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Natural selection makes evolutionary adaptation possible even if the overwhelming
majority of new mutations are deleterious. However, in rapidly evolving populations
where numerous linked mutations occur and segregate simultaneously, clonal in-
terference and genetic hitchhiking can limit the efficiency of selection, allowing
deleterious mutations to accumulate over time. This can in principle overwhelm
the fitness increases provided by beneficial mutations, leading to an overall fitness
decline. Here, we analyze the conditions under which evolution will tend to drive
populations to higher versus lower fitness. Our analysis focuses on quantifying the
boundary between these two regimes, as a function of parameters such as population
size, mutation rates, and selection pressures. This boundary represents a state in which
adaptation is precisely balanced by Muller’s ratchet, and we show that it can be
characterized by rapid molecular evolution without any net fitness change. Finally, we
consider the implications of global fitness-mediated epistasis and find that under some
circumstances, this can drive populations toward the boundary state, which can thus
represent a long-term evolutionary attractor.

rapid evolution | evolutionary attractor | Muller’s ratchet | fitness-mediated epistasis

Evolution is often thought of as an optimization process, in which natural selection
pushes populations inevitably uphill, toward a local optimum in the fitness landscape
(1). However, much recent work has shown that in many populations, numerous linked
mutations often arise and segregate simultaneously (2–9). In these rapidly evolving
populations, natural selection is much less efficient: It cannot act on each mutation
independently (10). As a result, deleterious mutations can often fix, which can slow
down adaptation or even reverse its direction, leading to declining fitness over time.

Extensive previous work has studied the accumulation of deleterious mutations via
Muller’s ratchet (11, 12), particularly in models in which beneficial mutations are
either negligible or can be treated as a rare perturbation (13–15). Similarly, numerous
studies have considered the accumulation of beneficial mutations (i.e., adaptation) when
deleterious mutations are absent (16–18) or can be treated as a perturbation (19, 20).
However, we lack an understanding of the interplay between the accumulation of
beneficial and deleterious mutations more generally. Except in special cases, e.g., when
clonal interference is absent (21), or when all beneficial and deleterious mutations have
the same fitness effect (22), or in a regime where fixations are dominated by single
driver mutations (23), this has made it impossible to answer a very basic question: Given
a particular set of population genetic parameters (population size, mutation rate, and
fitness landscape), will a population tend to increase or decrease in fitness? In other
words, under what circumstances can evolution act as an optimization process, and when
do populations actually move toward less-optimal genotypes?

Here, we analyze this interplay between beneficial and deleterious mutations in rapidly
evolving populations, in the regime where both types of mutations can be important. Our
analysis leverages recent work in traveling wave models of evolutionary dynamics and,
in particular, our recently introduced moderate selection, strong-mutation (MSSM)
approximation (24). Using this approach, we predict the conditions under which
populations will tend to increase or decrease in fitness (i.e., where the rate of change
in mean fitness, v, is positive or negative). The boundary surface between these two
regions of the parameter space, at which v = 0, corresponds to a state in which beneficial
and deleterious mutations accumulate in a balanced way. While the fitness trajectory
of a population in the v = 0 state appears neutral, the evolutionary dynamics of these
populations can be strongly nonneutral as has been suggested by several earlier studies; see,
e.g., refs. 21–23 and 25. For example, a steady-state accumulation of weakly deleterious
mutations may be offset by the fixation of beneficial mutations under moderate or strong
selection. We also consider additional surfaces of the parameter space on which patterns
of molecular divergence and genetic diversity would suggest a population has evolved
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neutrally or nearly neutrally but in fact mask a balance between
the competing signatures of positive and negative selection.

We conclude by considering how our results and the structure
of the fitness landscape determine the long-term outcomes of
evolution. For example, it is natural to expect that beneficial
mutations become less common (and deleterious mutations
more common) as a population increases in fitness. This will
tend to lead a population not toward a local optimum, but
instead toward the v = 0 state, see, e.g., Goyal et al. (22) and
Schiffels et al. (23). More generally, recent empirical work has
identified a consistent pattern of diminishing returns epistasis:
Beneficial mutations tend to have weaker effects as populations
increase in fitness (26–28). An analogous pattern for epistasis on
deleterious mutations is less clear, but recent work has identified a
trend in which deleterious mutations are more costly in more-fit
backgrounds (29, 30). We show here that, depending on details
of the landscape and the starting point, these and other patterns
of fitness-mediated epistasis can often (but not always) drive a
population toward the v = 0 state. Thus, the v = 0 state can in
some circumstances represent a long-term evolutionary attractor
and define the extent to which evolution can act to optimize
fitness. We refer to this as a dynamical limit on evolutionary
adaptation because it arises due to the stochastic nature of the
evolutionary process and can be reached far from any fitness peak.

Model
We model the evolution of a population ofN haploid individuals,
in which random mutations arise within a specific genomic
region at a total rate U . We assume that recombination can
be neglected within this region on the relevant timescales. We
assume that each new mutation confers a fitness effect, s, drawn
from some distribution of fitness effects (DFE), �(s|Eg), that
depends on the genotype Eg of an individual as well as the
environment the population evolves in (its fitness landscape).
The DFE includes both beneficial and deleterious mutations,
with beneficial mutations corresponding to s > 0 and deleterious
mutations corresponding to s < 0. To be more precise, a
mutation with effect s increments an individual’s (log) fitness
X by an amount s, and we assume offspring numbers are drawn
from a multinomial distribution each generation; the expected
offspring number of an individual with fitness X is e X−X̄ , where
X̄ denotes the mean fitness of the population.

The genotype-dependence of �(s|Eg) has been termed macro-
scopic epistasis (31). This macroscopic epistasis can arise due
to individual microscopic epistatic interactions among specific
mutations, which collectively determine the overall DFE for
a given genotype. We make the key assumption that similar
genotypes share a similar �(s|Eg) and, in particular, that those
genotypes simultaneously present in a population (which are
similar because of their relatedness by common ancestry) share
the same DFE, �(s). This allows us to solve for the dynamics by
treating �(s) instantaneously as a constant parameter. We note
that this assumption can be satisfied even in the presence of per-
vasive microscopic epistasis, as long as idiosyncratic interactions
among mutations largely “average out” in contributing to the full
distribution �(s|Eg).

For simplicity, we focus on a few simplifying forms of �(s)
in our analysis. For instance, we consider the case where all
beneficial mutations have effect sb and all deleterious mutations
have effect −sd (with sb, sd > 0 by convention). This example is
useful for building general intuition and is motivated by recent
work showing that the evolutionary dynamics of rapidly evolving

populations can in many cases be well captured by a DFE
consisting of a single appropriately chosen “predominant” effect
size (17, 18, 32). We also consider the cases of exponentially-
distributed (and more generally gamma-distributed) effects of
beneficial and of deleterious mutations, though our analysis can
be extended to more general DFEs relatively straightforwardly.
Importantly, we make no assumption that the DFEs of beneficial
mutations and of deleterious mutations are the same or similar
in shape or in scale.

Results
The central goal of our analysis is to determine whether a
population will tend to increase or decrease in fitness for a given
set of parameters: the population size, N , the mutation rate, U ,
and the distribution of fitness effects, �(s). Because our goal is to
determine whether v > 0 or v < 0 for a given set of parameters,
we focus on analyzing the boundary between these two regimes.
This boundary is by definition a v = 0 surface where the mean
fitness of the population does not on average either increase or
decrease. We will find it useful to write the average rate of change
in mean fitness, v, in terms of the fixation probability of a new
mutation, pfix(s),

v = NU
∫

�(s)spfix(s)ds. [1]

To find the v = 0 surface, we then set Eq. 1 equal to 0, which
gives a constraint on the parameters N , U , and �(s) that defines
the v = 0 surface in parameter space.

We can clearly have v = 0 if selection on deleterious mutations
is sufficiently strong and beneficial mutations are sufficiently
rare that no selected mutations fix at all, and the evolutionary
dynamics are entirely neutral (i.e., if �(s)pfix(s) is negligible for
all s). Apart from this trivial case, the v = 0 state by definition
involves substantial accumulation of deleterious mutations (at
least relative to the accumulation of beneficial mutations) which
can be facilitated by the effects of linked selection and clonal
interference. For instance, deleterious mutations may routinely
hitchhike along with, or hinder the fixation of, a beneficial muta-
tion (33–35). Interference among multiple beneficial mutations
may also substantially reduce the rate at which they can fix in
the population (10, 36). To obtain an accurate description of the
v = 0 state, our expression for the fixation probabilities pfix(s)
must therefore take these effects into account.

Frequent interference among mutations is a defining feature
of rapid evolution, which has been the focus of much recent
theoretical work (13, 18, 20, 37–40). Broadly speaking, this
work uses traveling wave models, which first analyze the steady-
state distribution of fitness within the population (the “traveling
wave of fitness”), and then uses this as the basis for computing the
fixation probabilities of new mutations, pfix(s), and the average
rate of fitness increase or decline, v. Most work on traveling
wave models has been done by considering only beneficial
mutations (16–18) or only deleterious mutations (14) or by
focusing on one type and treating the other perturbatively
(20). A key exception is the MSSM approximation we have
recently introduced (24), which can be applied to analyze rapidly
evolving populations for which both beneficial and deleterious
mutations affect the dynamics in a substantial way. Here,
we use this MSSM approximation to analytically describe the
v = 0 state.

2 of 10 https://doi.org/10.1073/pnas.2312845121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 C

A
B

O
T

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

 o
n 

Ja
nu

ar
y 

31
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

10
3.

14
7.

14
9.



A key result is that within the MSSM regime (which we discuss
below), the fixation probability of a new mutation is given by

pfix(s) ≈
eTc s

N
, [2]

valid for both positive and negative s. Here, Tc is a derived
quantity whose definition and relationship to the parameters
N , U , and �(s) we reproduce in SI Appendix, and which
approximately equals 〈T2〉 /2—one-half the average time since
two randomly chosen individuals share a common ancestor (i.e.,
a coalescence timescale). We note that an identical result for
pfix(s) was derived in a somewhat different context by Hallatschek
(41). We also note that in much of the population genetics
literature, the average pairwise coalescent time 〈T2〉 is identified
with an effective population size Ne. We avoid this language here
because in general, the evolutionary dynamics in rapidly evolving
populations are not equivalent to those in a neutrally evolving
population for any choice of Ne (42).

Eq. 2 differs from the standard formula for the fixation
probabilities of independently evolving loci (43), which in our
notation can be written as

pfix(s) =
2Tc

N
×

2s
1− e−4Tc s

. [3]

Eq. 3 has been used by Whitlock (21) to address similar
questions, although that work treats Tc (referred to as Ne/2) as
an independent parameter, instead of considering how it depends
on the population parameters N , U , and �(s). For the sake of
comparison, we discuss the predictions following from Eq. 3
alongside our results below. The predictions are qualitatively
(and even quantitatively) similar in some respects, but they break
down in other cases. This is unsurprising in light of recent work
that has shown that Eq. 3 fails to adequately describe the fixation
probabilities of mutations in the presence of widespread linked
selection, particularly when mutations confer fitness effects on a
wide range of scales (44).

Eq. 2 immediately implies that if we scale fitness effects to the
coalescence timescale by defining  ≡ Tcs, the v = 0 surface is
defined by the concise equation∫

�̃()ed = 0. [4]

Eq. 4 implies that we can characterize the v = 0 surface given
only the distribution of “scaled” fitness effects, �̃() (as well as
validity of the MSSM approximation, which we discuss below).
We emphasize that this is not by itself sufficient to determine
how the v = 0 surface depends on the underlying parameters,
because Tc depends in a nontrivial way on N , U , and �(s). We
return to this dependence in more detail below. However, in
the next section, we first analyze key properties of the v = 0
surface in the space of scaled selective effects, focusing particular
attention on two specific choices of the DFE as representative
examples.

The v = 0 Surface in the Space of Scaled Effects. In the scaled
parameter space, the v = 0 surface depends only on �̃(), and
not on the population size N or the mutation rate U (which
enter only through their effect in determining Tc). To gain
qualitative insight, we begin by considering the simple case
in which all beneficial mutations confer a single scaled effect,
b ≡ Tcsb, and all deleterious mutations confer a (potentially

different) single scaled effect, −d ≡ −Tcsd (with sb, sd > 0
by convention). Specifically, we have �̃() = [�/(1 + �)] �( −
b)+[1/(1 + �)] �(+d ), where we have defined � ≡ Ub/Ud as
the ratio of beneficial to deleterious mutation rates. Plugging this
into Eq. 4, we find that within the three-dimensional parameter
space spanned by b, d , and �, the v = 0 constraint is a two-
dimensional surface given by

�|v=0 =
d e−d

beb
. [5]

In Fig. 1, we validate this prediction for the v = 0 surface. To
do so, we conducted Wright–Fisher simulations for populations
whose parameters lie on a grid with varying �,Nsb, andNsd . Each
simulated population is plotted using its corresponding value of
Tc , measured by observing its pairwise neutral heterozygosity
�neu averaged over simulation runs (with Tc taken as 〈T2〉 /2 =
�neu/(4Un), where Un is the neutral mutation rate used in
simulations). The prediction in Eq. 5 qualitatively (and except
perhaps for d � 1, quantitatively) describes the v = 0 surface
in the space of scaled fitness effects b and d . The simulations
represented in Fig. 1 are all conducted for populations with
NU = 104. In SI Appendix, Fig. S1, we present the results of
additional simulations which include the cases NU = 103 and
NU = 102; similar agreement is obtained.

Several qualitative features of Eq. 5 are notable. If the selective
effects of both beneficial and deleterious mutations are small
compared to 1/Tc (i.e., b � 1 and d � 1), we see from Eq. 5
that the v = 0 surface is defined by �|v=0 ≈ d/b (dotted line
in Fig. 1; note this converges with the v = 0 surface observed
in simulations when b � 1 and d � 1). This corresponds
to Ubsb = Ud sd , the surface on which v = 0 if beneficial
and deleterious mutations accumulate neutrally, such that each
mutation fixes with probability 1/N . The surface � = d/b can
be thought of as an upper bound to the actual v = 0 surface;
as the strength of selection (i.e., b and/or d ) is increased, the
actual fraction � required to have v = 0 will always be smaller
than d/b.

Fig. 1. Cross-sections of the v = 0 surface in the space of scaled effects d
vs. b, for the four values of � denoted above. Each point corresponds to a
simulated parameter combination, colored by its measured value of T2

c v. The
solid line denotes the prediction for the v = 0 curve given by Eq. 4. Dashed
lines denote the prediction for the v = 0 curve obtained using Eq. 3. Dotted
lines denote the lines on which � = d/b. Simulated parameter combinations
lie on the grids of logarithmically spacedNsd andNsb values depicted in Fig. 2,
with DFEs consisting of a single beneficial effect and a single deleterious
effect, and with NU = 104 .
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More generally, if we increase b at fixed d , �|v=0 decreases:
A smaller ratio � of beneficial to deleterious mutations is required
to be in the v = 0 state. This makes intuitive sense: Increasing b
increases both the fixation probability of beneficial mutations and
the fitness benefit they provide to the population upon fixing. The
effect of changing d is more subtle, because while increasing d
decreases the fixation probability of deleterious mutations, it also
increases the fitness cost to the population they incur upon fixing.
This means that the expected fitness costs to the population of
deleterious mutations are not monotonic with effect size: For
a fixed value of b (below a threshold value described below),
the population will adapt for small d , decline in fitness for
intermediate d , and adapt for large d . This is because for
sufficiently small d , deleterious mutations fix routinely but
do not confer large enough effects to counteract the beneficial
mutations which fix, while for sufficiently large d , deleterious
mutations are purged by selection too efficiently to counteract the
fixation of beneficial mutations. Instead, deleterious mutations
are maximally impactful (in the sense that �|v=0 is maximized) at
the intermediate scaled effect size ∗d = 1. For sufficiently large
b and/or �, deleterious mutations cannot lead to a decline in
fitness for any value of d (although Tcv will still be minimized
at d = 1). For example, at a given �, the population will always
adapt provided that b > ∗b , where ∗b e

∗b = 1/(e�). We can
think of the curve (d , b, �) = (∗d , 

∗

b , �), parameterized by �,
as a “ridgeline” of the v = 0 surface, on which � is maximized as
a function of d .

The above analysis can be extended straightforwardly to a full
distribution of fitness effects. As a simple example, we consider the
case in which both beneficial and deleterious mutations are drawn
from exponential distributions with mean scaled effects b and d
respectively, and a ratio � = Ub/Ud of beneficial to deleterious
mutations (in SI Appendix, we extend these results to the case
of gamma-distributed DFEs and comment further on arbitrary
DFEs). Specifically, we have �̃() = [�/(1 + �)/b] e−/b +
[1/(1 + �)/d ] e/d . Plugging this scaled DFE into Eq. 4, we
find that the v = 0 surface is defined by

� =
d
b

(
1− b
1 + d

)2
. [6]

We note that in this case, a requirement that b < 1 dynamically
emerges given validity of the MSSM approximation (and thus
the � given by Eq. 6 is positive for all relevant b and d ) while
d > 1 is permitted. As in the case of a two-effect DFE, a v = 0
“ridgeline” exists on which � is maximized as a function of d , and
on which ∗d = 1 and ∗b = �

(√
1 + 1/� − 1

)2. The behavior of
the v = 0 surface for large d is qualitatively different, however.
Instead of the dependence � ∝ d e−d , we have the much slower
falloff � ∝ 1/d for large d . The dependence 1/d in turn
approximates the fraction of deleterious effects with || < 1—
that is, the fraction of deleterious effects with a reasonable chance
of fixing—as opposed to the fixation probability ∝ e−d of the
average deleterious effect. As a result, compared to the case of a
two-effect DFE, v = 0 curves for a full DFE have a much more
broad decay of b toward zero at large d . In SI Appendix, Fig. S1
we compare the prediction in Eq. 6 to the results of simulations
for the same � values considered in Fig. 1, and for NU values
ranging from 102 to 104. Our results are qualitatively similar
to the case of single fitness effects shown in Fig. 1, although
agreement begins to break down—particularly for d ∼ ∗d —for
smaller NU and smaller � (i.e., for smaller values of NUb).

Computing Tc in Terms of the Population Genetic Parameters,
N and U�(s). Above, we described the v = 0 constraint on the
distribution of scaled effects  = Tcs. Expressed in this way, the
v = 0 constraint takes on the simple analytical form in Eq. 4. In
certain cases, the distribution of scaled effects  is more readily
probed than the distribution of unscaled effects s. For instance,
given DNA sequencing data from a population at a fixed point
in time (e.g., an observation of its site frequency spectra, of
both synonymous mutations and nonsynonymous mutations),
its distribution of scaled fitness effects can be inferred (45–47).
To infer the distribution unscaled fitness effects s then requires
an independent estimate of the coalescence timescale, which
is typically confounded with estimates of the neutral mutation
rate (48). However, in certain cases—such as in the context of
experimentally evolved populations (49, 50), the distribution of
unscaled effects s may be more practical to measure. For this
reason, it may be more useful to obtain a v = 0 constraint on
the parameters N and U�(s); this can also be useful in building
an intuitive understanding of how shifts in these underlying
parameters affect adaptation or fitness decline. As we will see in
Discussion, a v = 0 constraint on unscaled effects s may also be
more useful in working out the long-term implications of simple
patterns of fitness-mediated epistasis observed empirically, for
which the parameter U�(s) may vary in a more straightforward
way, over the course of an evolutionary trajectory, than the
distribution of scaled effects.

In general, the coalescence timescale Tc depends in a compli-
cated way on the parameters N and U�(s), and except in special
cases, the mapping between a distribution of unscaled effects Ns
and the distribution of scaled effects Tcs is not particularly clear.
The MSSM approximation yields a relation between Tc and the
underlying parameters N and U�(s)—and can thus be used to
obtain a v = 0 constraint on the parameters N and U�(s). We
reproduce the relation between Tc , N , and U�(s) under the
MSSM approximation in SI Appendix. The key result is

logNxc ≈ Tc(xc −U )−
vT 2

c
2

+U
∫

�(s)ds
s

(
eTc s − 1

)
, [7]

along with equations for v and xc in terms of U�(s) and Tc
which we reproduce in SI Appendix. Although it is in general
straightforward to solve these equations numerically, the v = 0
constraint induces a particular simplification in that it becomes
possible to solve for Tc|v=0 in terms of the single parameter �(s),
using Eq. 4. A v = 0 constraint between N and U�(s) then
follows straightforwardly from the Eq. 7, although the nature
of these equations precludes writing down simple analytical
expressions for the v = 0 constraint such as Eq. 5.

Validity of the MSSM Approximation. The results for pfix(s) in
Eq. 2 and particularly for Tc in Eq. 7 both depend on the
validity of the MSSM approximation. We review the conditions
of validity of the MSSM approximation in SI Appendix. Roughly
speaking, validity of the MSSM approximation requires that
selection on individual mutations is at most moderate (in that
typical fixed fitness effects are smaller than the characteristic range
in relative fitnesses from which future common ancestors typically
descend) while mutation is strong (in that the dynamics by
which individuals fix are strongly nonneutral and the population
is rapidly evolving). Given U�(s) and a solution for Tc , it is
straightforward to determine whether these conditions are met
for a particular point on the v = 0 surface.

The points (∗d , 
∗

b , �) lying along the v = 0 “ridgeline” are
convenient landmarks of v = 0 curves at which the validity
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of the MSSM approximation can be assessed. At these points,
selection is sufficiently strong that the MSSM predictions are
nontrivial, and the v = 0 surface is guaranteed to deviate
substantially from the surface � = d/b on which v = 0
assuming neutral accumulation. Furthermore, validity of the
MSSM approximation at (∗d , 

∗

b , �) implies validity of the
approach for smaller values of d and b along the same v = 0
curve, up to and including (∗d , 

∗

b , �), for a given �. Note that in
the limit b → 0 and d → 0, the population dynamics become
purely neutral, and “strong mutation” condition of the MSSM
approximation breaks down; however, by this point, the v = 0
surface will simply approach its neutral expectation � = d/b.

In SI Appendix, we assess the validity of the MSSM approxi-
mation at the points (∗d , 

∗

b , �), for the cases of a two-effect
DFE and a two-exponential DFE. We find that in both of these
cases, the conditions of validity of the MSSM approximation
are met provided that TcUb � 1 at (∗d , 

∗

b , �); note that we
assume Ub ≤ Ud throughout, so that TcUd � 1 is also implied.
The condition TcUb � 1 has a relatively simple dynamical
interpretation—essentially, that a given lineage will acquire
multiple beneficial mutations over the coalescence timescale—
and is satisfied at (∗d , 

∗

b , �) for sufficiently large NU (since TcU
increases with NU , if b, d and � are held fixed). This suggests
that the MSSM approximation is of broad use in describing the
d < ∗d portion of v = 0 curves for rapidly evolving populations
in which interference is important.

While the MSSM approximation is expected to be valid in
describing the d < ∗d portion of the v = 0 surface, it may
break down in the presence of strong deleterious effects d � ∗d ,
even if TcUb � 1. Here, however, we will see that an alternative
heuristic approach works well: We take

Tc ≈ Ne−Ud
∫ �d (s)

s (1−e−Tc s)ds. [8]

The form of Tc in Eq. 8 can be motivated by analyzing how
strongly deleterious mutations contribute to the determination
of Tc in the MSSM approximation (that is, through the final
term in Eq. 7). We note that in using Eq. 8, we neglect any

effect of beneficial mutations on the determination of Tc , which
is reasonable when beneficial effects are sufficiently weak and
deleterious effects sufficiently strong. When deleterious muta-
tions all confer a single deleterious effect with Tcsd � 1, Tc in
Eq. 8 reduces to the well-known quantity Ne−Ud /sd . This is often
referred to as Ne and under certain conditions gives the number
of deleterious-mutation-free individuals in the population at
equilibrium (51), and in turn the coalescence timescale (52).
A similar interpretation can be given if Tcs � 1 for all possible
deleterious effects (53, 54). When instead both weak and strong
deleterious effects are possible, the factor

(
1− e−Tc s

)
essentially

picks out those deleterious effects with Tcs � 1 (which are
important in reducing the effective population size and related
coalescence timescale). Here, we refer to this heuristic approach
to estimating Tc as an “Ne-based heuristic”; by substituting this
Tc into Eq. 3, we can obtain predictions for v = 0 curves in
the same way v = 0 curves are obtained above using the MSSM
approximation.

The v = 0 Constraint in Terms of Population Genetic Parame-
ters. We compare our predictions for the v = 0 constraint to the
results of simulations in Fig. 2. We can see that the small Nsd
and large Nsd portions of v = 0 curves are well described by the
MSSM approximation and our Ne-based heuristic, respectively.
For concreteness, we connect these two approaches by taking the
result of the MSSM approximation for Nsd up to and including
(Nsd )∗, the maximal value of Nsd on a v = 0 curve, given � and
NU . We therefore consider the following prediction for v = 0
curves:

Nsb =
{
(Nsb)MSSM Nsd ≤ (Nsd )∗

min
[
(Nsb)∗, (Nsb)NE

]
Nsd > (Nsd )∗

, [9]

where (Nsb)MSSM and (Nsb)NE denote predictions for Nsb along
v = 0 curves, given the MSSM approximation and Ne-based
heuristic, respectively; (Nsd )∗ and (Nsb)∗ are predictions for
maximal Nsd value and corresponding Nsb at which v = 0,
obtained using the MSSM approximation. In Fig. 2, we can see

Fig. 2. Cross-sections of the v = 0 surface in the space of unscaled effects Nsd vs. Nsb, for NU = 104 and four values of �, with populations colored by
simulated values of T2

c v. Populations in the Top row are subject to a two-effect DFE; populations in the Bottom row are subject to a two-exponential DFE. Solid
lines denote predictions of the v = 0 surface obtained by connecting predictions obtained using the MSSM approximation and Ne-based heuristic that is, using
Eq. 9. Dotted lines denote predictions obtained using the MSSM approximation, for Nsd > (Nsd)∗; dashed lines denote predictions of the Ne-based heuristic.
Stars denote points at which (d , b) = (∗d , 

∗

b), as computed by MSSM approximation. Gray squares denote parameter combinations not simulated because
Udsd < Ubsb, or parameter combinations eliminated from consideration because fewer than 10 epochs were reached during the simulation runtime.
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that Eq. 9 adequately predicts v = 0 curves across a range of
Nsd values and � values for both the cases of two-effect and two-
exponential DFEs. These simulations are conducted with NU =
104; the results of simulations with NU = 102 and NU = 103

are presented in SI Appendix, Fig. S2. As is observed for v = 0
curves in the space of scaled effects, we note that the v = 0 curves
are much less “sharp” at large values of Nsd for the cases of two-
exponential DFEs, as compared to cases of two-effect DFEs. Note
that because at fixed � and NU , Tc varies with Nsb and Nsd , the
point in parameter space at which (d , b) = (∗d , 

∗

b ) is not the
same point at which (Nsb, Nsd ) = ((Nsb), (Nsd )∗). However,
we can see in Fig. 2 and SI Appendix, Fig. S2—with the point at
which (d , b) = (∗d , 

∗

b ) denoted by a star marker—that for all
cases considered, these points nearly coincide. Thus, validity of
the MSSM approximation up to one of these points essentially
implies validity up to the other point, which motivates us to
use the predictions of the MSSM approximation for Nsd up to
(Nsd )∗ in Eq. 9.

To summarize the accuracy of the MSSM approximation in
predicting v = 0 curves across the entire range of NU and �
values simulated, in Fig. 3 we compare our predictions for (Nsb)∗,
(Nsd )∗, ∗b , and ∗d to the corresponding quantities obtained from
simulations (with details of how these quantities are extracted
from simulations provided in Materials and Methods). Fig. 3
includes populations which are subject to two-effect DFEs; we
provide the same comparison for populations instead subject to
two-exponential DFEs in SI Appendix, Fig. S3. We can see that
these quantities (and thus the weaker-selection portion of v = 0
curves) are well predicted as long as TcUb � 1 at a given point
along the v = 0 ridgeline.

In Fig. 2, we have chosen to illustrate cross-sections of the
parameter space spanned by the axes Nsb and Nsd because of the
striking nonmonotonicity of v = 0 curves in this space (at fixed
� and NU ). To gain a more complete qualitative understanding
of the v = 0 constraint, we can consider small perturbations
of parameters from the v = 0 constraint along each of the

A B

C D

Fig. 3. Comparison between simulations and MSSM predictions for, in
panels (A and B), the extremal point ((Nsb)∗ , (Nsd)∗) and, in panels (C and D),
the ridgeline point (∗b , 

∗

d). Each point is obtained from the simulation results
depicted in a particular panel of Fig. 2 or SI Appendix, Fig. S2 (with values of
� denoted on the horizontal axis and values of NU ∈ {102 ,103 ,104

}, and with
populations subject to a two-effect DFE); for details on how ridgeline and
extremal points are extracted from a given panel of simulation results, see
Materials andMethods. In panels A and B, the Top theory curve corresponds to
NU = 104, the Middle theory curve corresponds to NU = 103, and the Bottom
theory curve corresponds to NU = 102. Points are colored according to their
values of TcUb at (d , b , �) = (∗d , 

∗

b , �), with Tc measured in simulations
through levels of pairwise neutral heterozygosity.

two remaining axes, � and NU . The behavior with � is simple:
N 2v increases monotonically with � (with other parameters held
fixed), so v = 0 curves are shifted (and distorted, to some extent)
toward lower Nsb values as � is increased (i.e., with larger �,
smaller values of Nsb are needed to have v = 0). The behavior
with NU is less immediately clear but also straightforward:
v = 0 curves are shifted toward larger Nsb values as NU is
increased. This reflects the fact that a larger NU value implies
more frequent interference and thus less efficient selection for
beneficial mutations and against deleterious mutations. From
this dependence, the behavior with U (at fixed �, N , sb, and sd )
also follows: v = 0 curves are shifted toward larger Nsb values as
U is increased. Note also that these patterns are reflected in the
dependence of (Nsb)∗ on � and NU as shown in Fig. 3, as well
as the dependence of full v = 0 curves on � and NU , which can
be seen in SI Appendix, Fig. S2.

Patterns of Molecular Evolution. Despite the fact that the v = 0
surface involves no change in the mean fitness of a population
over time, the evolutionary dynamics of populations on the
v = 0 surface can be far from neutral. These populations
lie in a dynamic steady state involving accumulation of both
beneficial and deleterious mutations, at rates which may differ
substantially from the accumulation rate of neutral mutations.
The fixation probabilities pfix(s) ≈ eTc s/N , along with the
MSSM approximation for determining Tc , can be used to
characterize the expected total rate F of (selected) mutation
fixation of a population, both lying on or off of the v = 0 surface.
In particular, with analogy to our characterization of a v = 0
surface, an F = U surface can be characterized on which selected
mutations, on average, accumulate/fix as if they were entirely
neutral (with faster-than-neutral accumulation of beneficial mu-
tations precisely balancing slower-than-neutral accumulation of
deleterious mutations). If we assume that synonymous mutations
are neutral and nonsynonymous mutations are selected, the
F = U surface can also be thought of as a dN/dS = 1 surface,
which would typically be interpreted as evidence for neutral, or
nearly neutral, evolution (55, 56).

The F = U surface is described by the equation
∫
�̃()(e−1)

d = 0, from which it follows that

�|F=U =
1− e−d

eb − 1
, [10]

for the special case of a two-effect DFE. Note that �|F=U
increases monotonically with d , and decreases monotonically
with b; thus, in contrast to v = 0 curves, F = U curves do not
attain extrema (at least in the space of scaled effects). In contrast
to the v = 0 surface, b does not tend to 0 as d → ∞, but
instead tends to log (1 + 1/�). As a result, to obtain F = U
curves in the space of unscaled effects, the “Ne-based heuristic”
described above, in which Tc is given by Eq. 8, does not apply;
even at large d , the dynamics are not driven primarily by strong
purifying selection on deleterious mutations. Instead, we can
use Tc obtained with the MSSM approximation (that is, using
Eq. 7) over a larger range of Nsd values. In Fig. 4, we plot a
grid of fixation rates obtained from the same simulations (of
populations subject to two-effect DFEs) considered in Fig. 2,
along with corresponding F = U theory curves obtained using
the MSSM approximation. Our theory curves quite accurately
distinguish simulated parameter combinations in which F > U
from those in which F < U . The same comparison is provided
in SI Appendix, Fig. S4, including populations with different NU
values and populations subject to a two-exponential DFE. We

6 of 10 https://doi.org/10.1073/pnas.2312845121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 C

A
B

O
T

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

 o
n 

Ja
nu

ar
y 

31
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

10
3.

14
7.

14
9.

https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312845121#supplementary-materials


A

B

Fig. 4. Cross-sections of F = U and � = 0 surfaces. (A) Populations shown in Fig. 2A (which are subject to a two-effect DFE with NU = 104) are colored by
their values of Tc(F − U) measured in simulations. (B) Populations shown in Fig. 2A are colored by measured values of � in simulations. In A and B, solid lines
depict predictions of the MSSM approximation for the F = U and � = 0 surface, respectively, within its regime of validity; dotted lines denote MSSM predictions
beyond its regime of validity. In B, dashed lines denote the corresponding predictions obtained using the Ne-based heuristic described above.

note that, as compared to the F = U surface in the space of
scaled effects, the behavior is slightly more complex in this case,
and the F = U surface can be somewhat non-monotonic in
certain cases (due to variation of Tc with Nsb and Nsd ).

Measurements of within-population genetic diversity enable
another way of characterizing and potentially drawing inferences
from a population. In particular, an imbalance in the number
of nonsynonymous (and synonymous) polymorphisms observed,
relative to the number of nonsynonymous (and synonymous)
mutations fixed since divergence of two populations, is often in-
terpreted as a signature of selection—either positive or negative—
through the McDonald Kreitman test (57). We can quantify a
related imbalance through the statistic �, defined as

� = 1−
Un�sel

F�neu
, [11]

which resembles the McDonald–Kreitman statistic �MK , making
an analogy between synonymous mutations and neutral mu-
tations, and between nonsynonymous mutations and selected
mutations. Here, �neu and �sel denote levels of pairwise het-
erozygosity of neutral and selected mutations, respectively (with
pairwise heterozygosity simply the average number of polymor-
phisms observed in a sample of two individuals). The statistic
�MK has often been used to estimate the fraction of substitutions
in a population which are adaptive (58). However, neither �MK
nor the statistic � defined here need be positive; �MK < 0 is often
observed and interpreted as evidence that purifying selection plays
a dominant role in the evolution of a population (59). The � = 0
surface is thus a third surface on which the dynamics are at
least ostensibly neutral in some capacity and which can also be
described using the MSSM approximation. We reproduce results
of the MSSM approximation for �neu and �sel in SI Appendix.
Using these results, the � = 0 surface follows as∫

�̃()
(
e + 1− e



)
d = 0, [12]

a consequence of which is that

�|v=0 < �|�=0 < �|F=U , [13]

for any �̃b() and �̃d (). Thus, v > 0 and F < U on the
� = 0 surface (and � < 0 and F < U on the v = 0 surface).
Fig. 4 includes a comparison between predictions for the � = 0
surface—obtained using Eq. 12, along with Eqs. 7 or 8—and
the values of � obtained in simulations, for populations subject
to two-effect DFEs. To obtain predictions for the � = 0 surface
in the space of unscaled effects, the “Ne-based heuristic” is again
useful for large Nsd and the MSSM approximation (i.e., Eq. 7)
is useful for small Nsd in relating Tc to N , although the specific
patching we have employed in Eq. 9 to obtain the v = 0 surface
does not quite carry over. We provide a comparison between
� = 0 predictions and simulated � values for populations
subject to a two-exponential DFE in SI Appendix, Fig. S5;
except for cases when � is small and Nsd is large (and the MSSM
approximation breaks down) agreement is qualitatively similar.

Discussion
Previous efforts to treat the dynamics of both beneficial and dele-
terious mutations have largely done so by treating the two types of
mutations in fundamentally different ways (15, 19, 20, 22, 60).
These efforts typically start by making one of several assumptions
about whether and how often deleterious mutations can fix
and how they impact the fixation probabilities of beneficial
mutations. We lack an adequate understanding of the interplay
between the two types of mutation in general or even of
which type of mutation will be more important in shaping the
fitness trajectory of a population, given a particular distribution
of fitness effects. Here, we have used our recently developed
MSSM approximation, along with a simple Ne-based heuristic,
to characterize this balance between beneficial and deleterious
mutations. Our description of the v = 0 surface applies under
quite general conditions we have described above—essentially, as
long as NUb is sufficiently large that beneficial mutations enter
the population sufficiently frequently. As we discuss in more
detail below, the v = 0 surface is particularly relevant to the fate
of a population at long evolutionary times: The v = 0 surface
limits the ability of evolution to climb fitness landscapes—and
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thus, under certain conditions, determines the extent to which
evolution acts as an optimization process.

We have found that the v = 0 constraint is concisely expressed
in terms of the distribution of scaled fitness effects Tcs available
to a population. Expressed as such, the population size N is
relevant only via its impact on the coalescence timescale Tc .
Alternatively, given a fixed U and �(s), a particular N0 can
be identified such that v > 0 for N > N0 and v < 0 for
N < N0. This has long been recognized in the context of
mutational meltdown models (61), which typically assume that
decreases in fitness imply decreases in a population’s size, and
thus further decreases in its fitness (or the opposite increase in its
size, if the population instead increases in fitness initially). Our
analysis immediately yields a critical effective population size Ne
at which v = 0. For example, for the case of a single beneficial
effect and a single deleterious effect, rearranging Eq. 5 yields
Ne|v=0 = 2/(sb + sd ) log [(Ud sd )/(Ubsb)]. A similar critical
effective population size is identified by Whitlock (21). Because
the MSSM approximation provides a relation betweenTc andN ,
however, our analysis can also yield a critical census population
size N0 at which v = 0, for a given U�(s).

Previous work has considered the balance between accumu-
lation of beneficial mutations and deleterious mutations under
more limiting assumptions (22, 62–64). Notably, Held et al. (63)
analyze the v = 0 balance between beneficial and deleterious
mutations that emerges under a biophysically grounded model
of selection on traits at multiple genes, finding that selection
coefficients are tuned to a state of marginal relevance in which
Tcs ∼ O(1), under assumptions of negative epistasis on
individual traits and sufficiently frequent mutations. Goyal et al.
(22) compute the fraction Ub/(Ub+Ud ) of beneficial mutations
to total mutations at which v = 0, given a single effect size
sb = sd = s of both beneficial mutations and deleterious
mutations. Goyal et al. (22) also provide bounding arguments
for the case in which the effect sizes of beneficial mutations and
deleterious mutations differ, and briefly discuss the case in which
distributions of fitness effects are more broad. The key idea of
this and other single-effect approaches is that the single effect s
that is modeled must be chosen as the most likely (or in a sense,
typical) effect size of a fixed mutation (17, 18). Thus, use of
a single-s approach to obtain a v = 0 constraint requires that
the most-likely effect size of a fixed beneficial mutation at least
roughly matches the most-likely effect size of a fixed deleterious
mutation.

Rice et al. (64) have found that, under the assumption of no
epistasis (i.e., assuming a genome of finite size where mutations at
the different loci do not interact epistatically) this is precisely to be
expected after long evolutionary timescales. Their basic argument
is simple: If beneficial mutations of a particular effect size are more
likely to fix than deleterious mutations of that effect size, those
mutational opportunities will be depleted faster (or vice versa).
This will continue until the distribution of fixed beneficial effects
precisely matches the distribution of fixed deleterious effects, at
which point adaptation will come to a halt (v = 0) and the DFE
can be described as “evolutionarily stable.” Therefore, a single-s
approach is perhaps appropriate in describing the approach to an
evolutionary attractor at long times resulting from a population
running out of beneficial mutations. In the presence of epistasis,
however, a mutation not only enables a back mutation of the
opposite effect but can also alter the full distribution of fitness
effects available to an individual. As a result, the distributions
�b(s) and �d (s) can change in independent ways over the course
of evolution. Our analysis—which makes no assumption that
�b(s) and �d (s) are similar in scale—is thus more applicable to a

description of the v = 0 constraint in the presence of widespread
epistasis. We emphasize that the existence of the v = 0 state does
not depend on the existence of any particular form of epistasis
and is expected to hold under fairly general conditions. However,
the form of the equilibrium point will depend on epistasis, and
as we now discuss, our analysis provides a framework to work out
the implications of various proposed patterns of fitness-mediated
epistasis (31), in which �(s) varies systematically with the fitness
of a population.

To do so requires an additional assumption of how the
parameters of a population depend on fitness. For instance, in
the presence of diminishing-returns epistasis (in which beneficial
effects become systematically weaker as the fitness of a population
increases) populations are constrained to lie on a horizontal
line in the space Nsd vs. Nsb depicted in Figs. 2 and 4. If a
population starts out in the v > 0 region, its mean fitness will
increase and its value of Nsb will subsequently decrease, until the
population converges to the v = 0 surface. Qualitatively, then,
the implications of diminishing-returns epistasis are similar to the
implications of a declining fraction of beneficial mutations which
are considered by Goyal et al. (22): As evolution proceeds, the
population will approach the v = 0 surface (either from the v < 0
region or the v > 0 region); the v = 0 surface is thus a stable
evolutionary attractor. On the other hand, a pattern of increasing-
costs epistasis (in which deleterious fitness effects systematically
increase with fitness) corresponds to a vertical line in the spaceNsd
vs. Nsb. The behavior in this case is more complex, depending on
the location of the starting point in relation to the v = 0 ridgeline:
If Nsb > Ns∗b , a long-term evolutionary attractor does not exist,
while if Nsb < Ns∗b , two fixed points exist, one of which is stable
and one of which is unstable. One could also imagine a pattern
of decreasing-costs epistasis, in which deleterious fitness effects
become systematically smaller as a population increases in fitness
(e.g., if deleterious mutations are thought of as reversions of
beneficial mutations for which a pattern of diminishing-returns
epistasis exists). The behavior in this case is similar to that of
increasing-costs epistasis, but the stability (and instability) of the
two fixed points is swapped. The combination of decreasing-
costs epistasis and diminishing-returns epistasis (i.e., negative
epistasis), which is present in the biophysically grounded model
studied by Held et al. (63), can also be considered, and results in
a stable fixed point.

It is not yet entirely clear which, if any, of these simple patterns
best describe the dominant patterns of epistasis in natural popu-
lations. More generally, a curve through the parameter space—
parameterized by fitness—can be assumed, on which populations
are constrained to lie. The intersection(s) of these curves with the
v = 0 surface determine the long-term evolutionary fixed points,
the stability of which can be determined straightforwardly. In
principle, these curves may covary along several dimensions (e.g.,
with quantities such as the overall mutation rate, the relative
fraction of beneficial to total mutations, and other quantities
such as the shapes of beneficial and deleterious DFEs). In Fig. 5,
as a schematic, we illustrate the consequences of a relatively
simple pattern involving both diminishing-returns epistasis and
increasing-costs epistasis; as recently argued by Lyons et al. (65)
and Reddy and Desai (66), these two trends both emerge from a
simple null model of pervasive microscopic epistasis. Populations
are simulated starting from a range of five initial conditions in
the parameter space; in each case, sb decreases with the fitness of
an individual and sd increases with fitness of an individual, with
the product sbsd assumed constant (see Materials and Methods
for details). Note that for two of the five initial conditions, the
population would never approach the v = 0 surface (but its rate
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A B

C

Fig. 5. (A) Simulated trajectories of evolving populations subject to both
diminishing-returns and increasing-costs epistasis, overlaid on Fig. 2C. Pop-
ulations are subject to two-effect DFEs with NU = 104 and � = 0.1. In
all cases, the product (Nsb)(Nsd) is assumed constant as a population
evolves; depending on a population’s initial values of Nsb and Nsd it may
or may not approach the v = 0 surface at long times. The color of a filled
circle denotes the time (in generations) a population had a given set of
parameters. (B) Mutation accumulation and (C) fitness trajectories of the
simulated populations depicted in (A). Despite a declining rate of fitness
change observed in all cases, rates of (selected) mutation accumulation
remain roughly constant.

of adaptation does slow down over time). For the remaining three
initial conditions, the population approaches the v = 0 surface,
either from higher fitness or from lower fitness, and in particular
approaches the d < ∗d portion of the v = 0 surface described
by the MSSM approximation.

In all cases shown in Fig. 5, selected mutation accumulation
proceeds throughout at a roughly constant rate, although,
consistent with fixation rates measured in simulations and
shown in Fig. 4, those populations which approach the v = 0
surface have a higher long-term steady-state fixation rate of
new mutations. Those populations which approach the v = 0
surface can be thought to undergo rapid molecular evolution
at steady state, in that F ∼ Ub + Ud is possible. In contrast,
those populations which do not approach the v = 0 surface
can instead end up with a much smaller fixation rate F ∼ Ub
(with F = Ub if deleterious mutations are strong enough that all
are purged by selection and beneficial mutations weak enough
that they accumulate entirely neutrally). Broadly speaking, these
patterns—a rate of fitness increase which declines over time (67),
and in particular, the maintenance of a roughly constant rate
of mutation accumulation despite a declining rate of fitness
increase (27, 68, 69)—have been observed in multiple microbial
evolution experiments. Our analysis provides a way to identify
regions of the parameter space in which these and similar observed
patterns are possible, or alternatively, to yield constraints on the
dominant modes of fitness-mediated epistasis given an observed
fitness and/or mutation accumulation trajectory.

Using arguments along the lines described above, our analysis
can be used to predict the flow of a population through
parameter space, given a complete characterization of any form
of fitness-mediated epistasis—that is, of �(s|X ). Crucially, we
make the assumption of slow epistasis, such that �(s|X ) can
be treated as uniform within the population, and constant in
time, in identifying its corresponding rate of fitness increase. This
assumption means that we neglect the possibility that individual

mutations could lead to specific shifts in U�(s), which could
then themselves be subject to selection. For example, a lineage
could arise that has access to more (or stronger-effect) beneficial
(or deleterious) mutations than other individuals within the
population, and this lineage could then be subject to second-
order selection. Addressing this effect is an interesting topic for
other work and has recently been addressed by Ferrare and Good
(70) using a related theoretical framework.

Materials and Methods

To validate our predictions, we conducted individual-based Wright–
Fisher simulations. Simulations were performed using code available at
https://github.com/mjmel/mssm-sim and used by Melissa et al. (24). Sim-
ulations consist of a mutation step and a reproduction step repeated each
generation. In the mutation step, each individual acquires a Poisson-distributed
number of mutations with meanU; the effect of each mutation is independently
drawn from the distribution�(s)and increments (or decrements) an individual’s
log-fitness X. Purely neutral mutations are also introduced at rate Un. The
identities and fitness effects of the mutations carried by each individual are
tracked. In the reproduction step, individuals are resampled with replacement
with probabilities proportional to their fitnesses eX . Populations are initialized
clonally and the number of generations which elapse before the first fixation of a
mutation is recorded, setting the epoch length. Simulations are run for up to 100
epochs, with the mean fitness and heterozygosities—both of neutral mutations
and of selected mutations—recorded at each epoch. Simulations which for which
fewer than 10 epochs have been reached after a runtime of 24 h are discarded
from our analysis.

For a given value of � and NU, we simulated parameter combinations lying
on a grid of Nsb and Nsd values (depicted in Fig. 2, for example). For each value
of � and NU, we extracted the coordinates of its ridgeline point, both in the
space of scaled effects and in the space of unscaled effects, for comparison with
theory. To do so in the space of scaled effects, we take the point with the largest
b value such that v < 0; the b and d of this point are then recorded as ∗b
and ∗d , respectively. In the space of unscaled effects, we take (Nsb)

∗ as the
largest value of Nsb such that v < 0 for some parameter combination; (Nsd)

∗

is then taken as the median value ofNsd for those parameter combinations such
that Nsb = (Nsb)

∗ and v < 0.
We also conducted simulations in which the available fitness effects sb and

sd depend on fitness. These simulations are identical to those described above,
except after the occurrence of each mutation, the effect magnitudes of the
next available beneficial and deleterious mutations are updated accordingly.
In all cases, we held the product sbsd constant with sb ∝ e−X/5, where X
denotes an individual’s log-fitness. A similar functional dependence of sb on
X is found by Wiser et al. (71) to describe E. coli populations in the LTEE
experiment. These simulations were run for a total of 5,000 generations, with
measurements of fitness and the number of fixed mutations recorded every 100
generations.

Data, Materials, and Software Availability. There are no data underlying
this work.
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