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ABSTRACT 
The Omicron BA.1 variant of SARS-CoV-2 escapes convalescent sera and monoclonal antibodies 
that are effective against earlier strains of the virus. This immune evasion is largely a 
consequence of mutations in the BA.1 receptor binding domain (RBD), the major antigenic target 
of SARS-CoV-2. Previous studies have identified several key RBD mutations leading to escape 
from most antibodies. However, little is known about how these escape mutations interact with 
each other and with other mutations in the RBD. Here, we systematically map these interactions 
by measuring the binding affinity of all possible combinations of these 15 RBD mutations (215 = 
32,768 genotypes) to four monoclonal antibodies (LY-CoV016, LY-CoV555, REGN10987, and 
S309) with distinct epitopes. We find that BA.1 can lose affinity to diverse antibodies by acquiring 
a few large-effect mutations and can reduce affinity to others through several small-effect 
mutations. However, our results also reveal alternative pathways to antibody escape that do not 
include every large-effect mutation. Moreover, epistatic interactions are shown to constrain affinity 
decline in S309 but only modestly shape the affinity landscapes of other antibodies. Together with 
previous work on the ACE2 affinity landscape, our results suggest that escape of each antibody 
is mediated by distinct groups of mutations, whose deleterious effects on ACE2 affinity are 
compensated by another distinct group of mutations (most notably Q498R and N501Y).   
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In November 2021, the SARS-CoV-2 Omicron BA.1 variant emerged and quickly rose to high 1 
frequency worldwide, in part due to its ability to escape preexisting immunity1–4.  This immune 2 
escape is mediated by mutations in the receptor binding domain (RBD) of the spike protein, which 3 
is the major target of SARS-CoV-2 neutralizing antibodies5–8. Antibodies targeting the RBD can 4 
bind different epitopes, and they have been grouped into several classes9,10. Some previous 5 
SARS-CoV-2 variants which have a subset of the fifteen mutations found in the BA.1 RBD (e.g. 6 
K417N, N501Y in Beta and T478K, N501Y in Delta) can evade some antibodies of certain epitope 7 
classes but still bind to others11–14. In contrast, BA.1 can escape most antibodies that bind to very 8 
distinct epitopes, including antibodies elicited by previously circulating variants1,15,16.  9 
  10 
Existing studies of SARS-CoV-2 immune escape have focused on measuring the effects of single 11 
mutations (or, in some cases, of a small subset of mutations) on antibody escape in the context 12 
of specific SARS-CoV-2 variants15,17,18. However, simultaneous escape of most antibodies is likely 13 
to require multiple mutations, and it is unclear how these mutations might interact. A large body 14 
of work has demonstrated that the specific combination of mutations in the BA.1 variant can evade 15 
various antibodies of distinct epitopes1,3,15,19. However, the landscape on which this evolution 16 
occurred is not well understood. Do mutations involved in escape from one antibody with a certain 17 
epitope interfere with the effects of those involved in escaping others with different contact sites, 18 
or are the effects largely independent? And how are these effects mediated by epistatic 19 
interactions with other mutations in the RBD? 20 
 21 
As we observed in previous work, several of these antibody-escape mutations also reduce affinity 22 
to ACE2, suggesting that they were positively selected because they contribute to immune 23 
escape20–22. Importantly, epistatic interactions between these mutations dramatically impact 24 
ACE2 affinity and may also differentially impact the escape of antibodies with very different 25 
epitopes23,24. For example, escape from some antibodies like S309 has been difficult to attribute 26 
to specific mutations22,25, perhaps because measurements have so far been limited to single 27 
mutations. These observations suggest that we need to more comprehensively characterize the 28 
role of epistasis and potential trade-offs to understand the simultaneous evolution of escape from 29 
multiple antibodies of distinct epitopes and ACE2 binding affinity.  30 
 31 
Here, to understand how immune pressure may have shaped the evolution of BA.1, we measured 32 
the equilibrium binding affinities (KD, app) of the spike protein RBD to four therapeutic monoclonal 33 
antibodies (mAbs) with distinct RBD epitopes: LY-CoV016, LY-CoV555, REGN10987, and S309, 34 
for all possible evolutionary intermediates between the ancestral Wuhan Hu-1 RBD and the BA.1 35 
variant. This set of antibodies includes the primary epitopes generally covered by therapeutic 36 
mAbs10,16. The first three antibodies are fully escaped by Omicron BA.1, while S309 has reduced 37 
affinity. We find that for each antibody, only a few mutations significantly impact affinity, and these 38 
mutations are largely (but not entirely) orthogonal between the four antibodies. Additionally, we 39 
find that epistasis plays a limited role in determining affinity to antibodies that are fully escaped 40 
by BA.1 but contributes substantially to the reduced affinity for the partially escaped antibody, 41 
S309. Together, this work systematically characterizes how SARS-CoV-2 can evade distinct 42 
RBD-targeted antibodies while maintaining ACE2 affinity.  43 
 44 
RESULTS 45 
In previous work, we generated a combinatorically complete library comprising all possible 46 
intermediates between the ancestral SARS-CoV-2 Wuhan Hu-1 spike protein RBD and the 47 
Omicron BA.1 variant23. The BA.1 RBD differs from Wuhan-1 by fifteen amino acid substitutions, 48 
so this library contains 215 variants containing all possible combinations of these fifteen mutations. 49 
This RBD library is displayed on the surface of yeast, such that each yeast cell expresses a single 50 
variant. Here, we use Tite-Seq (a high-throughput method that integrates flow cytometry and 51 
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sequencing23,26–28; see Supplementary Figure S1A) to measure the equilibrium binding affinities 52 
of all 32,768 variants to four antibodies with different epitopes (LY-CoV016, LY-CoV555, 53 
REGN10987, and S309). The resulting KD, app correlates between biological duplicates and with 54 
isogenic measurements made by flow cytometry (Supplementary Figure S1A, Supplementary 55 
Table S1). 56 
 57 
Of the 32,768 variants in our library, we obtain KD, app for at least ~30,000 variants to each of the 58 
mAbs (32,112 for Ly-CoV016, 30479 for REGN10987, 29892 for CoV555, and 32602 for S309) 59 
after removing variants with poor titration curves (r2 < 0.8 or σ > 1; see Methods). These KD,app 60 
range from 0.1 nM to 1 μM (which is our limit of detection and likely corresponds to nonspecific 61 
binding), with 50% of the variants fully escaping LY-CoV016 (defined as having KD,app above the 62 
limit of detection), 55% fully escaping LY-CoV555, 33% fully escaping REGN10897, and no 63 
variants fully escaping S309 (Figure 1A; see https://desai-lab.github.io/wuhan_to_omicron/ for 64 
an interactive data browser). Escape from LY-CoV016, LY-CoV555, and REGN10897 is 65 
mediated by one or a few strong-effect mutations, with other mutations more subtly impacting 66 
affinity (Figure 1B). In general, strong-effect mutations make substantial contact with the 67 
corresponding antibody. Consistent with previous studies14,16,17,29, these strong-effect mutations 68 
are largely distinct for each antibody, which presumably reflects their non-overlapping footprints 69 
on the RBD (Figure 1C) and suggests that evolution of escape from each antibody can be, to 70 
some extent, orthogonal. 71 
 72 
The picture is more complex for S309, where BA.1 has reduced affinity relative to Wuhan Hu-1, 73 
but ~19% of variants have lower affinity than BA.1. These differences are not attributable to one 74 
or two strong effect mutations (Figure 1A-B). In addition, although most mutations reduce affinity, 75 
three mutations have small positive effects (on average across all backgrounds at the other loci): 76 
S375F for LY-CoV016, E484A and N501Y for REGN10987 (Figure 1B). Intriguingly, each of these 77 
mutations reduces affinity to at least one of the other antibodies, and N501Y significantly improves 78 
binding to ACE2, suggesting a potential role for trade-offs (and/or epistasis that mitigates these 79 
effects on specific backgrounds).  80 
 81 
For each antibody, binding affinities generally decrease as the number of mutations increase 82 
(Figure 1D-G). For LY-CoV016, LY-CoV555, and REGN10897 this trend is observed amongst 83 
variants with and without the large-effect escape mutations (Figure 1D-F). For LY-CoV016, 84 
K417N is sufficient for escape (Figure 1D, green), whereas both LY-CoV555 and REGN10987 85 
require at least two mutations for complete escape. For LY-CoV555, both E484A and Q493R 86 
decrease affinity drastically (1000 and 100-fold, respectively), but only the combination of both 87 
mutations lead to complete escape. Complete escape from REGN10987 also requires two 88 
mutations (N440K and G446S) but the individual effects of these mutations are more subtle 89 
(reducing affinity by 10 and 5-fold, respectively). For S309, affinity declines after a few mutations 90 
and in some backgrounds increases upon further mutation, suggesting that interactions between 91 
these mutations are important in determining affinity (Figure 1G). 92 
 93 
Mostly orthogonal large-effect mutations 94 
We first focused on analyzing how mutations and combinations of mutations lead to complete 95 
escape (defined as KD,app above our limit of detection) for specific sets of antibodies. To do so, we 96 
analyze the enrichment of specific mutations among non-binders (Figure 2A). We find a largely 97 
orthogonal set of one or two mutations are enriched among variants that do not bind each 98 
antibody: almost all variants that do not bind LY-CoV016 contain K417N, almost all variants that 99 
do not bind REGN10987 contain G446S and many also contain N440K, and E484A and Q493R 100 
are highly enriched among variants that do not bind LY-CoV555. This suggests that the RBD can 101 
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evolve to independently escape antibodies with each distinct epitope and mutations can to some 102 
extent act independently on binding to each antibody. 103 
 104 
To analyze this further, we calculate the percentage of genetic backgrounds on which each 105 
mutation leads to complete escape from a specific antibody (i.e. that mutation converts a variant 106 
with measurable KD,app to a KD,app above our limit of detection). We see that for each antibody, one 107 
or two mutations abrogate binding. These sets of mutations are largely orthogonal among 108 
antibodies (Figure 2B), consistent with the enrichment analysis (Figure 2A). Specifically, K417N 109 
always abrogates binding to LY-CoV016, G446S and N440K often abrogate binding to 110 
REGN10987, and E484A and Q493R often abrogate binding to LY-CoV555.  111 
 112 
However, we note that this orthogonality is not complete. For example, G446S is slightly enriched 113 
among LY-CoV555 binders, while mutation E484A is slightly depleted among variants that do not 114 
bind REGN10987 (Figure 2A). Consistent with this, G446S sometimes abrogates binding to LY-115 
CoV555 (Figure 2B). In addition, some apparently smaller-effect mutations can be involved in 116 
abolishing binding to multiple antibodies. For example, S375F is weakly enriched among variants 117 
that do not bind REGN10987 and LY-CoV555 and often abrogates binding to these two 118 
antibodies, with G496S, Q498R, and N501Y also playing a role.  119 
 120 
To summarize how these different mutations can act individually or in combination to lead to 121 
antibody escape, we inferred a decision tree to classify variants as binders or non-binders. To do 122 
so, for each antibody we calculate the mutation that maximally partitions the variants into binders 123 
or non-binders. If this partitioning is not perfect, we then calculate the second mutation that 124 
maximally partitions the variants conditional on each possible state of the first site. We then 125 
proceed to further partition variants based on additional mutations in the same way, until the 126 
variants are perfectly partitioned or no further mutations can significantly improve the partitioning 127 
(see Methods). We show the corresponding decision trees for LY-CoV016, REGN10987, and LY-128 
CoV555 in Figures 2C, D, and E respectively. As expected, the tree associated with LY-CoV016 129 
is very simple: the mutation K417N perfectly partitions the variants into binders and non-binders. 130 
In contrast, the trees for REGN10987 and LY-CoV555 have more complex structures, reflecting 131 
the fact that it is possible to abrogate affinity to these antibodies via multiple distinct combinations 132 
of mutations. For example, variants can escape REGN10987 by acquiring G446S and N440K 133 
(100%), or alternatively, with S375F and G446S (77%, as additional mutations are also required). 134 
For LY-CoV555, different sets of mutations can lead to escape (e.g. Q493R and G446S or E484A 135 
and S375F), and G496S can help or hinder escape depending on the presence of other mutations. 136 
Some of the mutations resulting in LY-CoV555 escape partially overlap with those for 137 
REGN10987 (i.e. they are not fully orthogonal), suggesting that selection pressure from one 138 
antibody could promote subsequent escape of another.  139 
  140 
Inference of epistatic affinity landscapes 141 
In addition to large-effect mutations which lead to complete escape of specific antibodies, a variety 142 
of other sites contribute to more subtle but potentially important changes in binding affinities. To 143 
analyze these subtle effects as well as the large-effect mutations leading to escape, we defined 144 
a linear model for -log(KD, app) as the sum of single (additive) mutational effects plus interaction 145 
terms up to a specified order (note that because -log(KD, app) is proportional to the free energy of 146 
binding, we expect it to behave additively in the absence of epistatic interactions). Because non-147 
binding variants have -log(KD, app) beyond our limit of detection, we fit a Tobit model (a class of 148 
regression model capable of handling truncated measurements, see Methods for details) using 149 
maximum likelihood with an L2-norm Lasso regularization. Specifically, we partition our data into 150 
training (90%) and test (10%) sets and use the training dataset to fit epistatic coefficients to a 151 
linear model truncated at each order (e.g. truncating to first-order yields additive mutational 152 
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effects, second-order includes both additive effects and pairwise terms, and so on). We then 153 
evaluate performance (as the coefficient of variation) of each model on the held-out test dataset, 154 
and compare the model performance using -log(KD, app) for each of the antibodies and ACE2 155 
(Figure 3A). 156 
 157 
We find that adding epistatic interactions improves the predictive power of the model for all four 158 
antibodies as well as for binding to ACE2, though the optimal order varies (Figure 3A). This 159 
indicates that epistasis does play a significant role in all cases (up to second order for 160 
REGN10987, to third order for LY-CoV555, and to fourth or higher order for LY-CoV016, S309, 161 
and ACE2). The additive, pairwise, and higher-order coefficients resulting from these models are 162 
summarized in Supplementary Figure S2. In general, we find many strong interactions across 163 
several positions in each antibody, involving both the sites that strongly determine escape variants 164 
for that antibody (e.g. between N440K and G446S for REGN10987) as well as others.  165 
 166 
Notably, we find that the higher-order epistasis plays a much stronger role in determining affinity 167 
for ACE2 than for the three antibodies fully escaped by BA.1 (Figure 3B). This reflects the impact 168 
of a few strong-effect mutations in determining affinity for LY-CoV555, LY-CoV016, and 169 
REGN10987, and the role of compensatory epistasis in determining ACE2 affinity. In other words, 170 
while epistasis is relevant for all measured phenotypes, antibody escape is more simply 171 
determined by the additive effects of individual mutations, while maintaining ACE2 affinity involves 172 
more complex epistatic interactions.  173 
 174 
High-order epistatic interactions are also important in determining affinity to S309. In Figure 3C 175 
we highlight four neighboring mutations (G339D, S371L, S373P, and S375F) which interact non-176 
additively to produce the reduction in affinity observed in BA.1 relative to Wuhan Hu-1. Each of 177 
these mutations weakly reduces affinity on their own, and specific combinations of these 178 
mutations can reduce affinity by up to two orders of magnitude, but the reduction in affinity 179 
resulting from all four mutations is less than some sets of three mutations. These patterns emerge 180 
from a complex set of high-order epistatic interactions among the mutations. For example, S371L 181 
reduces affinity on the Wuhan Hu-1 background but increases affinity on the background 182 
containing G339D, S373P, and S375F (and without S375F, S371L increases affinity in the 183 
presence of S373P if G339D is absent but not if it is present). Thus, some variants lacking S371L 184 
evade S309 more effectively than BA.1, and interestingly we note that this mutation is absent in 185 
BA.2 and BA.3 and replaced instead by S371F.  186 
 187 
Tradeoffs between antibody and ACE2 affinities 188 
In previous work, we found that antibody escape mutations (as defined in earlier studies) typically 189 
reduce ACE2 affinity, suggesting that viral evolution is constrained by a tradeoff between immune 190 
evasion and the ability to enter host cells. Consistent with this, we find here that variants that 191 
escape one or more antibodies (as defined by the data reported in this work) but have few 192 
additional mutations have reduced ACE2 affinity relative to Wuhan Hu-1. However, as additional 193 
BA.1 mutations are accumulated, the ACE2 binding affinity tends to increase until it exceeds the 194 
Wuhan Hu-1 value even in the presence of multiple antibody escape mutations (Figure 4A). This 195 
suggests that the evolution of the BA.1 variant is driven both by immune escape and the need for 196 
compensatory mutations that mitigate the negative effects of the escape mutations on ACE2 197 
binding.  198 
 199 
The strength of this tradeoff and the potential importance of compensatory evolution is distinct 200 
between the different antibodies (Figure 4B,C). For example, escape from LY-CoV016 or LY-201 
CoV555 reduces ACE2 binding affinity in the absence of compensatory mutations (Q498R and 202 
N501Y), but not in their presence (Figure 4B). In contrast, REGN10987 escape does not strongly 203 
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reduce affinity to ACE2, whether or not Q498R and N501Y are present. However, this tradeoff is 204 
likely relevant overall, as escaping all three antibodies substantially reduces ACE2 affinity in the 205 
absence of Q498R and N501Y, while the reduction in ACE2 affinity is minimal in their presence. 206 
Consistent with this general picture, the frequency of most escape mutations (G446S, E484A, 207 
and Q493R) is higher across the SARS-CoV-2 phylogeny in the presence of compensatory 208 
mutations (Figure 4D), though we note that this is not universally true (e.g. the frequency of N440K 209 
is only slightly higher in the presence of compensatory mutations, and the frequency of K417N is 210 
lower with the compensatory mutations). 211 
 212 
Although antibody escape mutations do tend to reduce ACE2 affinity, antibody binding affinity 213 
(but not complete escape) is not strongly correlated with ACE2 affinity (Figure 4C). The details of 214 
this relationship vary by antibody. For LY-CoV016 and LY–CoV555, there is a weak overall 215 
positive correlation (i.e. lower antibody affinity also tends to correspond to reduced ACE2 affinity). 216 
However, this correlation is dominated by the variants that lack the compensatory mutations at 217 
sites 498 and 501; in the presence of Q498R and N501Y the correlation largely disappears. For 218 
REGN10987, there is a similar weak overall positive correlation, which is less dependent on 219 
Q498R and N501Y. Finally, for S309, there is essentially no correlation regardless of whether 220 
compensatory mutations are present. In other words, for this antibody it appears possible to 221 
evolve reduced affinity (at least to the extent seen in BA.1) without compromising ACE2 binding. 222 
We also note that while compensatory mutations Q498R and N501Y largely drive the variance in 223 
ACE2 affinity, they minimally impact antibody binding affinities.  224 
 225 
DISCUSSION 226 
Overall, we find that BA.1 escape from LY-CoV016, LY-CoV555, and REGN10987 is driven by a 227 
relatively small set of mutations: K417N for LY-CoV016, N440K and G446S for REGN10987, 228 
E484A and Q493R for LY-CoV555. These mutations have largely orthogonal effects on affinity to 229 
the three antibodies, suggesting that the evolution of escape to each can occur independently, as 230 
might be expected given the distinct epitopes they target9,16,18.  231 
 232 
However, despite these largely orthogonal effects of large-effect mutations on antibody escape, 233 
we do observe limited trade-offs between LY-CoV016 and LY-CoV555 and between LY-CoV555 234 
and REGN10987, with three mutations (S375F, K417N, and E484A) improving affinity to one 235 
antibody and reducing affinity to another. These positive effects are modest compared to the 236 
reductions in affinity caused by other mutations. In fact, for all antibodies studied here, outside of 237 
a few large-effect mutations that abrogate or nearly abrogate binding, most mutations weakly 238 
impact binding affinity and, even collectively, are insufficient to abrogate it. 239 
 240 
In contrast to the orthogonality of antibody escape, trade-offs between binding ACE2 and 241 
escaping antibodies are much stronger. While the mutations with a small effect on antibody 242 
escape are mostly uncorrelated to ACE2 affinity, the strong-effect mutations substantially reduce 243 
ACE2 affinity.  Thus, ACE2 affinity is lower for variants that escape a larger number of antibodies, 244 
unless compensatory mutations are acquired, suggesting that these compensatory mutations 245 
potentiated the establishment of the antibody escape mutations23,30.  246 
 247 
We also find that epistatic interactions are important in determining antibody affinity. This is 248 
particularly true for S309. Prior to this work, the reduced affinity of S309 to Omicron could not be 249 
attributed to specific mutations16,25. Here, we find that this ambiguity can be resolved by examining 250 
higher-order interactions between mutations, as the reduction in affinity is attributable to a fourth-251 
order epistatic interaction. This finding suggests that the potential for future SARS-CoV-2 lineages 252 
to escape S309 and similar antibodies could depend on epistatic interactions between emerging 253 
mutations. 254 
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 255 
We note that our study focuses only on binding affinities, which may not always perfectly reflect 256 
viral escape from antibody neutralization31,32. In particular, some of the binding affinities we 257 
measure could be too weak to be physiologically relevant, and mutations may impact 258 
neutralization without impacting binding affinity significantly. However, because neutralization 259 
cannot occur in the absence of affinity, our measurements are likely to be relevant for 260 
understanding the reduced sensitivity of BA.1 to these antibodies. We also note that practical 261 
constraints limit us to studying four antibodies. This limits the generalizability of our results, 262 
particularly in light of previous structural studies which have revealed more epitopes bound by 263 
mAbs.  264 
 265 
In spite of these limitations, our binding affinity landscapes reveal that BA.1 can escape diverse 266 
antibodies by acquiring a few large-effect mutations and can reduce affinity to others by 267 
accumulating several small-effect mutations. For the first three antibodies, one or two mutations 268 
are sufficient for total escape. However, in some cases, additional mutations can restore affinity, 269 
and in others, specific combinations of large and small-effect mutations can abrogate affinity. 270 
Thus, despite the seemingly simple landscape of antibody escape, there are alternative, more 271 
intricate pathways that can abrogate affinity. In contrast, for the S309 antibody, four mutations 272 
drive the decline in affinity yet are also involved in higher-order epistatic interactions that 273 
counteract this decline. This epistasis results in an affinity threshold, beyond which additional 274 
mutations do not reduce affinity. 275 
 276 
Predicting the future evolution of the Omicron lineage will require determining how these affinity 277 
landscapes translate to immune evasion, how antibody affinity landscapes vary within a class or 278 
epitope group, and how mutations beyond this set may further enhance immune evasion. For 279 
example, neutralization assays with minimally mutated genotypes would confirm whether the 280 
strong-effect mutations are indeed sufficient for escape. Further, assessing affinity landscapes 281 
for additional antibodies with similar epitopes would reveal how the landscape structure varies 282 
within such a group, and whether there are general features that we can extrapolate to 283 
unmeasured sequences. Finally, integrating these combinatorial libraries with saturating 284 
mutagenesis approaches would reveal how the evolvability of this lineage changes over time, and 285 
what additional mutations – such as those in BA.2, BA.4, or BA.5 – might confer further immune 286 
escape. Looking beyond the Omicron lineage, such approaches could provide more general 287 
insight into how mutations in SARS-CoV-2 may result in host-range expansion or antigenic 288 
evolution.  289 
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METHODS 290 
Yeast display plasmid, strains, and library production 291 
We used the same library and strains as produced in Moulana et al23. In brief, to generate clonal 292 
yeast strains for the Wuhan Hu-1 and Omicron BA.1 variants, we cloned the corresponding 293 
RBD gblock into a pETcon vector via Gibson Assembly. We then extracted and transformed 294 
Sanger-verified plasmids into the AWY101 yeast strain (kind gift from Dr. Eric Shusta)33 as 295 
described in Gietz and Schiestl34. To produce the RBD variant library, we employed a Golden 296 
Gate combinatorial assembly strategy. We constructed full RBD sequences from five sets of 297 
dsDNA fragments of roughly equal size. Each set contains versions of the fragments that differ 298 
by the mutations included. Following bacterial transformation of this Golden Gate assembly 299 
product, we extracted and transformed the library into AWY101 yeast strain, from which we 300 
inoculated and froze a library containing obtained ∼1.2 million colonies. 301 
 302 
High-throughput binding affinity assay (Tite-Seq) 303 
We performed Tite-seq assay as previously described20,23,26,27, with two replicates for each 304 
antibody (LY-CoV016, LY-CoV555, REGN10987, and S309 [Genscript, Gene-to-Antibody 305 
service]) assay on different days, for a total of eight assays.  306 
 307 
Briefly, we thawed yeast RBD library and the Wuhan Hu-1 and Omicron BA.1 strains by 308 
inoculating the corresponding glycerol stocks in SDCAA (6.7  g/L YNB without amino acid [VWR  309 
#90004-150], 5 g/L ammonium sulfate [Sigma-Aldrich #A4418], 2% dextrose [VWR #90000–310 
904], 5 g/L Bacto casamino acids [VWR #223050], 1.065 g/L MES buffer [Cayman Chemical, 311 
Ann Arbor, MI, #70310], 100 g/L ampicillin [VWR # V0339])at 30°C for 20 hr. The cultures were 312 
then induced in SGDCAA (6.7  g/L YNB without amino acid [VWR #90004-150], 5 g/L 313 
ammonium sulfate [Sigma-Aldrich #A4418], 2% galactose [Sigma-Aldrich #G0625], 0.1% 314 
dextrose [VWR #90000–904], 5 g/L Bacto casamino acids [VWR #223050], 1.065 g/L MES 315 
buffer [Cayman Chemical, Ann Arbor, MI, #70310], 100 g/L ampicillin [VWR # V0339]), and 316 
rotated at room temperature for 16–20 hr. 317 
 318 
Following overnight induction, we pelleted, washed (with 0.01% PBSA [VWR #45001–130; 319 
GoldBio, St. Louis, MO, #A-420–50]), and incubated the cultures with monoclonal antibody at a 320 
range of concentrations (10-6 to 10-12 with 0.75-log increments for CoV555, 10-7 to 10-12 with 0.5-321 
log increments for S309, 10-6 to 10-12.7 with 0.75-log increments for REGN10987, 10-6 to 10-12 322 
with 0.75-log increments for SB6). The yeast-antibody mixtures were incubated at room 323 
temperature for 20 hr. The cultures were then pelleted washed twice with PBSA and 324 
subsequently labeled with PE-conjugated goat anti-human IgG (1:100, Jackson 325 
ImmunoResearch Labs #109-115-098) and FITC-conjugated chicken anti-cMmyc (1:100, 326 
Immunology Consultants Laboratory Inc., Portland, OR, #CMYC-45F). The mixtures were 327 
rotated at 4°C for 45 min and then washed twice in 0.01% PBSA. 328 
 329 
Sorting, recovery, and sequencing library preparation followed Moulana, et al23. In short, we 330 
sorted ~1.2 million yeast cells per concentration, gated by FSC vs SSC and then by expression 331 
(FITC) and/or binding fluorescence (PE) on a BD FACS Aria Illu. The machine was equipped 332 
with 405 nm, 440 nm, 488 nm, 561 nm, and 635 nm lasers, and an 85 micron fixed nozzle. 333 
Sorted cells were then pelleted, resuspended in SDCAA, and rotated at 30℃ until late-log phase 334 
(OD600 = 0.9-1.4). The cultures were then pelleted and stored at -20℃ for at least six hours 335 
prior to extraction using Zymo Yeast Plasmid Miniprep II (Zymo Research # D2004), following 336 
the manufacturer’s protocol. The sequencing amplicon libraries were then prepared by a two-337 
step PCR as previously described23,27,35. In brief, we added to the amplicon unique molecular 338 
identifies (UMI), inline indices, and partial Illumina adapters through a 7-cycle PCR which 339 
amplifies the RBD sequence in the plasmid. We then used the cleaned product from the first 340 
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PCR in the second PCR to append Illumina i5 and i7 indices accordingly (see 341 
https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files 342 
for primer sequences). The products were then cleaned using 0.85x Aline beads, verified using 343 
1% agarose gel, quantified on Spectramax i3, pooled, and verified on Tapestation 5000HS and 344 
1000HS. Final library was quantitated by Qubit fluorometer and sequenced on Illumina Novaseq 345 
SP, supplemented with 10% PhiX. 346 
 347 
Sequence data processing 348 
Following Moulana et al.23, we processed raw demultiplexed sequencing reads to identify and 349 
extract the indexes and mutational sites. Briefly, for each antibody, we utilized a snakemake 350 
pipeline (https://github.com/desai-lab/omicron_ab_landscape) to parse through all fastq files and 351 
group the reads according to inline indices, UMIs, and sequence reads.  We accepted 352 
sequences based on criteria previously determined (10% bp mismatches) and converted 353 
accepted sequences into binary genotypes (‘0’ for Wuhan Hu-1 allele or ‘1’ for Omicon BA.1 354 
allele at each mutation position). Reads containing errors at mutation sites were removed. 355 
Finally, the pipeline collated genotype counts based on distinct UMIs from all samples into a 356 
single table.  357 
 358 
We fit the binding dissociation constants KD,app for each genotype as previously described23,27. 359 
Briefly, using sequencing and flow cytometry data, we calculated the mean log-fluorescence of 360 
each genotype 𝑠 at each concentration 𝑐, as follows: 361 

𝐹&!,# 	= 	∑ 𝐹$,# 	𝑝$,!|#$ , 362 
where 𝐹$,# is the mean log-fluorescence of bin 𝑏 at concentration 𝑐, and 	𝑝$,!|# is the inferred 363 
proportion of cells from genotype s that are sorted into bin 𝑏 at concentration 𝑐, which is 364 
estimated from the read counts as: 365 

	𝑝$,!|# =
!",$,%

∑ !",$,%'
&",%

∑ (
!",$,%

∑ !",$,%'
&",%)"

 , 366 

Here, 𝑅$,!,# represents the number of reads from genotype s that are found in bin 𝑏 at 367 
concentration 𝑐, and  𝐶$,# refers to the number of cells sorted into bin 𝑏 at concentration 𝑐. 368 
 369 
We then computed the uncertainty for the mean log-fluorescence: 370 

𝛿𝐹&!,# 	= /∑ (	𝛿𝐹$,#*$ 	𝑝$,!|#* +	𝐹$,#* 𝛿𝑝$,!|#* )  371 

where 𝛿𝐹$,# is the spread of the log fluorescence of cells sorted into bin 𝑏 at concentration 𝑐. 372 
The error in 𝑝$,!|# emerges from the sampling error, which can be approximated as a Poisson 373 
process, such that: 374 

𝛿𝑝$,!|# =
+",$|%
,-",$,%

. 375 
 376 
Finally, we inferred the binding dissociation constant (KD,s) for each variant by fitting the 377 
logarithm of Hill function to the mean log-fluorescence	𝐹&!,#, as a function of concentrations 𝑐: 378 

𝐹&!,# =𝑙𝑜𝑔./ (
#

#01),$
𝐴! + 𝐵!) , 379 

where 𝐴! is the increase in fluorescence at antibody saturation, and 𝐵! is the background 380 
fluorescence level. The fit was performed using the curve_fit function in the Python package 381 
scipy.optimize. Across all genotypes, we imposed bounds on the values of 𝐴! to be 10²-10⁶, 𝐵! 382 
to be 1-10⁵, and KD,s to be 10⁻¹⁴-10⁻⁵. We then averaged the inferred KD,s values across the two 383 
replicates for each antibody after removing values with poor fit (𝑟* < 0.8 or standard error > 1). 384 
Variants were defined as non-binders if the difference between the maximum and the minimum 385 
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of their estimated log-fluorescence over all concentrations was lower than 1 (in log-fluorescence 386 
units). This value was set by measuring the distribution for known non-binders (see 387 
Supplementary Figure S3). 388 
 389 
Isogenic measurements for validation 390 
We validated our high-throughput binding affinity method by measuring the binding affinities for 391 
the Wuhan Hu-1 and Omicron BA.1 RBD variants. For each isogenic titration curve, we followed 392 
the same labeling strategy as in Tite-seq, titrating each antibody at concentrations ranging from 393 
10⁻12-10⁻7 M (with increments of 0.5 for the first replicate and 1 for the second one) for isogenic 394 
yeast strains that display only the sequence of interest. The mean log fluorescence was 395 
measured using a BD LSR Fortessa cell analyzer. We directly computed the mean and 396 
variances of these distributions for each concentration and used them to infer the value of KD,app 397 
using the formula shown above.  398 
 399 
Decision trees on loss-of-binding mutations 400 
To summarize mutations that drive the loss of binding (escape) for each antibody, we 401 
constructed a decision tree using package rpart in R36 with its default parameters. In brief, for 402 
each antibody (except for S309 where every sequence binds the antibody), we first categorized 403 
each genotype into a binary parameter with values ‘binding’ or ‘non-binding’. Then, the function 404 
rpart splits the tree based on any one of the fifteen mutations by minimizing the Gini impurity for 405 
the binding parameter. The method continues to partition the tree if the cost complexity 406 
parameter (cp) of the split does not drop below 0.01. This parameter is the sum of all 407 
misclassifications (binding vs. non-binding) at every terminal node (analogous to residual sum of 408 
squares in regression), added by the product between the number of splits (analogous to 409 
degree of freedom) and a penalty term inferred through cross-validation performed by the rpart 410 
algorithm. The tree is then presented in Figure 2 using `ggparty` package37. 411 
 412 
Epistasis analysis 413 
We used a linear model where the effects of combinations of mutations sum to the phenotype of 414 
a sequence. The logarithm of the binding affinity log𝐾2,344 is proportional to change in free 415 
energy. Thus, without epistatic interactions, the effects of mutations are expected to combine 416 
additively38,39. However, some phenotypic values log𝐾2,344 are unavailable in our dataset due to 417 
the upper limit of the assay concentration. We are unable to precisely determine 𝐾2,344 for the 418 
low-affinity (or non-binding) variants, especially when the true -log𝐾2,344 < 6.0	(the highest log-419 
concentration used). To deal with this problem, we supplemented our linear model with a 420 
boundary, following tobit left-censored model. In this model, the −log𝐾2,344 phenotype is 421 
measured as 6.0 for all values lower than 6.0. Thus, the full K-order model can be written as: 422 

−log𝐾5,!∗ = 	𝛽/ +EE𝛽#𝑥#,!

	

#∈&*

1

9:.

+ 𝜖!	 423 

where 𝐶9 contains all H;9I combinations of size 𝑖 of the mutations and 𝑥#,! equal to 1 if the 424 
sequence 𝑠 contains all the mutations in 𝑐 and to 0 otherwise. Here, − log𝐾5,! = −log𝐾5,!∗  if 425 
−log𝐾5,!∗ > 6 and − log𝐾5,! = 6 if −log𝐾5,!∗ ≤ 6 . Then, following the tobit model approach, we 426 
compute the likelihood function to infer coefficient parameters 𝛽M<;=, given by: 427 
  428 
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ℒ(𝛽, 𝜎) = 	QR
1
𝜎
𝜑U

𝑦> − (𝛽/ +∑ ∑ 𝛽#𝑥#,!)	
#∈&*

1
9:.

𝜎
WX

?(@+)

R1
A

>:.

429 

−ΦU
(𝛽/ + ∑ ∑ 𝛽#𝑥#,!)	

#∈&*
1
9:. − 6

𝜎
WX

.B?(@+)

	 430 

 431 
where 𝑦> = − log𝐾2,344,>, and 𝜑 and Φ denote the standard normal cumulative distribution 432 

function and probability density function, respectively. Moreover, note that 𝐼(𝑦) = [ 0	if	𝑦 ≤ 6
1	otherwise

. 433 
This optimization problem would include coefficients that are associated with the loss-of-binding 434 
phenotypes. Consequently, by the model, these coefficients do not have lower bounds and the 435 
optimization would have resulted in deflated coefficients offset by inflated higher-order 436 
coefficients, or vice-versa. To resolve this problem, we add a lasso regularization term in the 437 
form of 𝜖	∑|𝛽#| to the likelihood, with 𝜖 = 0.01. This term is small enough to reduce the 438 
magnitude of constrained coefficients but act as intended on the non-constrained ones. To 439 
maximize the log-likelihood function, which is a concave function, we used the optimize module 440 
in the scipy package, with the BFGS gradient-descent method. 441 
 442 
Structural analysis  443 
We used the reference structure of a 2.79 Å cryo-EM structure of Omicron BA.1 complexed with 444 
(PDB ID: 7WPB). The contact surface area is determined by using ChimeraX40 to measure the 445 
buried surface area between ACE2 and each mutated residue in the RBD (measure buriedarea 446 
function, default probeRadius of 1.4Å), whereas distance between α-carbons is measured using 447 
PyMol41. 448 
 449 
Force directed layout 450 
The high-dimensional binding affinity landscape can be projected in two dimensions with a 451 
force-directed graph layout approach (see https://desai-lab.github.io/wuhan_to_omicron/). Each 452 
node corresponds to each sequence in the library, connected by edges to a neighbor that differs 453 
in one single site. For each antibody, an edge between two sequences 𝑠 and 𝑡 is given the 454 
weight: 455 

𝑤!,C =
1

0.01 + | log𝐾5,! − log𝐾5,C|
 456 

 457 
Additionally, we also constructed a different layout that includes affinities to all antibodies, where 458 
the weight between two sequences depends on the sum over the antibodies of the difference 459 
between their affinities: 460 
 461 

𝑤!,C =
1

0.01 + ∑ | log𝐾5,D,! − log𝐾5,D,C|D∈E
 462 

 463 
where 𝐴 is the set of antibodies we used. In a force-directed representation, the edges pull 464 
together the nodes they are attached to proportional to the weight given to each edge. In our 465 
scenario, this means that nodes with a similar genotype (a few mutations apart) and a similar 466 
phenotype (binding affinity or total binding affinity) will be close to each other in two dimensions. 467 
 468 
Importantly this is not a “landscape” representation: the distance between two points is 469 
unrelated to how easy it is to reach one genotype from another in a particular selection model. 470 
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Practically, after assigning all edge weights, we use the layout function layout_drl from the 471 
Python package iGraph, with default settings, to obtain the layout coordinates for each variant. 472 
 473 
Genomic data 474 
To analyze SARS-CoV-2 phylogeny, we used all complete RBD sequences from all SARS-CoV-475 
2 genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) 476 
repository42–44 with the GISAID Audacity global phylogeny (EPI_SET ID: EPI_SET_20220615uq, 477 
available on GISAID up to June 15, 2022, and accessible at 478 
https://doi.org/10.55876/gis8.220615uq) . We pruned the tree to remove all sequences with 479 
RBD not matching any of the possible intermediates between Wuhan Hu-1 and Omicron BA.1 480 
and analyzed this tree using the python toolkit ete345. We measured the frequency of each 481 
mutation by counting how many times it emerges in the tree, normalized by the total 482 
occurrences of other mutations. For frequency with Q498R and N501Y, we counted the 483 
occurrence of each mutation only on branches that already contains Q498R and N501Y and 484 
normalized similarly. 485 
 486 
Statistical analyses and visualization 487 
All data processing and statistical analyses were performed using R v4.1.046 and python 488 
3.10.047. All figures were generated using ggplot248 and matplotlib49.  489 
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FIGURES 
 

 
Figure 1. Antibody affinity landscape. (A) Binding affinities to one antibody from each class 
(LY-CoV016, LY-CoV555, REGN10987, and S309, from classes 1-4, respectively) across all 
N=32,768 RBD genotypes tested. Binding affinities are shown as -logKD,app; vertical blue and 
red dashed lines indicate the -logKD,app for Wuhan Hu-1 and Omicron BA.1, respectively. ‘NB’ 
denotes non-binding (escape). (B) Mean effect of each mutation on antibody and ACE2 affinity 
(defined as the change in -logKD,app resulting from mutation) plotted with contact surface area 
between each residue and each antibody. Mutations are colored by footprint highlighted in (C). 
(C) Structure of SARS-CoV-2 BA.1 RBD with each antibody footprint annotated (PDB ID 7KMG, 
6WPT, 7C01, 6XDG). Residues with overlapping footprints are colored and labeled accordingly.  
(D-G) Distribution of binding affinities to different antibodies grouped by number of Omicron 
BA.1 mutations. Binding affinity of the Wuhan Hu-1 variant is indicated by horizontal dashed 
lines. Variants with antibody escape mutations of interest are colored as noted in each key. NB 
denotes non-binding (escape). 
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Figure 2. Escape mutations and genotypes. (A) Fraction of antibody-escaping genotypes 
with each mutation  (B) Fraction of variants for which a given mutation confers antibody escape. 
Effects are colored as in (A). (C-E) Decision trees of escape phenotype for each antibody 
modeled as a function of the mutations present. Each leaf is annotated by the proportion of the 
genotypes that escape the corresponding antibody (red: escape, blue: does not) and by 
corresponding affinity distribution. NB denotes non-binding. 
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Figure 3. Epistastic effects on antibody binding. (A) Correlation coefficients between the 
measured values of -log(KD,app) and the model estimate for various orders of epistatic models. 
Correlations are computed on the hold-out subset averaged over 10 folds of cross-validation. 
zoomed-in version for orders 3 to 6. (B) Binding affinities predicted by complete coefficients 
from the optimum epistasis model are compared to the measured binding affinities for each 
antibody. Points are colored by mutations present in the genotypes, ‘N’ corresponds to 
nonbinding genotypes. The accuracy measures the quality of the binary classification between 
binders and non-binders and the coefficient of determination R² refer to the correlation between 
inferred and measured binding affinities, excluding non-binders. (C) Effects of mutations 
G339D, S371L, S373P, and S375F on S309 affinity grouped by the presence of each mutation. 
Each violin color corresponds to the number of mutations considered. Dashed line color denotes 
the average effect for each group represented by the violin color.  
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Figure 4. Trade-offs and comparison with ACE2 affinity. (A) Distribution of ACE2 binding 
affinity grouped by number of BA.1 mutations and the number of monoclonal antibodies 
escaped.  (B) ACE2 affinity distribution grouped by antibodies escaped and the presence of 
compensatory mutations (N501Y and Q498R). (C)  Affinities to monoclonal antibodies plotted as 
a function of the ACE2 affinity for all genotypes. Points are colored by presence of Q498R and 
N501Y. (D) Mean effect of each mutation on antibody affinity and on ACE2 affinity (red-blue 
colormap) compared to the enrichment of their frequency with Q498R and N501Y (orange 
colormap). The enrichment score is defined as the normalized frequency a mutation emerged 
on a branch on which mutations Q498R and N501Y appear divided by the normalized frequency 
it emerged on any intermediate background between Wuhan and BA.1. 
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Supplementary Figure S1. Schematic overview of the Tite-Seq method and reproducibility 
of dissociation constants. (A) The plasmid library containing RBD sequences is transformed 
into a standard yeast display strain AWY101. The library is then incubated with soluble, 
fluorescent monoclonal antibody (either one of the four mAbs used in the study) and sorted by 
flow cytometry into bins based on mAb fluorescence. Deep sequencing of each bin results in the 
mean bin (Bavg) estimate of each RBD variant across varying mAb concentrations to produce a 
titration curve. Apparent equilibrium dissociation constants are them inferred by fitting Bavg to the 
mAb concentration. (B) Correlation of -log(KD,app) between the first and second biological 
replicates. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.13.507781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507781
http://creativecommons.org/licenses/by-nc/4.0/


 21 

 
 
 
Supplementary Figure S2. Epistatic coefficients. (A) First-order effects in fourth order 
epistatic interaction models. (B) For each antibody, higher-order interaction coefficient of a 
mutation (shown at bottom of heat map plot) is calculated by summing over all third- and fourth-
order interaction coefficients involving the mutation. 
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Supplementary Figure S3. Distribution of maximum log-fluorescence difference. To 
determine whether a genotype is a non-binder, the maximum difference of log fluorescence 
across concentrations of the genotype is computed. The dashed line represents the threshold 
below which a genotype with a certain maximum difference is considered non-binding. 
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Strain Antibody 
Isogenic -log 
KD,app 

TiteSeq -log 
KD,app 

Omicron BA.1 LY-CoV016 NB NB 
Omicron BA.1 LY-CoV555 NB NB 
Omicron BA.1 REGN10987 NB NB 
Omicron BA.1 S309 8.81  8.59 ± 0.16 
Wuhan Hu-1 LY-CoV016 10.52 ± 0.24 9.80 ± 0.02 
Wuhan Hu-1 LY-CoV555 10.01 ± 0.33 10.19 ± 0.24 
Wuhan Hu-1 REGN10987 10.42 ± 0.49 9.96 ± 0.05 
Wuhan Hu-1 S309 9.33 ± 0.27 9.34 ± 0.09 

 
 
Supplementary Table S1. Isogenic validation of binding affinities. The KD,app inferred from 

Isogenic measurements (see Methods) shown with those inferred via Tite-Seq measurement. 
NB denotes non-binding and standard deviations between replicates are also shown. 
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