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Abstract

The reduction of genetic diversity due to genetic hitchhiking is widely used to find past selective sweeps from sequencing data, but very
little is known about how spatial structure affects hitchhiking. We use mathematical modeling and simulations to find the unfolded site
frequency spectrum left by hitchhiking in the genomic region of a sweep in a population occupying a 1D range. For such populations,
sweeps spread as Fisher waves, rather than logistically. We find that this leaves a characteristic 3-part site frequency spectrum at loci very
close to the swept locus. Very low frequencies are dominated by recent mutations that occurred after the sweep and are unaffected by
hitchhiking. At moderately low frequencies, there is a transition zone primarily composed of alleles that briefly “surfed” on the wave of the
sweep before falling out of the wavefront, leaving a spectrum close to that expected in well-mixed populations. However, for moderate-to-
high frequencies, there is a distinctive scaling regime of the site frequency spectrum produced by alleles that drifted to fixation in the wave-
front and then were carried throughout the population. For loci slightly farther away from the swept locus on the genome, recombination is
much more effective at restoring diversity in 1D populations than it is in well-mixed ones. We find that these signatures of space can
be strong even in apparently well-mixed populations with negligible spatial genetic differentiation, suggesting that spatial structure may
frequently distort the signatures of hitchhiking in natural populations.
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Introduction
A selective sweep reduces neutral genetic diversity at linked loci

via “genetic hitchhiking”: the genetic background on which the

sweep occurred increases in frequency, while others decrease

(Maynard Smith and Haigh 1974). In large populations with rapid

adaptation and limited recombination, hitchhiking could be the

primary factor limiting neutral genetic diversity (Gillespie 2000a,

2000b; Weissman and Barton 2012). On the other hand, in popu-

lations where most loci are unaffected by hitchhiking, the loss of

genetic diversity in specific regions of the genome is the primary

method for detecting recently completed selective sweeps in nat-

ural populations (Kim and Stephan 2002; Vitti et al. 2013; Stephan

2019). Selection scans based on hitchhiking have found wide-

spread sweeps in many populations and inferred their properties

(Li and Stephan 2006; Sabeti et al. 2007; Karasov et al. 2010;

Sattath et al. 2011; Vitti et al. 2013; Garud et al. 2015; Smith et al.

2018; Stephan 2019; Hejase et al. 2020; Bourgeois and Warren

2021). Two properties of particular interest are the strength of

selection driving the sweep and whether the sweep is “hard”

(starting from a single mutation) or “soft” (starting from multiple

independent mutations) (Hermisson and Pennings 2005).

Inferring these quantities requires models relating them to ob-
servable patterns of genetic diversity. Even methods that simply
locate swept regions based on identifying empirical outliers need
to be tested by simulations (i.e. models). It is therefore important
that models for hitchhiking be at least roughly accurate descrip-
tions of the process in natural populations.

The models underlying standard sweep-finding methods
assume that the population is well-mixed (Garud et al. 2015;
Schrider and Kern 2016; Smith et al. 2018; Stern et al. 2019;
Bisschop et al. 2021). However, natural populations typically oc-
cupy extended spatial ranges. Often in such populations, allele
frequencies are fairly constant across the range; in other words,
spatial structure as measured by FST is weak (Hartl and Clark
1997). This reflects the fact that the mixing time is short com-
pared to the neutral coalescence time, so well-mixed models are
good approximations for many aspects of neutral evolution.
However, selective sweeps are necessarily very fast compared to
neutral coalescence, so for many populations, sweeping alleles
will be strongly affected by spatial structure even when most
neutral alleles are not (Ralph and Coop 2010). Indeed, strong
patterns of spatial differentiation are one of the signatures used
to detect ongoing sweeps (Sabeti et al. 2007; Tang et al. 2007;
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Coop et al. 2009). Even for methods that use these patterns to de-
tect local adaptation rather than ongoing full sweeps [reviewed
in Vitti et al. (2013) and Bourgeois and Warren (2021)], the premise
is the same: often, dispersal is fast enough relative to drift
to equalize neutral allele frequencies across space, but too slow
relative to selection to maintain uniform allele frequencies at
strongly selected loci.

The dynamics of sweeps in spatially structured populations
can be completely different from those in well-mixed popula-
tions: instead of growing logistically, the restricted competition
makes them spread as much slower traveling waves (Fisher
1937). These different dynamics can produce very different hitch-
hiking patterns (Slatkin and Wiehe 1998; Kim and Maruki 2011;
Barton et al. 2013). Specifically, Barton et al. (2013) showed that a
sweep with a given selective advantage reduces genetic diversity
much less in a spatially structured population than it does in a
well-mixed population of the same size. This suggests that spa-
tial structure likely needs to be included in models of hitchhiking
to get even a good first approximation.

A full description of the genetic diversity of a large sample is
extremely complicated. Most of this complexity arises due to the
linkage disequilibrium among alleles at different loci.
Fortunately, the one-locus statistics are much simpler: when var-
iation in allele frequencies across space is negligible, they can be
completely described by the site frequency spectrum (SFS), which
is the number of mutations nðf Þ found at frequency f in a sample
of the population (Hartl 2020). Since it ignores linkage disequilib-
rium, nðf Þ can be measured in unphased data. For this reason,
many sweep-inference methods are based on the SFS (Pavlidis
et al. 2013; DeGiorgio et al. 2016; Harris et al. 2018; Kern and
Schrider 2018). These inference methods are multilocus in the
sense that they concatenate information across genomic win-
dows, but they are still based on one-locus statistics, i.e. they do
not consider linkage disequilibrium.

In this article, we model the hitchhiking caused by a sweep in
a spatially structured population, focusing on the simplest case
of a 1D spatial range. We use heuristic mathematical arguments
and simulations to find the effect of a sweep on the expected SFS
at linked neutral loci. We start by considering a completely linked
locus and then find how hitchhiking decays as we move away
from the swept locus on the genome and the recombination rate
increases. We find that even in weakly spatially structured popu-
lations, space creates a distinctive tail in the expected SFS and
changes the width of the region of the genome affected by hitch-
hiking. We discuss the potential implications of our results for
the accuracy of inferences about adaptation based on well-mixed
models.

Model
We use a 1D stepping-stone model, in which there is a line of L
demes, each with a fixed population size of q haploid individuals,
for a total population size of N ¼ Lq. Within each deme, we use a
Wright–Fisher model, with individuals having a probability m
each generation of being a migrant from a neighboring deme.
The migrants have an equal probability of coming from the
neighboring deme to the right or the left. At the edges of the
range, the leftmost and rightmost demes have only 1 neighboring
deme each, so individuals in these demes have a probability of
only m=2 per generation of being a migrant.

At some point in time, an individual acquires a beneficial mu-
tation with selection coefficient s. Most such mutations rapidly
go extinct due to drift; we discard these simulations and instead

keep only those in which the mutation is lucky enough to escape
extinction and sweep to fixation. For simplicity, we assume the
beneficial mutation occurs in the leftmost deme in most of our
results. As we discuss in Appendix C, this captures all the main
qualitative patterns, and generalizing the quantitative patterns
to mutations starting in other locations is straightforward. We fo-
cus on the case s<m and q

ffiffiffiffiffiffiffi
ms
p

� 1 in which the traveling wave
of the successful beneficial allele has a front that is approxi-
mately continuous in space, with a characteristic width /

ffiffiffiffiffiffiffiffiffi
m=s

p
and speed v �

ffiffiffiffiffiffiffiffiffi
2ms
p

[Barton et al. (2013); illustrated by the black
curve in Fig. 1]. In this approximately continuous case, we do not
expect any of our results to depend on the details of the demic
structure. At finite densities q, the wave speed is slightly smaller
than

ffiffiffiffiffiffiffiffiffi
2ms
p

(Barton et al. 2013), so in all plots, we use the speed
measured directly from the simulations (see Appendix B for
details).

For the hard, complete sweeps in our model, all neutral diver-
sity after the end of the sweep must be produced by mutation or
recombination. We follow a single neutral locus with mutation
rate Un and recombination rate r with the selected locus. We use
the infinite allele model in which every new neutral mutation is
unique. This is a good first approximation as long as the popula-
tion size N times the per-base neutral mutation rate is small
compared to one. Our neutral locus could extend over multiple
bases, as long as recombination among them is negligible; see the
Discussion for consideration of possible locus sizes.

We focus on the parameter regime in which spatial structure
has a negligible effect on neutral allele dynamics in the absence of
the sweep, but a strong effect on the sweep dynamics. To satisfy
the first condition, we set the parameters so that the mixing time
from dispersal, Tmix / L2=m, is much smaller than the well-mixed
coalescent time scale, Tcoal ¼ N. This makes it so that neutral het-
erozygosity is nearly unaffected by space, i.e. so that the “effective
population size” is Ne � Tcoal � N (Maruyama 1971). To satisfy the
second condition, we make sure that the mixing time Tmix is long
compared to the duration of the sweep, Tsweep � L=v / L=

ffiffiffiffiffiffiffi
ms
p

.
This is roughly equivalent to requiring that the range size is long
compared to the wavefront of the sweep, L�

ffiffiffiffiffiffiffiffiffi
m=s

p
, or that the

mixing time be long compared to the time the sweep would take in
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Fig. 1. Spatial hitchhiking leaves 3 classes of alleles: those that fix in
wavefront (orange), those that surf but do not fix (blue), and those that
arise behind the wavefront (pink). The black curve shows the frequency
of the beneficial allele at location x and each colored area represents
frequency of a different neutral mutant lineage.
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a well-mixed population, Tmix � lnðNsÞ=s. We can summarize these
conditions as Tsweep � Tmix � Tcoal.

In this parameter regime, common alleles at sites unlinked to
the sweep have little variation in their frequencies across space.
During and immediately after the sweep, variation at loci linked
to the sweep may vary strongly in space (Booker et al. 2020), and
the increased mixing caused by hitchhiking (Barton et al. 2013)
can lead to distant individuals sharing unusually recent common
ancestry near the swept locus (Allman and Weissman 2018). But
dispersal will erase these spatial patterns in a time Tmix much
shorter than the time Tcoal that it takes drift to erase the effect of
hitchhiking on the overall allele frequencies (Ralph and Coop
2010). Thus, for most potentially detectable sweeps, there will be
no direct signature of the effect of spatial structure. In other
words, we do not expect to see allele frequencies varying much in
space, but the strong spatial structure that existed during the
sweep may still leave a large signature in the overall SFS.
Throughout the article, we will focus on the unfolded SFS, as-
suming that there is an outgroup such that ancestral and mutant
alleles can be distinguished, as the folded SFS can be immedi-
ately derived from the unfolded one.

We follow Barton et al. (2013) in conducting our simulations in
2 steps. First, we simulate the dynamics at just the selected locus
forward in time, saving the trajectory of the sweep in time and
space. We then use this saved trajectory to conduct structured co-
alescent simulations of the linked neutral locus backward in time.
This increases computational efficiency because most of the sto-
chasticity in the SFS is produced in the coalescent process rather
than the sweep trajectory, and we can simulate many indepen-
dent coalescent histories on each simulated sweep trajectory. We
find the expected SFS by averaging our results over many inde-
pendent forward simulations and many more independent back-
ward simulations for each forward simulation. Because we focus
on the expected SFS, we do not need to simulate neutral muta-
tions explicitly but can instead simply multiply the branch lengths
of our simulated coalescent trees by Un to find the expected num-
ber of mutations. The neutral mutation rate Un is, therefore, sim-
ply an overall scaling factor in all our results. For the details of the
simulations, see Appendix A. All codes can be found at https://
github.com/weissmanlab/SFS_spatial_sweep_1d_Genetics.

Results
Background: hitchhiking at a completely linked
locus in a well-mixed population
We first review the expected SFS left by hitchhiking in a well-
mixed population. Here, we focus on the simplest case of a
completely linked locus, sampled immediately after the fixation
of the beneficial allele; we consider the effects of drift after the
sweep and recombination below. All diversities are, therefore,
from mutations that occurred after the beginning of the sweep in
individuals carrying the beneficial allele. The expected SFS follows
2 power-laws (Fig. 2, grey curve). Almost all individuals carrying
the sweeping allele who could potentially be ancestral to the sam-
ple lived in the late stages of the sweep, so most mutations are rel-
atively recent and occurred too late to hitchhike to high
frequencies. Their dynamics are, therefore, simply controlled by
drift and follow the neutral expectation (Wakeley 2008):

nðf Þ � 2NUn=f : (1)

Equation (1) is shown as a pink dashed curve in Fig. 2 and fol-
lowing figures. Since these mutations occurred less than lnðNsÞ=s

generations before sampling (i.e. during the sweep), they do not
have time to drift to a frequency of more than about
f �lnðNsÞ=ðNsÞ (Desai and Fisher 2007; Fig. 2, vertical dotted tur-
quoise line). Only the lucky older mutations that occurred when
the sweeping allele was rare can hitchhike to frequencies
f � lnðNsÞ=ðNsÞ. Since the beneficial background was growing ap-
proximately exponentially at this time, the frequency spectrum
of mutations follows the classic scaling / 1=f 2 of Luria and
Delbrück (1943). Specifically, for a mutation to hitchhike to fre-
quency of at least f, it must have occurred when the number of
individuals with the beneficial allele was �1=f . The total number
of mutational opportunities up to this point of the sweep is equal
to the number of individuals with the beneficial allele integrated
over time, �1=ðsf Þ, so the expected number of mutations with fre-
quency > f is �Un=ðsf Þ. Differentiating the expected number of
mutations with respect to frequency gives the SFS:

nðf Þ � Un=ðsf 2Þ: (2)

Equation (2) is shown as a dot-dashed cyan curve in Fig. 2.

Fig. 2. Spatial structure creates a distinctive high-frequency tail in the
SFS left by hitchhiking. Black and grey curves show simulation results
for the SFS at a neutral locus completely linked to a selective sweep in a
1D and well-mixed population, respectively, with the same population
size (N ¼ 107) and selective coefficient (s¼ 0.05). a) For high-frequency
polymorphisms, the spatial SFS is flat, following nðf Þ � UnL=v (dotted
orange line), and much higher than the well-mixed SFS, nðf Þ � Un=ðsf 2Þ
(dot-dashed cyan curve). b) Plotting frequency on a log scale shows that
at very low frequencies, both spectra match the neutral expectation
nðf Þ ¼ 2NUn=f (pink dashed line). For frequencies f � lnðNsÞ=ðNsÞ
(turquoise vertical line), the well-mixed SFS follows the high-frequency
law. The spatial SFS deviates from neutrality at a higher frequency,
f � 1=ðqvÞ, and follows a slightly different law—see Fig. 3. The
populations were sampled immediately after the fixation of the
beneficial allele. Other model parameters: Un ¼ 1;m ¼ 0:25; q¼ 2 104;

L ¼ 500: See Appendix A for details of how simulation results are
averaged over multiple runs and frequencies in this and following
figures.
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Completely linked locus in a 1D population
We will start by sketching an intuitive argument for the qualita-
tive features of the SFS left by hitchhiking in a 1D population. As
above, we will first focus on a completely linked locus sampled
immediately after the sweep. We do not attempt to characterize
spatial patterns in genetic diversity at the locus even though we
consider just-completed sweeps because we are interested in
more typical older sweeps, finished at least �Tmix generations
ago. In a 1D population, the sweep proceeds as a Fisher wave
(Fisher 1937; Fig. 1, black curves). Most neutral mutations ances-
tral to the sample will occur in the bulk of the wave, where the
beneficial allele is already fixed and there is no more hitchhiking
(Fig. 1, pink). These mutations should follow the neutral SFS and
should be limited to low frequencies (Fig. 2, pink dashed line).
Yet, the mutations that occur within the wavefront can hitchhike
and follow either of 2 possible trajectories. First, most will “surf”
in the wavefront temporarily, but eventually be left behind and
stop hitchhiking (Fig. 2, blue). The luckiest mutations will man-
age to fix in the wavefront and hitchhike to very high frequencies
as they are carried by the wave of the beneficial allele (Fig. 2, or-
ange). We, therefore, expect to see 3 basic regimes in the hitch-
hiking SFS of a 1D population, rather than just the 2 regimes in
the well-mixed population. This intuition is confirmed by simula-
tions (black solid curve in Fig. 2). These show that the expected
SFS of a 1D population is higher than the one of a well-mixed
population, i.e. there is more genetic diversity.

We now give approximate analytical expressions for the form
of the SFS in the 3 different regimes. Since the low-frequency
alleles that occurred in the bulk of wave (Fig. 1, pink) did not
hitchhike, they simply follow the neutral expectation nðf Þ �
2NUn=f (Fig. 2, pink), as in a well-mixed population. But since the
sweep time is now much longer than it would be in a well-mixed
population, Tsweep � L=v� lnðNsÞ=s, these mutations can drift for
longer and reach higher frequencies, f �Tsweep=N � 1=ðqvÞ (Fig. 2,
vertical green dotted line).

To reach higher frequencies, f � Tsweep=N, mutations have to
hitchhike. For most of this frequency range, the SFS is approxi-
mately uniformly distributed, a pattern unique to the spatially
extended population. This tail reflects the mutations that suc-
ceed in fixing in the wavefront (Fig. 2, orange). Since the dynam-
ics within the front are neutral, mutations fix in the front at a
steady rate of Un. For such a mutation to reach frequency at least
f, it must have fixed in the wavefront before the sweeping allele
reached frequency 1� f . The total amount of time that sweeping
allele spends at frequency less than 1� f is �ð1� f ÞL=v, so the to-
tal number of mutations that we expect to fix in the front and
reach frequencies greater than f is Unð1� f ÞL=v. Differentiating
with respect to f gives the expected SFS:

nðf Þ � UnL=v: (3)

This analytical approximation is in good agreement with sim-
ulations (Fig. 2, orange horizontal dotted line). It breaks down at
very high frequencies (f � 0:8 in Fig. 2), at which point the initial
waiting time for the beneficial allele to settle down to a Fisher
wave becomes important; see Appendix D.

Between the low-frequency neutral regime and the high-
frequency flat regime described above, there can also be an
intermediate-frequency hitchhiking regime (frequencies �10�3 to
�10�1 in Fig. 2). This regime consists of mutations that occurred
in the wavefront in the sweeping background and surfed for a
while but were then left behind (Fig. 1, blue area). The expected

SFS of a 1D population in this frequency range is similar to but
distinct from that of a well-mixed population with the same N
and s (nðf Þ � Un=ðsf 2Þ, as described above). Intuitively, the simi-
larity is because these mutations only surf over a small portion
of the range, so they have little opportunity to “feel” the spatial
structure. To characterize the distinctive behavior of the 1D spec-
trum in this regime, we can treat the wavefront as its own small
population with a coalescent time scale Tfront given by the power-
law fits of Barton et al. (2013) and Birzu et al. (2018). Coarse-
graining over this time scale then produces an effective offspring
distribution with a heavy-tailed “sweepstakes” pattern (Okada
and Hallatschek 2021). This gives an SFS:

nðf Þ � 0:6ðUn=sf 2ÞðNsf Þa=ð1þaÞ; (4)

with a � 0:3 (Barton et al. 2013); see Appendix E for details. The
prefactor of 0.6 is a fit to the simulations shown in Fig. 3. Because
mutations can only persist in the wavefront for a limited amount
of time before falling behind or fixing, this regime can only cover
a limited frequency range that shrinks in longer habitats. This re-
gime is also the first to be eroded as time passes from the end of
the sweep (Fig. 4). Taken together, these factors suggest that the
higher-frequency uniform regime may be the more relevant por-
tion of the spectrum for data from natural populations.

The signature of spatial structure persists
through time
Above, we have assumed that the population is sampled immedi-
ately after the sweep, which is unusual in reality. More often, one
is interested in all the sweeps that may have happened recently
enough to still be detected. Since the signature of the sweep lasts
much longer than the sweep itself, the waiting time Tpast between
the end of the sweep and sampling is typically longer as well:
Tpast � Tsweep. Intuitively, this waiting time allows more time for
new mutations to appear and grow neutrally via genetic drift;
therefore, it extends the part of the SFS that matches the neutral
expectation nðf Þ � 2NUn=f . More specifically, since drift has
�Tsweep þ Tpast generations to act, the neutral part of the spec-
trum extends to f �ðTsweep þ TpastÞ=N, until drift erases the entire
signature of hitchhiking at Tpast � N. For mutations at much
higher frequencies f � ðTsweep þ TpastÞ=N, the change in frequency
due to drift is minor, so this part of the spectrum is nearly
unaffected. (The exception to this is the extreme high-frequency

Fig. 3. In spatial populations, alleles that temporarily surf in the
wavefront create an intermediate-frequency regime in the SFS. Plot
shows a close-up on the intermediate frequencies for the same data
shown in Fig. 2. The blue dot-dashed curve shows that the spatial SFS in
this regime is different from that of the well-mixed one by a factor
�0:6ðNsf Þa=ð1þaÞ, with a � 0:3.
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tail where the frequency of the ancestral allele is small,

1� f �ðTsweep þ TpastÞ=N; these mutations can be driven to fixation

by drift.) Figure 4 shows that this intuition matches simulations.

As a result, the high-frequency uniform tail of the hitchhiking

SFS in 1D populations is the longest-lasting part of the spectrum,

while the intermediate-frequency regime relaxes to neutrality

first.

The effect of recombination
So far, we have focused on neutral loci that are completely linked

to the positively selected locus. We now consider a neutral locus

farther away on the genome that recombines at rate r with the

selected locus. We can do this by combining the picture of the 1D

dynamics developed above with the known effects of recombina-

tion on the SFS produced by hitchhiking. In this section, we will

first review those effects and their mathematical expressions in

well-mixed populations. Then we will introduce the equivalent

expressions for 1D populations. Recombination has 2 related

effects: first, it brings new alleles onto the sweeping background,

allowing them to hitchhike, effectively increasing the mutation

rate; and second, it breaks down the positive linkage disequilib-

rium that drives the hitchhiking. While these effects are really 2

sides of the same coin, it is helpful to think of them separately

because they vary in importance at different genomic scales.

For the first effect of recombination, bringing new alleles onto
the sweeping background, a typical recombinant will be very dis-
tantly related to the original sweeping background, with an
expected time to the most recent common ancestor of Tcoal � N.
They will therefore differ by an average of 2NUn mutations, NUn

each on the original background and the recombinant. The fact
that the recombinant brings in NUn new mutations means that
the effective neutral mutation rate of the sweep is increased by
rNUn, for a total of Un;eff ¼ ð1þ NrÞUn. On the other hand, the fact
that the recombinant has the ancestral allele at NUn sites where
the original sweeping background was mutated, means that
those mutations are prevented from fixing by the hitchhiking of
the ancestral alleles. (In the absence of recombination, the mutant
alleles would have fixed and contributed to divergence from an
outgroup but not polymorphism.) This produces a mirror uptick
in the unfolded SFS at high frequencies, where at effective muta-
tion rate NrUn, ancestral alleles arrive on the sweeping back-
ground and hitchhike following the same expressions as
previously found for the mutant alleles, but with the ancestral al-
lele frequency 1� f replacing the mutant frequency f. (From a co-
alescent perspective, the 2 terms are both produced by the same
dynamics—a set of lineages coalesces during the sweep but their
ancestor recombines out before the sweep origin—with the only
difference being which branch of the tree a mutation falls on.)
Thus, in a well-mixed population, Equation (2) for the SFS
becomes:

nðf Þ � ð1þ NrÞUn

sf 2 þ NrUn

sð1� f Þ2
: (5)

As with a completely linked locus, Equation (5) is only valid for
allele frequencies f above that which can be reached by drift. It is
also cut off at an upper limit of f � 1� ðr=sÞlnðNsÞ, above which
the SFS flattens out (Fay and Wu 2000). Within these bounds,
Equation (5) matches simulations well, although it slightly under-
estimates the rate at which the SFS relaxes to neutral expectation
for high recombination rates (Fig. 5, a–c, cyan dot-dashed lines).
We see that this first effect of recombination is important even
very close to the selected locus, with recombination dominating
the effective mutation rate Un;eff for r � 1=N, and the high-
frequency mirror-image portion of the spectrum being visible at
even closer loci in large samples.

The second effect of recombination, reducing hitchhiking by
breaking down positive linkage disequilibrium between the
sweeping allele and alleles at neutral loci, is more familiar than
the effect described above, but it is only effective at more distant
loci. Intuitively, this reflects a comparison between the time scale
for hitchhiking to increase the frequency of a neutral allele in
positive linkage disequilibrium with the sweeping allele, and the
time scale 1=r for the linkage disequilibrium to decay. For a well-
mixed population, the time for hitchhiking to boost an allele ini-
tially established at �1=s copies to frequency f is �lnðNfsÞ=s.
Thus, recombination prevents hitchhiking from affecting the
bulk of the SFS at loci map distance r � s=lnðNsÞ from the sweep
(Kaplan et al. 1989; Stephan et al. 1992; Barton 1998, 2000). The ef-
fect on the upper tail of the SFS persists out to slightly more dis-
tant loci because it involves alleles that hitchhike for a slightly
shorter time and because the neutral spectrum is lowest there
(Fay and Wu 2000); this is barely visible in Fig. 5d, but even this is
effectively gone before the recombination rate reaches r � s.

In a 1D population, the logic is exactly the same, except that 2
expressions, Equations (3) and (4), need to be adjusted. For the
alleles that fix in the wave front, Equation (3) becomes:

Fig. 4. The distinctive high-frequency tail of the SFS persists long after
the sweep is completed. The purple, teal, and green curves show
simulation results for the expected SFS left by hitchhiking Tpast ¼ 103,
104, and 105 generations after the beneficial allele fixes, respectively.
Panel (a) shows frequency on a log scale, while (b) shows frequency on a
linear scale; in (b), the purple and teal curves are indistinguishable. In
(a), the vertical dotted lines of the corresponding colors show the
predicted upper extent f ¼ ðTpast þ TsweepÞ=N of the approximately
neutral part of the SFS for each value of Tpast. Parameters:
L ¼ 500; q ¼ 2� 104;m ¼ 0:25; s ¼ 0:05;Un ¼ 1; a ¼ 0:30.
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nðf Þ � ð1þ 2NrÞUnL=v: (6)

The factor ð1þ 2NrÞUn is the sum of mutations arising during

the sweep (Un), mutations that recombine onto the sweeping

background (NrUn), and ancestral alleles that replace mutations

when they recombine onto the sweeping background (another

factor of NrUn). Since there is no f dependence, these all combine

into one prefactor, rather than appearing in front of separate

terms as in Equation (5). Equation (6) matches simulations well

(Fig. 5a, orange dotted line). The factor rL=v in Equation (6) is the

expected number of recombinant lineages that fix in the front

during the sweep, and thus also appears (inversely) in the expres-

sion (C.3) in Barton et al. (2013) for the probability of coalescence

of a pair of lineages due to hitchhiking.
For the alleles that only surf temporarily in the front before

being dropped, Equation (4) becomes:

nðf Þ � 0:6
ð1þ NrÞUn

sf 2 ðNsf Þa=ð1þaÞ

þ0:6
NrUn

sð1� f Þ2
ðNsð1� f ÞÞa=ð1þaÞ:

(7)

As in Equation (5), the first term comes from the hitchhiking

of mutations, while the second comes from the hitchhiking of an-

cestral alleles preventing the fixation of hitchhiking mutations.

Equation (7) matches simulations well, but only applies over

small ranges of frequencies (Fig. 5a, blue dot-dashed lines); as in

the well-mixed case, it does not apply to very low or high fre-
quencies where drift becomes more important, and it also does
not apply to the middle of the frequency range, where Equation
(6) dominates.

In a 1D population, sweeps are slower than in a well-mixed
population. Therefore, smaller recombination rates r are suffi-
cient to produce linkage disequilibrium decay times 1=r that are
short compared to the time needed to hitchhike, the necessary
condition for the second effect of recombination (i.e. recombina-
tion blocks hitchhiking). The 1D population differs from the well-
mixed one in that there are now 2 different hitchhiking time
scales, corresponding to the 2 regimes of the completely linked
SFS: the long time Tsweep � L=v over which alleles that fix in the
front hitchhike, and the shorter time Tfront / ð1=sÞðq

ffiffiffiffiffiffiffi
ms
p

Þ0:3

(Barton et al. 2013; Birzu et al. 2018) over which alleles that only
temporarily surf in the front can hitchhike. As we move away
from the swept locus on the genome, we expect the uniform por-
tion of the hitchhiking SFS Equation (6) to relax to neutrality first,
at r � v=L, while the intermediate-frequency signal persists until
map distances r � s=ðq

ffiffiffiffiffiffiffi
ms
p

Þ0:3 that are similar to those at which
intermediate-frequency signal vanishes in well-mixed popula-
tions.

Discussion
We have shown that the hitchhiking caused by a selective sweep
in a 1D spatially structured population produces a very different

Fig. 5. Recombination limits hitchhiking more in a 1D population than in a well-mixed one. Panels (a-d) show the expected SFS under increasing values
of the recombination rate r while keeping other parameters fixed. In each panel, the population size N ¼ 107, the selection coefficient s¼0.05, and the
recombination rates r are the same for the simulated 1D (black) and well-mixed (grey) populations. The dark pink shaded regions illustrate the
frequency ranges where both populations’ spectra are close to the neutral expectation, while the light pink shaded regions illustrate where only the 1D
population is. When r falls in between the scales set by the sweep time in a 1D population and the sweep time in a well-mixed population,
v=L� r� s=lnðNsÞ, panels (b) and (c), hitchhiking is weak in the 1D population but strong in the well-mixed one. For the 1D population, L¼ 2,000,
q¼ 5,000, and m¼ 0.25. The pink dashed line shows the neutral SFS (nðf Þ ¼ 2NUn=f ) as in previous figures. The orange dotted line and blue and cyan
dot-dashed lines are similar to those in previous figures but adjusted for the effects of recombination; see Equations (6), (7), and (5), respectively.
Populations were sampled immediately after the end of the sweep.
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expected SFS from that left by hitchhiking in well-mixed popula-
tions. This is true even if the spatial structure is very weak, in the
sense that frequencies of common neutral alleles vary very little
from location to location. The most striking feature of the
expected 1D hitchhiking SFS is its long flat tail, consisting of
mutations that fixed in the wavefront during the sweep and were
carried through much of the population. Intuitively, the underly-
ing difference in the dynamics is that in a spatially structured
population, an allele that begins to hitchhike midway through
the sweep can reach very high frequencies, whereas in a well-
mixed population hitchhiking is largely confined to those alleles
present in the sweeping background very early in the sweep
(Coop and Ralph 2012). Sweeps are also much slower in spatially
structured populations than they are in well-mixed ones, giving
mutation and recombination more time to act. We found that
this makes the overall diversity higher, even at loci completely
linked to the swept locus, and makes the intensity of hitchhiking
decay more rapidly as one moves away from the swept locus
along the genome. The high-frequency (flat) portion of the SFS
relaxes back to the neutral expectation particularly quickly as ge-
netic map distance to the swept locus increases.

The most pressing question is to what extent these effects
might be seen in data from natural populations. For the restric-
tion of hitchhiking to a narrow region of the genome, our results
actually predict an absence of signal relative to a well-mixed pop-
ulation, so this would necessarily be present in natural popula-
tions with 1D spatial structure. Indeed, Tavares et al. (2018) found
that a pair of strong selective sweeps in a structured population
of Antirrhinum majus reduced diversity only in narrow genomic
windows. Since the width of the hitchhiking region on the ge-
nome is used to infer the selective coefficient of the sweep under
the assumption that it is �s=lnðNsÞ, our results suggest that spa-
tial structure should produce a bias toward underestimating the
selective coefficients driving sweeps.

The question of whether the distinctive flat tail of the SFS
should be visible in data is somewhat more subtle. Near any one
swept locus, there will be very little diversity, so the full shape of
the SFS will not be visible; the question is really whether there
are likely to be any mutations found in this frequency range. Let
us first consider the number of new mutations that are expected
to hitchhike to high frequencies in essentially complete linkage
with the sweeping allele. We predict that the expected SFS is
nðf Þ � UnTsweep in this regime. The regime extends over a range of
frequencies of order 1, so n is also roughly the total expected
number of alleles found in this frequency range. It might appear
that the slower the sweep, the more alleles we should see, be-
cause of the factor of the sweep time Tsweep in n. But increasing
Tsweep also decreases the length of the completely linked portion
of the genome, which is �1=Tsweep in Morgans, reducing the mu-
tation rate Un. Let � be the mutation rate per Morgan, which is
typically of order one. Then the locus-wide mutation rate will be
Un � m=Tsweep. We see that the factors of Tsweep approximately
cancel and the total expected number of high-frequency linked
mutations is n � m, so it would be reasonable for many organisms
to find such a mutation. Note that this is higher than the equiva-
lent number for well-mixed populations by a factor �lnðNsÞ,
which might be an order of magnitude.

While one might expect to find a mutation or 2 in the high-
frequency tail of the SFS around a sweep, one expects to find
many more alleles that were introduced by recombination. At the
characteristic map length r � 1=Tsweep of the hitchhiking region,
the recombinant alleles outnumber mutations that occurred dur-
ing the sweep by a factor Un;eff=Un � N=Tsweep � 1. (Here, N is

really the neutral coalescence time Tcoal, i.e. the effective popula-
tion size Ne.) This is mostly because each recombination event
brings in a new haplotype that typically differs from the original
sweeping background at multiple sites; specifically, over the map
distance �1=Tsweep over which linkage disequilibrium is main-
tained during the sweep, they typically differ at �Nm=Tsweep sites.
If instead of alleles we count high-frequency recombinant haplo-
types, we find that the expected number is order one, indepen-
dent of any of the population parameters. Intuitively, this is
because the limits of the region of the genome affected by hitch-
hiking are set by the map distance r � 1=Tsweep at which we ex-
pect to find recombinants that successfully hitchhiked for long
distances. In other words, the hitchhiking typically extends out to
the first high-frequency recombinant in each direction on the ge-
nome from the swept locus. Thus, there will usually be a few
high-frequency haplotypes, but not many more, as at larger map
distances rTsweep � 1 recombination prevents haplotypes from
hitchhiking to high frequencies. Here, the contrast with
well-mixed populations is stark: in a well-mixed population,
hitchhiking is still broken up by successful recombinants occur-
ring midway through the sweep, but there are typically a large
number of these recombinants, each of which barely hitchhikes,
and so only the original haplotype of the sweep reaches high
frequency (Barton 1998; Garud et al. 2015).

Schrider et al. (2015) noted this phenomenon of potential high-
frequency recombinant haplotypes around the selected locus,
calling them the “soft shoulders” of the sweep and suggesting
that they could potentially mislead inference methods into mis-
taking “hard” sweeps descended from a single mutation for “soft”
sweeps descended from multiple independent mutations. But
they only considered well-mixed populations and found that the
soft shoulders could be reliably distinguished from the hard cen-
ter by considering large genomic windows. It is unclear if this
possible in 1D populations, as the soft shoulders are much more
frequent and much closer to the swept locus, as described above.
It is possible that spatial structure may often lead to misidentifi-
cation of hard sweeps as soft. While it is known that misspecified
demography can interfere with sweep inference and distinguish-
ing hard from soft sweeps [see, e.g. Harris et al. (2018)], the effect
of space we have found here is particularly insidious because it is
strong even in populations that appear to be only very weakly
spatially structured by standard measures such as FST.

Recent studies have found evidence for widespread soft
sweeps and few hard sweeps in multiple species (Garud et al.
2015; Schrider and Kern 2017). However, most of these might bet-
ter be termed “firm” sweeps, in that they must have begun from
only a few mutations to be detectable; very soft sweeps with sig-
nificant contributions from dozens or hundreds of mutations
would not leave a strong enough trace. This is a surprising result
in that it suggests some fine-tuning in nature. In standard popu-
lation genetics models, a broad range of parameter space produ-
ces low beneficial mutation supplies and adaptation driven by
hard sweeps, while a similarly broad range of parameter space
produces abundant standing variation and adaptation via mod-
est shifts in allele frequencies. Only a relatively narrow range of
parameters reliably produces a few successful beneficial muta-
tions. This suggests that either there must be some mechanism
that drives populations to the right region of parameter space to
produce firm sweeps, or the apparent prevalence of firm sweeps
may be due to some other factor. For the first option, it may be
that in populations with high levels of standing variation under
selection, interference automatically reduces the number of fit
backgrounds in such a way that the beneficial mutation supply
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effectively becomes of order one. However, to our knowledge,

there is as yet no model demonstrating this. Our results here sug-

gest that spatial structure may be an example of the second op-

tion: a population feature that generically leads hard sweeps to

appear firm.
There are a number of ways that the present work needs to be

extended before we can fully assess the potential importance of

spatial structure to hitchhiking in natural populations. We have

focused on just the expected SFS, but (as shown by the extensive

averaging that we need to do across simulation runs and allele

frequencies; see Appendix A) in any particular sweep, there will

be large amounts of variation around the expectation, particu-

larly at high frequencies. In addition, while have touched on po-

tential haplotype structure here in the Discussion, we have not

explicitly modeled haplotypes and linkage among neutral loci.

This is most likely necessary to find patterns that can distinguish

hard sweeps from soft sweeps in spatially structured popula-

tions; this may be a difficult problem, given that some of the fea-

tures we find are reminiscent of spatial soft sweeps (Ralph and

Coop 2010).
We have only considered a simple 1D stepping-stone model of

spatial structure, but most natural populations are likely to be 2D

and have some long-range dispersal. Both of these are likely to re-

duce the effects of spatial structure on hitchhiking, as they in-

crease the number of individuals that are contributing to the

spread of the sweep at any point in time (Ralph and Coop 2010;

Barton et al. 2013; Hallatschek and Fisher 2014; Fusco et al. 2016;

Paulose and Hallatschek 2020). However, sweeps are still far

slower, and the distribution of reproductive value across individ-

uals carrying the sweeping allele is still far more skewed, than in

a well-mixed population, so we expect some of the qualitative

features of our results to persist. In particular, as long as the dis-

persal distribution is not too broad, it is still true that a single mu-

tant or recombinant arising midway through the sweep can be

the ancestor of a significant fraction of the population, so we still

expect the SFS to have a flatter tail than the well-mixed

nðf Þ / 1=f 2.
These extensions to our analysis are likely to be quite chal-

lenging analytically. For 2D populations with purely short-range

dispersal, the natural starting point would be Fusco et al.’s (2016)

expressions for the distribution of “bubbles” and “sectors,” al-

though one needs to check if they hold beyond the low-density

limit. Alternatively, one could also try simply simulating hitch-

hiking under realistic parameter ranges for natural populations

and measuring the resulting genetic diversity. Unfortunately, we

know little about what the ranges of the relevant parameter val-

ues are in natural populations. The problem is particularly acute

for the parameters related to spatial structure like the density q,

the dispersal rate m, and the pattern of dispersal across space, es-

pecially the frequency and distribution of long-range jumps,

which can determine the sweep dynamics (Ralph and Coop 2010;

Hallatschek and Fisher 2014). This challenge could be potentially

be addressed by first using genomic regions far from putative

sweeps to infer the population structure, and then using this in-

formation to simulate sweeps.

Data availability
All codes for simulation, Jupyter notebook for making the figures,

and simulation data used in the Jupyter notebook are available at

https://github.com/weissmanlab/SFS_spatial_sweep.
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Appendix A: Simulation methods

As described in the Model section above, we use 2-part simula-
tions, first simulating the sweep forward in time, and then simu-
lating coalescence at the neutral locus backward in time
conditional on the sweep. The forward simulations are a stan-
dard stepping-stone Wright–Fisher model. Here, we will briefly
explain the form of the backward simulations. At the start of
each backward simulation, we have n lineages, sampled uni-
formly in space. We follow these backward through time, keeping
track of their spatial location and which background they are on
at the selected locus. (For the values of n used in each figure, see
Table A1.) At the time of sampling, all are necessarily on the
background of the sweeping allele, since the sweep has already
been completed. Let p(x, t) be the sweep trajectory obtained from
the forward simulation; going backward in time, the motion and
coalescence of the lineages depend on this trajectory.

Each backward generation consists of 3 steps: dispersal, re-
combination, and coalescence, in that order. (Although because
all rates are small, we do not expect the precise order to be im-
portant.) In the dispersal step, if a lineage is in the sweeping back-
ground in deme x at time tþ 1, then at time t it will be in deme x,
x–1, or xþ 1 with probabilities:

Pðx! x; tÞ ¼ ð1�mÞpðx; tÞ=Zðx; tÞ
Pðx! x� 1; tÞ ¼ m

2
pðx� 1; tÞ=Zðx; tÞ

Pðx! xþ 1; tÞ ¼ m
2

pðxþ 1; tÞ=Zðx; tÞ;

where Zðx; tÞ ¼ Pðx! x; tÞ þ Pðx! x� 1; tÞ þ Pðx! xþ 1; tÞ is a
normalization factor to ensure that the probabilities sum to one.
For lineages on the ancestral background, the dispersal probabili-
ties are the same but with p replaced by 1� p in all the equations
above. In the recombination step, each lineage that is in the
sweeping background in deme x at time t (“after” dispersal)
moves to the ancestral background with probability rð1� pðx; tÞÞ,
and each lineage in the ancestral background moves to the
sweeping background with probability rpðx; tÞ. In the coalescence
step, 2 lineages that are both in deme x at time t coalesce with
probability 1=ðqpðx; tÞÞ if they are both on the sweeping back-
ground, or probability 1=ðqð1� pðx; tÞÞÞ if they are both on the an-
cestral background. (If one is on the ancestral background and
the other is on the sweeping background, they cannot coalesce.)

For a locus completely linked to the selected locus, the entire
sample must coalesce by the beginning of the sweep, since the
sweep begins with a single mutant individual. For a locus that
can recombine with the selected locus, some lineages may escape
coalescence at the beginning of the sweep, in which case the
sample will usually take far longer to fully coalesce, Tcoal � N.
Simulating this time in full detail would be prohibitive computa-
tionally, and wasteful, since over these long time scales the popu-
lation is effectively well-mixed. Therefore, once the simulations
reach times prior to the beginning of the sweep, t< 0, we continue
them for 3,200 generations to allow them to complete the
“scattering phase” (Wakeley and Aliacar 2001), and then switch
to a simple well-mixed Kingman coalescent until the sample is
fully coalesced. For simulation parameters m¼ 0.25 and L¼ 500,
these 3,200 generations are less than the time Tmix � 106 required
for lineages to disperse all the way across the range, but because
the coalescence time scale Tcoal � N ¼ 107 is even longer we do
not expect that this has a large impact on our results.

Rather than store full coalescent trees for our large samples,
for each simulation, we only keep track of the information we
need to build the SFS across generations. Specifically, each gener-
ation we increment the total branch length ancestral to k sam-
pled individuals, for all k from 1 to n�1.

For every set of parameter values, we run Kforward independent
forward simulations. (Here, Kforward is the number of successful
simulations, not counting the many more where the beneficial
mutant goes extinct without sweeping.) For each forward simula-
tion, we run Kbackward independent backward simulations. All
simulation results presented are averages over these Kforward �
Kbackward runs. The averaging over multiple backward simulations
is particularly important, especially for estimating the spectrum
at high frequencies f, and especially with recombination, as there
can be substantial stochasticity in when the last few lineages co-
alesce. To deal with this further, in these figures, we smooth the
simulation curves by averaging over sliding windows of width Df
for all frequencies f > fsmooth. (Because the lower-frequency por-
tions of the SFS receive many independent contributions from
near the tips of each coalescent tree, they are already nearly de-
terministic and do not need additional smoothing.) The values of
Kforward; Kbackward; fsmooth, and Df for each figure are specified in
Table A1.

For the well-mixed SFS in Fig. 2, we use 2 sets of simulations.
For low frequencies f < 8� 10�4, we need to use a large sample
size n, but as mentioned above we need relatively few simulation
runs. For higher frequencies, we can use a smaller sample size
but must run more simulations. For Fig. A1, we simulate 21 dif-
ferent possible starting locations for the sweep (ranging from
x¼ 0 to x¼ 5,000 in increments of 250). For each of these, we run
5 independent simulations. See Table A1 for the full simulation
settings for both figures.

Appendix B: Measuring wave speed
The speed of the wave of advance of the sweeping allele actually
only reaches v1 ¼

ffiffiffiffiffiffiffiffiffi
2ms
p

in infinitely dense populations. In real
populations with finite density q, fluctuations reduce the speed of
the wave (Brunet and Derrida 1997). For each value of q, we there-
fore measure v directly in a single forward simulation and use
this value in all plots. To do this, we use Barton et al.’s (2013) defi-
nition of the wave speed: vðtÞ ¼ d

dt

Ð
pðt; xÞdx. Since we are inter-

ested in the average speed, not the instantaneous speed of the
wave front, we average v(t) over the middle half of the sweep, dis-
carding the first Tsweep=4 generations to avoid nonequilibrium

Table A1. Additional simulation parameter values.

Figure fsmooth Df Kforward Kbackward Sample
size n

2 and 3, spatial 10�3 3� 10�4 102 103 105

2 and 3, well-mixed
( f < 8� 10�4)

10�3 3� 10�4 10 2 105

2 and 3, well-mixed
( f > 8� 10�4)

10�3 3� 10�4 102 10 104

4 10�3 3� 10�4 102 103 105

5 spatial 7� 10�3 10�2 102 103 104

5a well-mixed 1:5� 10�2 2� 10�2 102 102 104

5b-d well-mixed 7� 10�3 10�2 102 102 104

A1 10�3 6� 10�4 5� 21 103 105

A2 10�3 3� 10�4 102 103 105

In all the listed figures, simulation results are averaged over a sliding window
of width Df for all frequencies f > fsmooth. We run Kforward independent forward
simulations of the sweep. For each of these, we run Kbackward independent
backward simulations of the conditional coalescent process. All simulation
results are the average over all these runs. Sample size n lists the number of
sampled individuals at the start of each backward simulation.
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effects while the wave is first establishing, and discarding the

last Tsweep=4 generations to avoid edge effects as the wave hits

the far boundary of the range. We list the values we obtain for v

in Table B1. They are all within �20% of the limiting value v1, so

these corrections are fairly minor.

Appendix C: Sweeps starting from the
middle of the range
If the sweep starts somewhere in the middle of the range, the

Fisher wave becomes bidirectional. Therefore, neutral alleles can

fix in the left or the right wavefront. The sweep time also depends

on the initial location of the beneficial mutation.
Suppose the beneficial mutation starts at spatial position x at

t¼ 0. Then if a neutral mutation fixes in a wavefront at t ¼ tseed,

the allele frequency after the fixation is roughly f ¼ ðx� vtseedÞ=L

if it is on the left side and f ¼ ðL� l� vtseedÞ=L if it is on the right.

There are different upper bounds for tseed (0 	 tseedx=v for the

left, 0 	 tseedðL� xÞ=v for the right) because the mutation has to

fix before the wave arrives at the boundary. If the probability dis-

tribution of the starting location of the sweep is q(x), the expected

high-frequency tail of the SFS is

nðf Þ ¼ UnL
v

� ðL

Lf
qðxÞdxþ

ðð1�f ÞL

0
qðxÞdx

�
: (8)

In the main text, we assume that the sweep starts in the left-

most deme (qðxÞ ¼ dðxÞ), and therefore get nðf Þ ¼ UnL=v. If the

sweep starts at some other position l, which we can assume with-

out loss of generality to be < L=2, then qðxÞ ¼ dðx� lÞ and we

have:

nðf Þ ¼
2UnL=v if f < l=L
UnL=v if l=L < f < 1� l=L
0 if 1� l=L < f :

8<
: (9)

If we instead consider the SFS averaged over the genomic
neighborhoods of many independent sweeps with starting
positions uniformly distributed over the range, we have qðxÞ ¼
1=L and nðf Þ ¼ ð2UnL=vÞð1� f Þ, as shown in Fig. A1.

Appendix D: Deviation from the uniform
distribution at very high frequencies
Neutral mutations are unlikely to reach very high frequencies
f ! 1 because they take a finite amount of time to fix in the
wavefront, and during this time, the wave advances. We can
therefore estimate at which frequency the simulated expected
SFS starts deviating from the uniform distribution, nðf Þ ¼ UnL=v
by considering how long it takes for a lineage to take over the
wavefront. Using Barton et al.’s (2013) approximation for the
wavefront coalescence time, Tfront � ð3:7=sÞðq

ffiffiffiffiffiffiffi
ms
p

Þ0:30, a neutral
mutation is very unlikely to fix in the first fraction vTfront=L of the
range. In other words, the uniform tail of the SFS should be cut
off at f � 1� vTfront=L. For the parameter values in Fig. 2, this is
f � 1� vTfront=L � 0:8, which roughly agrees with the simulation
results.

Appendix E: SFS from surfing mutations
We want to find an approximate expression for the SFS at inter-
mediate frequencies where it is primarily composed of alleles
that surf in the wavefront before being dropped (Fig. 3). To do
this, we follow the wavefront in the comoving frame, viewing it
as a small population of size Nfront � q

ffiffiffiffiffiffiffiffiffi
m=s

p
. If we imagine trac-

ing out the trajectory of the frequency of the allele in the wave-
front over time, the total frequency in the entire population will
be proportional to the area under this curve (Okada and
Hallatschek 2021). Specifically, suppose that the allele persists in
the wavefront for t generations at a frequency of �y before being
dropped. The total number of copies of the allele will then be
�vtyq, for a total frequency of f � vtyq=ðqLÞ ¼ vty=L.

We now need to approximate the joint distribution of the fre-
quency y that an allele reaches in the wavefront and the time t(y)
for which it surfs conditional on reaching that frequency. Coarse-
graining over the time scale of coalescence in the wavefront
(roughly, the time �1=s for it to travel its own width, up to loga-
rithmic factors; Barton et al. 2013; Birzu et al. 2018), we can treat
the wavefront as having an effective “sweepstakes” offspring dis-
tribution with tail exponent –1 (Okada and Hallatschek 2021).
The typical persistence time then is short and only logarithmi-
cally dependent on y (Okada and Hallatschek 2021). The exact
form of this logarithmic dependence is unclear though, and most
likely it only describes extremely dense populations (Barton et al.
2013; Birzu et al. 2018). Instead, we will follow Barton et al. (2013)
and Birzu et al. (2018) in approximating it with a power law.
Okada and Hallatschek (2021) find that for sweepstakes repro-
duction with tail exponent > �1, the overall coalescence time of
the population scales as a power of the population size, T / Nb

(Schweinsberg 2003), and the typical time for a lineage to reach
n<N copies follows the same power law, t / nb. We guess that
we can extend this pattern to tail exponent ¼ �1. Then Barton
et al.’s (2013) expression Tfront � ð3:7=sÞðq

ffiffiffiffiffiffiffi
ms
p

Þa for the overall co-
alescence time means that the typical persistence time for a line-
age that reaches wavefront frequency y should be

Table B1. Empirically measured wave speeds v that are used to
plot the asymptotic behavior of the tail of SFS (nðf Þ ¼ UnL=v for
Figs. 2 and 4, nðf Þ ¼ Un;effL=v for Fig. 5, and nðf Þ ¼ 2UnLð1� f Þ=v
for Fig. A1).

Figure q v

2, 4 2� 104 0.151
5 5� 103 0.145
A1 200 0.125

For comparison, the infinite-density limiting speed is v1 ¼
ffiffiffiffiffiffiffiffiffi
2ms
p

� 0:158 for
the parameter values m¼ 0.25, s¼0.05 used in the simulations.
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Fig. A1. The tail of the expected SFS when the origin of the sweep is
uniformly sampled from x 2 ½0; LÞ: L ¼ 5001; q ¼ 2� 102;m ¼ 0:25;
s ¼ 0:05;Un ¼ 1. The SFS is measured immediately after the end of the
sweep.
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tðyÞ / ð1=sÞðq
ffiffiffiffiffiffiffi
ms
p

yÞa, with the same exponent a. With this guess,
we can rewrite the allele’s overall frequency f as a function of its
wavefront frequency y:

f � yvt=L

/ yð
ffiffiffiffiffiffiffi
ms
p

Þ 1
s
ðq

ffiffiffiffiffiffiffi
ms
p

yÞa
� �

=L

¼ qa

sL
ðy

ffiffiffiffiffiffiffi
ms
p

Þ1þa;

(10)

up to Oð1Þ numerical factors.
To find the probability P( f ) that an allele reaches overall

frequency f, note that the probability that the allele reaches a
wavefront frequency of at least y is just the standard PðyÞ �
1=ðyNfrontÞ (Okada and Hallatschek 2021). Inverting Equation (10) to
find y in terms of f then gives Pðf Þ / ð

ffiffiffiffiffiffiffi
ms
p

=NfrontÞðqa=ðsLf ÞÞ1=ð1þaÞ.
Differentiating with respect to f, we find the probability density p(f):

pðf Þ /
ffiffiffiffiffiffiffi
ms
p

Nfront

qa

sL

� � 1
1þa

f�
2þa
1þa;

again ignoring Oð1Þ numerical factors. From the density, we can
immediately obtain the SFS nðf Þ by multiplying by the total num-
ber of mutations that occur in the wavefront, which is the prod-
uct of the wavefront mutation supply NfrontUn and the sweep
time Tsweep ¼ L=v:

nðf Þ ¼ NfrontUnðL=vÞpðf Þ

/ Un
Lffiffiffiffiffiffiffi
ms
p

ffiffiffiffiffiffiffi
ms
p qa

sL

� � 1
1þa

f�
2þa
1þa

¼ Un

sf 2 ðNsf Þ
a

1þa;

(11)

where in the last line we have used that the total population size
is N ¼ Lq. We have neglected numerical constants throughout
this argument, so there is an undetermined constant of propor-
tionality. Comparing Equation (11) to simulations, it appears that
this constant is �0:6 (Fig. 3).

To check the accuracy of our guesses and approximations, we
test how well Equation (11) fits simulations over a range of pa-
rameter values. While computational limitations prevent us
from varying the parameters over even an order of magnitude,
the prediction does appear to match well (Fig. A2).
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Fig. A2. The analytical prediction Equation (11) for the SFS produced by
surfing alleles matches simulations over a range of parameter values. All
plots show spectra rescaled by the factor that Equation (11) predicts will
collapse the results. The blue dot-dashed line is the rescaled version of
the prediction shown in Fig. 3, i.e. 0:6=f ð2þaÞ=ð1þaÞ. All other curves are
simulation results. If not specified otherwise, the parameter values are
set to L ¼ 5� 102; q ¼ 2� 104, s¼ 0.05, m¼ 0.25, r¼ 0. All spectra are
measured immediately after the completion of the sweep.
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