breseq on each time point of each
population independently and constructed a list of all mutations called in any time
point. For each mutation, we used SAMTOOLS31 to calculate the frequency of
reads supporting the mutation in all time points of the population where the
mutation was called. We then applied a series of filters based on the frequency
trajectories to eliminate false positives. Mutations that did not change frequency
over the course of the entire experiment are likely to be sequencing or alignment
errors. Therefore, we required the maximum frequency to be at least 0.1 greater
than the minimum frequency. We also required the absolute difference between
the maximum or minimum frequency and the frequency at generation zero to be
at least 0.1. The frequency trajectories of real mutations are expected to be auto-
correlated, whereas those of false positives should be uncorrelated from time point
to time point. We rejected any mutation with an autocorrelation coefficient less
than 0.2. Generation zero was not expected to contain any mutations. Therefore,
we rejected any mutation detected by Breseq in generation zero of more than five
populations. Also, for any mutation detected by Breseq in generation zero of more
than two populations, we required the autocorrelation coefficient to be at least 0.5.
Finally, for any mutation with a frequency greater than 0.01 in generation zero, we
required the autocorrelation coefficient to be at least 0.35.

In Pipeline 2, for each population and for each time point, we aligned the raw
reads to a SNP/Indel corrected W303 reference genome (reference available upon
request) using BWA for Illumina version 1.2.2 (ref. 32) using default parameters
(except ‘Disallow insertion/deletion within [value] bp towards the end’ set to 0 and
‘Gap open penalty’ set to 5). Mutations were called relative to the SNP/Indel cor-
rected W303 reference genome using Freebayes version 0.8.9.a, (Marth Laboratory,
Boston College) using default parameters (except ‘Pooled’ set to ‘True’, and ‘Base
alignment quality (BAQ) adjustment’ set to ‘True’). For each population we merged
the 12 resulting .vcf files (one for each time point) using the ‘vcf-merge’ included in
the VCFtools package (http://vcftools.sourceforge.net/perl_module.html). We
wrote two perl scripts to analyse the resulting merged .vcf file (programs available
upon request). The script ‘allele_counts.pl’ calculated the frequencies of mutant
alleles for each time point in the series and ‘composite_scores.pl’ scored the tra-
jectories of each mutation across the twelve time points based on six attributes:
autocorrelation, area under the curve relative to time zero, minimum frequency,
maximum frequency, max step (the largest difference in frequency in adjacent time
points), and the number of called alternate alleles. We developed a heuristic com-
posite score with which to rank the trajectories by their likelihood of being a bona
fide mutation.

Any mutation called in either Pipeline was validated manually using the
Integrative Genome Viewer33,34.
Annotating mutations. For each mutation, we aligned the surrounding 2-kb
region to the annotated s288c genome using NCBI-BLAST35. We then used
NCBI-BLAST’s CDS feature option to identify the gene or intergenic region con-
taining the mutation and the identity of any amino-acid changes.

All of the observed nuclear mutations represent unique alterations to the yeast
genome with four exceptions: two cases of recurrent mutation at the same position
and two instances of pre-existing mutations in the seed culture that reached
detectable frequency during the evolution experiment. In ROT2 and STE12, recur-
rent frameshift mutations were observed within homopolymeric runs of seven T’s
and eight G’s, respectively. For ROT2 all four occurrences of mutations in
this homopolymeric run were T insertions. For STE12, two mutations were G
insertions and two were G deletions. In addition to recurrent mutations, we
observed two pre-existing mutations. In the initial evolution experiment, two
nearly isogenic haploid ancestral strains (B and R) were used to seed approxi-
mately 300 populations each. Of the sequenced populations reported here,
30 are derived from the B progenitor and 10 from the R progenitor. We observed
several occurrences where the same mutation was observed in multiple popula-
tions. The same single base-pair deletion in IRA1 was observed in four popula-
tions derived from the B ancestor. In each case this allele was observed early
and before the first selective sweep suggesting that this mutation was present
at low frequency in the starting B population. In all 10 R populations, the same
T to C substitution in PDR5 was initially at 15% at Generation 0. This mutation
quickly fixed in two populations, slowly fixed in another, rose to above 50%
before going extinct in two and quickly went extinct in the other five (Supplemen-
tary Fig. 3).
Analysis of trajectories. To assess the relationship between fitness and fixation
probability, we estimated sup: the fitness of clones containing a given mutation
relative to the mean fitness of the population when we first detected the mutation.
For each mutation, we identified t1 and t2, the first consecutive time points such
that the frequency of the mutation at t1 was greater than zero and the frequency at
t2 was greater than 0.1. We then calculated

sup~
1

t2{t1
ln

f t2ð Þ
1{f t2ð Þ

{ ln
f t1ð Þ

1{f t1ð Þ

� �

where f(t) is the frequency of the mutation at time t. This quantity estimates the
combined effects of the focal mutation and the background it occurred on. For
instance, a mutation conferring a 3% fitness advantage on a neutral background
will have the same value of sup as a neutral mutation occurring on a background
that is 3% fitter than the population average.
Identifying mutation cohorts. The most notable feature of our results is that
mutations often move through populations as temporal clusters of functionally
unrelated mutations, tracking tightly with one another through time. We have
termed these ‘cohorts’. To empirically assign mutations to cohorts, we treated each
frequency trajectory as a vector in twelve dimensions. We used the hierarchical
clustering package in SciPy (http://www.scipy.org) to cluster the mutations in each
population based on the Euclidean distance between frequency vectors. Because
low-frequency mutations contain too little information for reliable clustering, we
excluded mutations with maximum frequencies less than 0.3. We then flattened
the hierarchies using a cutoff distance of 0.275.
Fitness assays and genetic dissection. Fitness assays were performed as described
previously21. To measure the fitness of evolved clones from frozen stock, we struck
to singles from population BYS1-A08 from generation 545. We selected seven
single colonies at random and measured their fitness relative to an mCherry-
expressing reference strain. The experimental and reference strains were grown
separately in 96-well plates, then mixed 50:50 and propagated by diluting 1:1,024
every 24 h. At generations 10, 20, 30 and 40, we transferred 4ml of saturated culture
into 100ml of cold PBST and the ratio of nonfluorescent (experimental) and
mCherry-positive (reference) cells was determined by flow cytometry using an
LSRII flow cytometer (BD Biosciences) counting 50,000 total cells for each sample.
The fitness difference between the experimental and reference strain was calcu-
lated as the rate of the change in the ln ratio of experimental to reference versus
generations36. To determine fitness effects of the three evolved mutations in BYS1-
A08 (GAS1, ELO1, STE12), we chose three of the seven clones and backcrossed
them to a MATa version of the ancestral strain. From these three diploids we
sporulated and selected 80 haploid MATa segregants. Each segregant was geno-
typed by SNP-specific PCR using the following primers: GAS1_Forward (59-
TTTTCGTGCCGCAAACGTGG-39), GAS1_WT_Reverse (59-ATTGGAAGAG
TAGCCAACTG-39), GAS1_Mutant_Reverse (59-ATTGGAAGAGTAGCCAA
CTA-39), ELO1_Forward (59-AACACAACAAATCGCAAGCC-39), ELO1_WT_
Reverse (59-TAACCAACCAATTGATTATA-39), ELO1_Mutant_Reverse (59-
TAACCAACCAATTGATTATG-39), STE12_Reverse (59-TGAGCAGAATCTT
CGTCACC-39), STE12_WT_Forward (59-AATCTCACAACTCTGGCCAG-39),
and STE12_Mutant_Forward (59-AAATCTCACAACTCTGCCAA-39). The fit-
ness of each of the haploid segregants was measured relative to the mCherry-
expressing reference strain as described above.
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