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ABSTRACT Purifying selection at many linked sites alters patterns of molecular evolution, reducing overall diversity and distorting the
shapes of genealogies. Recombination attenuates these effects; however, purifying selection can significantly distort genealogies even
for substantial recombination rates. Here, we show that when selection and/or recombination are sufficiently strong, the genealogy at
any single site can be described by a time-dependent effective population size, Ne(t), which has a simple analytic form. Our results
illustrate how recombination reduces distortions in genealogies and allow us to quantitatively describe the shapes of genealogies in the
presence of strong purifying selection and recombination. We also analyze the effects of a distribution of selection coefficients across
the genome.

PURIFYING selection acts to remove deleterious muta-
tions, and variation linked to these mutations, as they

continually arise in a population. This leads to reduced ge-
netic diversity at both selected sites and linked neutral sites.
This effect, known as background selection, can significantly
affect the patterns of diversity evident in sequence data. In
recent years, substantial empirical evidence has arisen,
suggesting that these effects may be pervasive in humans
and other organisms (McVicker et al. 2009; Haddrill et al.
2010; Lohmueller et al. 2011; see Charlesworth 2012 for
review).

When selection is very strong, these effects are well
understood. Deleterious mutations are purged almost im-
mediately, leading to an overall reduction in diversity to the
level expected in a neutrally evolving population with
a reduced population size Ne (Charlesworth 1994; Hudson
and Kaplan 1994, 1995a; Nordborg et al. 1996). The size of
this reduction depends upon the recombination rate, which
determines the extent to which each site is linked to poten-
tially deleterious mutations. This effect is captured by a sim-
ple analytic formula showing how Ne depends upon mutation

rates, selection strengths, and recombination rates and has
been widely used to interpret patterns of molecular evolution
(Hudson and Kaplan 1995b; Charlesworth 2013).

However, it has long been recognized that in addition to
overall reductions in diversity, purifying selection also distorts
the shapes of genealogies (Charlesworth et al. 1993, 1995;
Zeng and Charlesworth 2011). These distortions arise be-
cause purifying selection does not act instantaneously, and
hence deleterious mutations can persist transiently in the
population, lengthening coalescence times in the recent past
relative to those in the distant past (Williamson and Orive
2002; Barton and Etheridge 2004). A number of recent stud-
ies have addressed these distortions in the completely non-
recombining (asexual) case (O’Fallon et al. 2010; Seger et al.
2010; Nicolaisen and Desai 2012; Walczak et al. 2012; see
Charlesworth 2013 for review). However, very little is quan-
titatively known about the shape and magnitude of these
distortions in the presence of recombination.

To address this question, Zeng and Charlesworth (2011)
recently developed a structured coalescent algorithm to sim-
ulate genealogies in the presence of purifying selection with
recombination, analogous to the asexual structured coales-
cent (Hudson and Kaplan 1994). They used this method to
analyze distortions in statistics such as the mean coalescence
time and the ratio of external branch length to total branch
length. This approach makes it possible to rapidly simulate
any statistic describing the shape of genealogies, includ-
ing those involving multiple sites (e.g., the correlation in
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coalescence times at two sites). Although this approach is
valid only for sufficiently strong selection, it has led to
many novel conclusions and offers great promise as a useful
practical tool.

However, despite these advantages, one of the main
difficulties of simulation-based methods is that they cannot
provide simple analytical insight into how distortions in
genealogies depend upon the relevant parameters, and it is
thus difficult to incorporate results into practical inference
or estimation methods. In this article, we show that the
distortions in genealogies may be described by a neutral
population with a time-dependent effective population size
Ne(t), and we compute a simple analytical formula describ-
ing how this Ne(t) depends upon mutation rates, selection
strengths, and recombination rates. Our approach is closely
related to our earlier analysis of the effects of purifying
selection in completely nonrecombining regions (Nicolaisen
and Desai 2012), and many of our results are closely anal-
ogous, demonstrating that many of the effects of selection in
asexual populations remain qualitatively similar in the pres-
ence of substantial recombination.

Our analysis is limited to describing genealogies at a single
site and is valid only provided purifying selection and
recombination are sufficiently strong. Thus, it is unable to
describe the topological distortions in genealogies that begin
to appear as selection and recombination become weaker.
However, despite these limitations, our results show that the
effects of strong purifying selection and recombination may
be described by a time-varying population size and explicitly
describe the analytical dependence of this time-varying
population size on the underlying parameters. This result
can therefore be directly incorporated into preexisting
neutral methods of inference and estimation in a time-
varying population to describe or infer the effects of selection
and recombination. As we will see, it is also straightforward
to incorporate the effects of variation in selection strengths
across sites into our analysis.

We begin in the next section by describing our model,
which is closely related to earlier studies of background
selection with recombination (Charlesworth et al. 1993;
Hudson and Kaplan 1994, 1995a,b; Nordborg et al. 1996).
We focus on a single focal site in a randomly sampled in-
dividual, and we trace that individual’s ancestral history
backward in time. We calculate the probability that a single
linked site carries a deleterious mutation as a function of
time in the past. In general, selection acts against individuals
carrying deleterious mutations, such that the probability an
ancestor carried such a mutation decreases as we look far-
ther into the past. We refer to this probability as the “ances-
tral fitness distribution”, and we use this to calculate the
probability that two individuals contain the same set of del-
eterious mutations across all linked sites. This calculation
relies upon the key assumption that we may treat the ances-
tral fitness distribution at each site as independent (Supporting
Information, File S1). Finally, we use this to calculate the prob-
ability of coalescence over time and thus Ne(t).

Analysis

We consider a haploid population of N individuals. For sim-
plicity, throughout most of our analysis we assume that each
site experiences deleterious mutations at rate m to an allele
carrying selective cost s. In a section below, we show how
our results can be straightforwardly generalized to the case
where each site has an arbitrary mutation rate and selection
coefficient. Throughout, we assume that there is no epistasis
and that fitnesses combine multiplicatively, so that an indi-
vidual with k deleterious mutations has fitness (1 2 s)k. We
note that this haploid model is analogous to that of Zeng
and Charlesworth (2011) and is closely related to earlier
diploid models of purifying selection and recombination
(Charlesworth et al. 1993; Hudson and Kaplan 1994, 1995a,b;
Nordborg et al. 1996)—resulting equations can be compared
with simple modifications.

The ancestral fitness distribution

We consider a single individual, randomly sampled from the
population. We wish to trace the ancestral history of that
individual at a single focal site backward in time, to calculate
the probability that the ancestor carries a mutation at a
particular linked site (referred to as the “index site”), as a
function of time in the past.

In the present, we know that the probability an individual
carries a deleterious mutation at a particular site is given by
the classical mutation–selection balance result, pmut = m/s
(Kimura and Maruyama 1966; Haigh 1978). However, there
are two types of events that may occur in the ancestral
history. First, a deleterious mutation may occur, which will
move the ancestor from the mutant state into the nonmu-
tant state. This will occur at rate mNð12 pmutÞ=Npmut � s,
where we have neglected terms of higher order in m/s.
Second, a recombination event may occur between the in-
dex and focal sites at rate r(xi, xf), where xi denotes the
index site and xf denotes the focal site. When a recombina-
tion event separates the focal site from the index site, the
ancestor at the index site is randomly chosen from the
population (Figure 1). Thus, the ancestor will carry a mu-
tation with probability pmut = m/s. Writing this out, we
have that

dPmutðtÞ
dt

¼2
�
sþ r

�
xi; xf

��
PmutðtÞ þ

r
�
xi; xf

�
m

s
;

where Pmut(t) is the probability the ancestral lineage carries
a deleterious mutation at the index site at time t. We note
that we have neglected the effects of back mutations, which
introduce terms of higher order in m/s. However, it is
straightforward to include these terms (see File S2). Solving
the above differential equation, we have that the ancestral
fitness distribution is simply
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We note that Equation 1 allows for recombination rates
to vary in any arbitrary way across the genome. However, to
illustrate our main results, it is often helpful to make the
simplifying assumption that recombination occurs at con-
stant per-site rate r. In this case, denoting x [ |xf 2 xi|,
Equation 1 reduces to

Pmutðx; tÞ ¼ m

s

�
rx

rx þ s
þ s
rx þ s

e2rxt2st
�
: (2)

For clarity we use this simpler expression throughout most
of our subsequent analysis, but we note that our results can
all be generalized to account for the effects of variation in
recombination rates by replacing Equation 2 with Equation 1
throughout.

Intuitively, Equation 2 reflects the fact that sites far from
the focal site will typically recombine away more frequently
and hence have an ancestral fitness distribution that is closer
to that given by the steady-state mutation–selection balance,
m/s. By contrast, sites very close to the focal site are unlikely
to recombine away, and the ancestral lineage at these sites is
biased to be more fit than average. The distance L* ¼ s=r is
the boundary between these two regimes and represents the
natural length scale on which the effects of selection are
diminished. On distances small compared to L*, the ances-
tral fitness distribution is comparable to the nonrecombining
case, since recombination occurs very infrequently com-
pared to selection. By contrast, on distances large compared
to L*, recombination occurs so rapidly that selection does
not have time to remove mutations from the ancestral line-
age before it is reset by recombination.

We note that, in analogy with earlier work on background
selection with recombination, as well as the structured co-
alescent method of Zeng and Charlesworth (2011), this deri-
vation assumes that all sites may be treated deterministically.
This approximation will be reasonable provided no individual

lineage becomes a significant fraction of the population (or,
analogously, if the typical timescale on which deleterious muta-
tions are removed form the population is short relative to the
population size), which holds when Nse2ðmL=ðsþrL=2ÞÞ � 1. When
this approximation breaks down, mutant lineages may grow to
a significant fraction of the total population, and our results will
no longer accurately capture the ancestral fitness distribution.

We compare our theoretical result in Equation 2 with
forward-time simulations in Figure 2. We compare the an-
cestral fitness distribution at five different ancestral time
points, in two different parameter regimes. We see that for
strong selection/recombination, Equation 2 accurately describes
the ancestral fitness distribution at each time point, as pre-
dicted. By contrast, when selection and/or recombination be-
come weaker, we see that our Equation 2 systematically
overestimates the ancestral fitness. Thus, as expected, our
results become less accurate as Nes becomes small and the
deterministic approximation breaks down. This is a conse-
quence of fluctuations: as the strong-selection/recombination
condition breaks down, mutant lineages may occasionally
grow to a substantial fraction of the population. This will sys-
tematically bias mean mutation probabilities to higher values.
As we will later see, despite these events, we will still be able
to accurately predict the shape of genealogies as the strong-
selection/recombination condition begins to be violated. How-
ever, strong violations of this condition will cause our results to
break down by introducing additional distortions that we are
not able to address.

We note that in deriving Equation 2, we have assumed
a continuous approximation that requires the per-generation
rate of recombination to be small (rx � 1). This will be
strictly valid only if the total genome-wide recombination
rate is small, rL � 1. However, in practice, our result will
still be valid even when rL . 1, since only sites close to the
focal site contribute to the effects of selection on genealo-
gies. To be specific, only sites within x & L* of the focal site

Figure 1 A recombination event in an ancestral lineage. Each parent has part of the genome ancestral to the descendant lineage (black); these have an
ancestral fitness distribution unaffected by the recombination event. The nonancestral parts of the parental genomes (blue) are effectively sampled at
random from the population and hence have a fitness distribution reflective of the steady-state mutation–selection balance. Throughout this article, we
focus only on the genealogies at a single focal site xf and hence track only the parent with the ancestral sequence at this site (right branch).
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are significantly affected by selection, so Equation 2 will in
fact be roughly valid provided only that rL* � s � 1, which
we generally expect to hold. In a similar vein, instead of
approximating r(x) = rx, it would be more appropriate to
use a mapping function such as the Haldane formula,
rðxÞ ¼ ð12 e22rxÞ=2 (Haldane 1919). However, this is also
roughly equivalent to our approximation within the relevant
range, provided only that s � 1. This was earlier noted by
Nordborg et al. (1996), who observed that the choice of
mapping function was not significant since only closely
linked sites contribute to the effects of selection.

We have derived an ancestral fitness distribution, which
captures the probability that the ancestor of an individual
will have a mutation at a particular site in the past. We now
use this ancestral fitness distribution to calculate the proba-
bility that two or more individuals share the same set of
mutations, which will enable us to calculate the probability of
coalescence as a function of time.

The effective population size

When two ancestral lineages have the same set of mutations
across all sites (i.e., they are in the same “configuration”),
they coalesce with per-generation probability 1/Nconfig,
where Nconfig is the total number of individuals in that con-
figuration. Thus the probability that two arbitrary ancestral
lineages coalesce a time t in the past is the probability they
exist in the same configuration divided by the number of
individuals in that configuration,

PcðtÞ ¼ 1
NeðtÞ ¼

X
configurations

PconfigðtÞ2
Nconfig

:

As in earlier work on background selection with recombi-
nation, provided the deterministic approximation holds and
m/s � 1, we may treat each site as independent (see File S1
for further details about this approximation). We then have

1
NeðtÞ ¼

1
N

Y
sites

"
Pmutðx; tÞ2
Pmutðx; 0Þ þ

ð12Pmutðx; tÞÞ2
12 Pmutðx; 0Þ

#

� 1
N

Y
sites

�
1þ m

s

�
s

rx þ s
�
12e2rxt2st��2�

� 1
N
e
ðm=sÞ

P
sites

ððs=ðrxþsÞÞð12e2rxt2stÞÞ2
;

where we have neglected terms of order m2=s2 or higher. As
before, it is possible to keep this entirely general, allowing
the focal site to be at any position along a genome of arbi-
trary length. However, to illustrate our results, we assume
that the focal site is located at the center of a genome of
length L. Approximating the sum as an integral, this becomes

NeðtÞ � Ne2ð2m=sÞ
R L=2

0
ððs=ðrxþsÞÞð12e2rxt2stÞÞ2dx

:

Carrying out the integral, we find

NeðtÞ ¼ N   exp

"
2
2Ud

R
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12e2st�22 s

sþ R=2
�
12 e2st2Rt=2�2
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2  G

�
0;
Rt
2
þ st;Rt þ 2st

��!#
;

(3)

Figure 2 The ancestral fitness distribution as a function of position. In both left and right, m ¼ 1028, N ¼ 104, and r ¼ 4 · 1028. The focal site is located
at the center of a genome of length L ¼ 106. Our theoretical results are shown as solid lines, while the simulations are represented with circles. On the
left, s ¼ 1022, such that Nse2Ud=ðsþR=2Þ ¼ 71:7. On the right, s ¼ 1023, such that Nse2Ud=ðsþR=2Þ ¼ 6:2. We see that as Nes becomes smaller, the
deterministic approximation begins to break down, and fluctuations in the population occasionally allow lineages carrying deleterious mutations to
become a large fraction of the population. This, in turn, leads to less-fit ancestral lineages than predicted by our theoretical results.
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where we have defined rL [ R and mL [ Ud. Although we
derived this result by considering a sample of size two, we
arrive at the same Ne(t) for arbitrary sample sizes provided
we may treat lineages as independent and exchangeable.
This assumption holds provided the typical timescale for
backward-in-time mutation events is short relative to the

typical coalescence time [e.g., when Nse2Ud=ðsþR=2Þ �
�
n
2

�
,

where n is the sample size]. We note that this condition
becomes more restrictive for larger samples, but provided
it holds, the coalescence probabilities are described by the
Ne(t) given above.

We see from Equation 3 that in the recent past, the
effective population size is simply Ne(0) = N. However, as
time recedes into the past, the ancestral lineages become
biased toward more fit configurations and are correspondingly
more likely to coexist in the same configuration concurrently.
This implies that the rate of coalescence increases with time.
As t/N, our results reduce to NeðNÞ/Ne2Ud=ðsþR=2Þ, the
haploid version of the original background selection result.

We compare our result for Ne(t) in Equation 3 with for-
ward-time simulations in Figure 3, as a function of genome
size and recombination rate. Figure 3 illustrates the signifi-
cant period of transition from the larger Ne in the recent
past, prior to reaching the long-term result, which results
in distortions in the shapes of genealogies. The agreement is
generally good, but we note that for smaller recombination
rates our analysis systematically underestimates Ne(t). This
is a consequence of the deterministic approximation break-
ing down as the recombination rate decreases, leading to
strong fluctuations in the population.

Our results differ from the classical background selection
results by incorporating the transient period during which
deleterious alleles may segregate in the population prior to
being removed. The timescale of this transition period is,
roughly, of order 1/s generations. In the deterministic re-
gime, we have assumed that Nes � 1, such that this transi-
tion period is, by definition, short relative to the typical
coalescence times. However, despite this, as seen in Figure
3, by accounting for this transition period we are able to
capture a significant deviation from the classical result. This
deviation is ultimately a primary source of the distortions we
expect to see in genealogies, and thus our results are able to
show how selection can lead to distortions in genealogies
and in genealogical statistics and how these effects depend
upon the parameters involved. However, we note that our
analysis is restricted to addressing the distortions that arise
due to this transient period—when the deterministic approx-
imation breaks down, fluctuations in the population become
significant and lead to further distortions, including topolog-
ical distortions, which our analysis is not able to capture.

Coalescence times and other single-site statistics

Our result for Ne(t) leads immediately to an expression for
the distribution of times to the next coalescence event in
a sample of size n,

CnðtÞ ¼

�
n
2

�
NeðtÞ e

2
R t

0

�� n
2

��
Neðt9Þ

�
dt9
: (4)

We compare this prediction to forward-time simulations for
a sample of two individuals in Figure 4; we see that there

Figure 3 Effective population size as a function of time. In both left and right, m ¼ 1028, s ¼ 1023, and N ¼ 104. Our theoretical results are shown as
solid lines, while the simulations are represented with circles. On the left, r ¼ 4 · 1028 and L varies from 5 · 104 to 106, such that Nse2Ud=ðsþR=2Þ varies
from 6.2 to 7.8. On the right, L ¼ 106 and r/m varies from 2 to 8, such that Nse2Ud=ðsþR=2Þ varies from 4.0 to 7.8. The agreement is generally good,
however, as seen on the right, as the recombination rate decreases and Nes falls off, the deterministic approximation begins to break down, and our
results become less accurate.
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are significant distortions introduced by the time dependence
of Ne(t), which lead to a nonzero peak in the distribution of
coalescence times.

Using the distributions of coalescence times, we can
calculate various statistics describing genetic diversity. For
example, the distribution of pairwise heterozygosity at a
neutral focal site is given by

PðPneutral ¼ pÞ �
Z N

0

ð2mtÞp
p!

e22mtC2ðtÞdt: (5)

In contrast, if the site is a selected site, then we have from
Equation 2 that the probability the ancestor carries a dele-
terious mutation is PmutðtÞ ¼ ðm=sÞe2st. Backward in time,
an individual carrying such a mutation will undergo a dele-
terious mutation from the nonmutant state at rate
mNð12 pmutÞ=Npmut � s. Thus, the backward-in-time muta-
tion rate is simply me2st (Nicolaisen and Desai 2012). There-
fore, we can estimate that

PðPdeleterious ¼ pÞ �
Z N

0

ð2me2stÞp
p!

e22me2st
C2ðtÞdt: (6)

Using similar logic, we can explicitly calculate more complex
statistics, using neutral methods incorporating a time-vary-
ing population size. For example, the mean time to the most
recent common ancestor may be calculated using Equation 4
of Austerlitz et al. (1997), and arbitrary moments of the
total branch length may be calculated using Equation 20
of Eriksson et al. (2010). Similarly, if the focal site is a neutral
site, the site frequency spectrum may be calculated using
Equation 2 of Polanski and Kimmel (2003).

This approach is illustrated in Figure 5. Here, we consider
the total lengths of branches ancestral to i individuals in

a sample of size 10 (normalized by the length of branches
ancestral to 1 individual). We compare forward-time simula-
tions (represented by circles) with our theoretical result. For
comparison, we also show the result expected for any fixed
effective population size. We see that there is a noticeable de-
viation from the neutral expectation, characterized by an ex-
cess of rare branch lengths relative to more common branches.

If the focal site is a neutral site, mutations occur
uniformly along the branch lengths. Thus, our result in Fig-
ure 5 would be directly analogous to the site frequency
spectrum and implies an excess of rare alleles relative to
common ones. In contrast, if the focal site is a selected site,
deleterious mutations occur at a backward-in-time rate of
me2st. In this case, deleterious mutations will be further bi-
ased toward recent branches, leading to an even more pro-
nounced excess of rare alleles relative to common ones. To
understand the expected frequency spectrum in this case, or
to calculate any other complicated genealogical statistic, we
can implement purely neutral and nonrecombining coales-
cent simulations that account for the effects of selection and
recombination simply by using the appropriate Ne(t).

Incorporating a distribution of fitness effects

Our analysis can be easily extended to account for variation
in recombination rates, mutation rates, and selection coef-
ficients across the genome. Using the same logic described
above, we find that in this more general case the time-
dependent effective population size is given by

NeðtÞ

� N   exp
�
2
P
i

mðxiÞ
sðxiÞ

�
sðxiÞ

r
�
xi; xf

�þ sðxiÞ
	
12 e2rðxi;xfÞt2sðxiÞt


�2
#
;

(7)

Figure 4 Coalescence probability as a function of time for a sample of size two. In both left and right, m¼ 1028, s ¼ 1023, and N¼ 104. Our theoretical
results are shown as solid lines, while the simulations are represented with circles. On the left, r ¼ 4 · 1028 and L varies from 5 · 104 to 106, such that
Nse2Ud=ðsþR=2Þ varies from 6.2 to 7.8. On the right, L ¼ 106 and r/m varies from 2 to 8, such that Nse2Ud=ðsþR=2Þ varies from 4.0 to 7.8.
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where m(xi) and s(xi) are the mutation rate and the selection
coefficient at site xi, respectively, and r(xi, xf) is the total
recombination rate between xi and the focal site xf. When
t / N, this reduces to the classical background selection
result (Hudson and Kaplan 1995b; Charlesworth 1996;
Nordborg et al. 1996; Loewe and Charlesworth 2007).

A particularly interesting case is the situation where
mutation and recombination rates are constant across the
genome, but each selected site has a fitness effect drawn
from some distribution r(s). In this case, we find

NeðtÞ � N   exp

"
2

Z L
2

0

Z N

0

2m
s

�
s

rx þ s
�
12 e2rxt2st��2

rðsÞdsdx
#
:

(8)

We note that this result assumes that lineages can be treated
deterministically, which requires that no lineage become
a significant fraction of the total population, and thus Nes �
1. Thus, we expect Equation 8 to hold only when the bulk of
the mutations are either in this regime, Nesi � 1, or nearly
neutral, Nesi � 1. Although our analysis is still reasonable
when a small number of mutations exist in the intermediate
regime, it requires that the bulk of the deviation from neu-
trality satisfies the strong-selection/recombination condi-
tion, such that these mutations of intermediate effect can
be neglected. This issue was also addressed in earlier work
considering a distribution of fitness effects (see, e.g., Nordborg
et al. 1996).

Several recent studies have suggested that the distribu-
tion of deleterious fitness effects in humans and Drosophila
may be characterized by a gamma distribution with shape
parameter b , 1. For example, Keightley and Eyre-Walker
(2007) estimated a shape parameter of b � 0.2 for human
populations and b � 0.35 for Drosophila. Motivated by these

findings, we compare our theoretical results in Equation 8
with forward-time simulations for two populations with
gamma distributions of fitness effects, using shape parame-
ters of 0.5 and 0.25, in Figure 6. For reference, we also show
the theoretical result expected under a single-s case, where s
is the mean fitness effect. We see that our results accurately
characterize the time dependence of the effective population
size under a distribution of fitness effects.

Incorporating temporal variation in the population size

A key feature of our analysis is that, within this deterministic
regime, the dynamics of ancestral lineages are independent
of the population size. The implication of this is that the
ancestral fitness distribution in Equation 2 is independent of
the population size, and thus Equation 3 depends only upon
an overall multiplication by N. This phenomenon was re-
cently discussed in Zeng (2012) and was used as the basis
for incorporating a changing population size into structured
coalescent simulations. Similarly, we can incorporate a chang-
ing population size into our analysis, simply by replacing
N with N(t) in our Equation 3.

We caution, however, that this framework implicitly
assumes that the population remains in mutation–selection
balance throughout its history and is characterized by the
same mutation rates, recombination rates, and selection coef-
ficients throughout. If these other parameters are also changing
with time, this will not hold. Similarly, the strong-selection/
recombination condition must hold throughout the timescale
of coalescence.

To illustrate this, in Figure 7 we compare forward-time
simulations for a population experiencing exponential growth
N(t) = Ne2ℓt (with t measured backward in time from the
present) with our theoretical results from Equation 3. For

Figure 5 Total branch length ancestral to i individuals for a sample of size 10. In both left and right, m ¼ 1028, s ¼ 1023, r/m ¼ 4, and N ¼ 104. On the
left, L ¼ 2.5 · 103, such that Nse2Ud=ðsþR=2Þ ¼ 8:5 [compared to

�
n
2

� ¼ 45]. On the right, L ¼ 200 · 103, such that Nse2Ud=ðsþR=2Þ ¼ 6:7. Our theoretical
result is shown as a solid line, while the simulations are represented with circles. The fixed effective population size result is shown as a solid black line.
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reference, we include the predicted theoretical result in the
absence of selection.

Forward-time simulations

Our forward-time simulations are closely modeled off those
of Zeng and Charlesworth (2011). Specifically, we simulate
a haploid population of constant size N, with a genome of
length L. Each generation, we introduce a Poisson-distributed
number of new deleterious mutations uniformly throughout
the population, with mean NUd. We then simulate reproduction,
introducing a Poisson-distributed number of recombination
events uniformly throughout the population. For any nonrecom-
binant offspring, one ancestor is chosen, weighted according to
its fitness. For recombinant offspring, two ancestors are chosen,
again weighted according to their fitnesses. The appropriate
number of breakpoints is randomly chosen along the genome,
and one of the two resulting genotypes is randomly selected
as the offspring. These steps are repeated each generation.

We note that one key difference between our simulations
and those of Zeng and Charlesworth (2011) is that we allow
multiple recombination events to occur within a single in-
dividual. This makes it possible to consider the L/N limit,
where multiple recombination events become common. We
ran all simulations for a minimum of at least 10N genera-
tions to achieve equilibrium. When incorporating a distribu-
tion of fitness effects, we chose the fitness effect at each site
according to the fitness distribution r(s). At least 10,000
trials were completed for each parameter regime.

Discussion

Our analysis demonstrates that the effects of strong purifying
selection and recombination can be summarized in terms of

a time-dependent effective population size, Ne(t). This Ne(t)
characterizes the distortions we expect to see in genealogies
and can be used as the basis for quick and efficient methods
to analyze single-site statistics. It illustrates how these statistics
depend upon parameters such as the selection coefficient, po-
sition in the genome, and variation in the recombination rate.

Our results extend earlier work that summarized the effects
of purifying selection and recombination by using a reduced
but constant effective population size Ne ¼ N   e2Ud=ðsþR=2Þ

(Charlesworth et al. 1993; Hudson and Kaplan 1995b).
The simplicity of this earlier result has made it broadly
useful in interpreting patterns in sequence data—for exam-
ple, in determining whether background selection can be
responsible for observed relationships between diversity
and local recombination rates in humans and Drosophila
(Hudson and Kaplan 1995b). Our analysis represents the
simplest analytical extension of this earlier work that can
describe distortions from neutrality in addition to overall
reductions in diversity.

By summarizing these effects in a time-dependent effec-
tive population size, our approach makes it possible to
continue to use neutral methods for inference and estima-
tion even in the presence of background selection, simply by
allowing the population size to vary appropriately with time.
For example, our results could be used in combination with
a recent method developed by O’Fallon (2011) to incorpo-
rate a time-varying coalescent rate into genealogy samplers
as a means to improve genealogical inference. This method
considered a coalescence rate that declines linearly as time
recedes into the past, but by instead incorporating the Ne(t)
we have calculated here, we can incorporate background
selection and recombination into this and other existing
neutral methods in a principled way.

Figure 6 Effective population size and coalescence times for a distribution of fitness effects. The blue curve shows a gamma distribution with shape
parameter 1

2 and mean s* ¼ 1022. The green curve shows a gamma distribution with shape parameter 1
4 and mean s* ¼ 1022. The circles represent

forward-time simulations, while solid lines represent our theoretical results from Equation 8. The black line shows our theoretical results in the single-s
case with s ¼ s*. The parameters are N ¼ 104, u ¼ 1028, L ¼ 106, and r/m ¼ 4.
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We note that the Ne(t) derived here is very similar to the
purely nonrecombining case we analyzed in earlier work
(Nicolaisen and Desai 2012). In both cases, Ne(t) begins at
the actual population size in the present and then declines
into the past before eventually reaching a long-term reduced
size, Ne(N). Although the explicit form of the Ne(t) depends
on the recombination rate, its qualitative features are similar
to and lead to similar distortions to the asexual case. This
similarity suggests that the general conclusions of earlier
analyses of background selection in the nonrecombining
case may often be qualitatively robust to the presence of
recombination.

The reasons for this qualitative similarity (and the extent
to which it holds) remain an open question. One appealing
possibility is that local, closely linked genomic regions can
be treated as effectively nonrecombining blocks, while loci
separated by larger distances can be treated as freely recombin-
ing. Thus, a recombining population would be analogous to
an asexual population with a particular “block length”, which
would depend upon the strength of selection and the recom-
bination rate. However, there are several problems with this
intuition. In particular, it is not clear that there is a sufficiently
sharp transition between regions that are effectively nonre-
combining and those that are effectively freely recombining.
Furthermore, the size of the effective block length may typi-
cally depend upon other parameters (such as the sample
size).

We can naively attempt to quantify this similarity
between a recombining population and an asexual popula-
tion: if we define an effective genome size L* (the “effec-
tively nonrecombining block length”, such that U*

d ¼ mL*)
and an effective selection strength s*, then by demanding
that the long-term effective population size Ne(N) and the

typical transition time to this long-term result are equivalent
between the two populations, we arrive at

U*
d ¼ Ud

�
12

R=4
sþ R=4

�

s* ¼ s
�
1þ R=4

sþ R=4

�
:

Using these effective parameters, we find a close (though
not identical) match between our results and those of the
corresponding asexual model. However, it is not clear
whether this rough equivalence or the effective parameters
L* and s* have any predictive power beyond the statistics we
have used here to define them. This remains an important
topic for future work.

We note that our analysis rests on the assumption that
mutation frequencies can be treated deterministically and
that ancestral lineages can be treated independently. The
implication of this latter assumption is that all pairs of
lineages are considered independent and exchangeable,
independent of the history of the sample. A consequence
of this assumption is that, since all pairs of lineages are
equally likely to coalesce, genealogies will be topologically
neutral. As selection becomes weaker and these assumptions
are violated, correlations between the lineages become
important, topological distortions will arise, and our anal-
ysis breaks down. Furthermore, when this begins to occur,
fluctuations in the sizes of lineages become very significant,
and the deterministic assumption is also violated. Thus,
methods capable of describing these fluctuations are re-
quired to fully understand the effects of purifying selection
and recombination in the weak selection regime. Very little

Figure 7 Effective population size and coalescence times for an exponentially growing population. The blue curves represent an exponentially growing
population with growth rate ℓ ¼ 5 · 1024. The green curves represent an exponentially growing population with growth rate ℓ ¼ 1 · 1024. The circles
represent forward-time simulations, while solid lines represent our theoretical results from Equation 3 with N replaced by N(t) ¼ Ne2ℓt. The dotted lines
represent the predictions under a neutral model. The parameters are N ¼ 104, s ¼ 0.003, Ud ¼ 0.0005, and R/Ud ¼ 4.
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is currently known about this regime, which is an important
direction for future work.

We note that recent work has begun to address these
fluctuations and the effects of weak purifying selection, but
only in the purely asexual case. For example, (O’Fallon et al.
2010) developed a semianalytical approach to understand
these effects in the Ns � 1 regime. Their approach is to
divide the population into a continuous distribution of fitness
classes and calculate a corresponding ancestral fitness distri-
bution and, in turn, coalescent rate. An alternative approach
by Good et al. (2013) has suggested that the effects of many
weakly selected mutations on sequence diversity are identical
to the effects of fewer strongly selected mutations, making it
possible to “map” weakly selected populations onto their
equivalent strongly selected counterparts. An important ques-
tion for future work is whether these weak selection methods
may be extended to include recombination. A detailed under-
standing of the “effective” similarity between asexual and
recombining populations, hinted at by our results, may poten-
tially provide a way forward, by suggesting that these new
asexual methods might also apply in the presence of recombi-
nation, with a suitable reinterpretation of the parameters.

Acknowledgments

We thank Benjamin Good for many useful discussions. This
work was supported by the James S. McDonnell Foundation,
the Harvard Milton Fund, and the Alfred P. Sloan Founda-
tion. L.E.N. is supported by the Department of Defense
through the National Defense Science and Engineering
Graduate Fellowship Program. Simulations were run on
the Odyssey cluster supported by the FAS Sciences Division
Research Computing Group at Harvard University.

Literature Cited

Austerlitz, F., B. Jung-Muller, B. Godelle, and P.-H. Gouyon,
1997 Evolution of coalescence times, genetic diversity and struc-
ture during colonization. Theor. Popul. Biol. 51(2): 148–164.

Barton, N. H., and A. M. Etheridge, 2004 The effect of selection
on genealogies. Genetics 166: 1115–1131.

Charlesworth, B., 1994 The effect of background selection against
deleterious mutations on weakly selected, linked variants.
Genet. Res. 63: 213–227.

Charlesworth, B., 1996 Background selection and patterns of genetic
diversity in Drosophila melanogaster. Genet. Res. 68(2): 131–150.

Charlesworth, B., 2012 The effects of deleterious mutations on
evolution at linked sites. Genetics 190: 5–22.

Charlesworth, B., 2013 Background selection 20 years on: The
Wilhelmine E. Key 2012 invitational lecture. J. Hered. 104: 161–171.

Charlesworth, B., M. Morgan, and D. Charlesworth, 1993 The
effect of deleterious mutations on neutral molecular variation.
Genetics 134: 1289.

Charlesworth, D., B. Charlesworth, and M. T. Morgan, 1995 The
pattern of neutral molecular variation under the background
selection model. Genetics 141: 1619–1632.

Eriksson, A., B. Mehlig, M. Rafajlovic, and S. Sagitov, 2010 The
total branch length of sample genealogies in populations of vari-
able size. Genetics 186: 601–611.

Good, B. H., A. M. Walczak, R. A. Neher, and M. M. Desai,
2013 Interference limits resolution of selection pressures from
linked neutral diversity. arXiv:1306.1215. Available at: http://
arxiv.org/abs/1306.1215.

Haddrill, P., L. Loewe, and B. Charlesworth, 2010 Estimating the
parameters of selection on nonsynonymous mutations in Dro-
sophila pseudoobscura and D.miranda. Genetics 185: 1381–1396.

Haigh, J., 1978 The accumulation of deleterious genes in a pop-
ulation—Muller’s ratchet. Theor. Popul. Biol. 14: 251–267.

Haldane, J., 1919 The combination of linkage values and the
calculation of distances between the loci of linked factors. J.
Genet. 8(29): 309–320.

Hudson, R., and N. Kaplan, 1994 Gene trees with background
selection, pp. 140–153 Non-Neutral Evolution: Theories and Mo-
lecular Data, edited by B. Golding. Chapman & Hall, New York.

Hudson, R., and N. Kaplan, 1995a The coalescent process and
background selection. Philos. Trans. R. Soc. Lond. B Biol. Sci.
349(1327): 19–23.

Hudson, R., and N. Kaplan, 1995b Deleterious background selec-
tion with recombination. Genetics 141: 1605–1617.

Keightley, P., and A. Eyre-Walker, 2007 Joint inference of the
distribution of fitness effects of deleterious mutations and pop-
ulation demography based on nucleotide polymorphism fre-
quencies. Genetics 177: 2251–2261.

Kimura, M., and T. Maruyama, 1966 The mutational load with
epistatic gene interactions in fitness. Genetics 54: 1337.

Loewe, L., and B. Charlesworth, 2007 Background selection in single
genes may explain patterns of codon bias. Genetics 175: 1381–1393.

Lohmueller, K., A. Albrechtsen, Y. Li, S. Kim, T. Korneliussen et al.,
2011 Natural selection affects multiple aspects of genetic var-
iation at putatively neutral sites across the human genome.
PLoS Genet. 7(10): e1002326.

McVicker, G., D. Gordon, C. Davis, and P. Green, 2009 Widespread
genomic signatures of natural selection in hominid evolution. PLoS
Genet. 5(5): e1000471.

Nicolaisen, L., and M. Desai, 2012 Distortions in genealogies due
to purifying selection. Mol. Biol. Evol. 29: 3589–3600.

Nordborg, M., B. Charlesworth, and D. Charlesworth, 1996 The
effect of recombination on background selection. Genet. Res.
67: 159–174.

O’Fallon, B., 2011 A method for accurate inference of population
size from serially sampled genealogies distorted by selection.
Mol. Biol. Evol. 28(11): 3171–3181.

O’Fallon, B., J. Seger, and F. Adler, 2010 A continuous-state co-
alescent and the impact of weak selection on the structure of
gene genealogies. Mol. Biol. Evol. 27(5): 1162.

Polanski, A., and M. Kimmel, 2003 New explicit expressions for
relative frequencies of single-nucleotide polymorphisms with
application to statistical inference on population growth. Genet-
ics 165: 427–436.

Seger, J., W. A. Smith, J. J. Perry, J. Hunn, Z. A. Kaliszewska et al.,
2010 Gene genealogies strongly distorted by weakly interfering
mutations in constant environments. Genetics 184: 529–545.

Walczak, A. M., L. E. Nicolaisen, J. B. Plotkin, and M. M. Desai,
2012 The structure of genealogies in the presence of purifying
selection: A “fitness-class coalescent”. Genetics 190: 753–779.

Williamson, S., and M. Orive, 2002 The genealogy of a sequence
subject to purifying selection at multiple sites. Mol. Biol. Evol.
19(8): 1376.

Zeng, K., 2012 A coalescent model of background selection with
recombination, demography and variation in selection coeffi-
cients. Heredity 110: 363–371.

Zeng, K., and B. Charlesworth, 2011 The joint effects of back-
ground selection and genetic recombination on local gene ge-
nealogies. Genetics 189: 251–266.

Communicating editor: Y. S. Song

230 L. E. Nicolaisen and M. M. Desai



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152983/-/DC1

Distortions in Genealogies due to Purifying
Selection and Recombination

Lauren E. Nicolaisen and Michael M. Desai

Copyright © 2013 by the Genetics Society of America
DOI: 10.1534/genetics.113.152983



FILE S1

APPROXIMATIONS

In our derivation of the time-dependent effective population size, we have made two key approximations.
First, we have assumed that lineages and allele frequencies may be treated as effectively deterministic. Sec-
ond, we have assumed that the ancestral fitness distributions at different sites may be treated as independent.
These two approximations are prevalent in the history of background selection, and form the basis for many
of the strong-selection results currently in use (Charlesworth, 2012; Charlesworth et al., 1993; Hudson and
Kaplan, 1995). In this Supplemental Information, we discuss these two approximations in detail.

The Deterministic Approximation

One of the central assumptions of background selection is that the population may be treated as approx-
imately deterministic. This implies that frequencies may be assumed to be at mutation-selection balance,
and that lineages may be described using deterministic equations such as that used to derive Eq. (1). In
general, this assumption will hold when the strength of selection is sufficiently strong that it dominates
the effects of drift (or analogously, when lineages are selected against sufficiently strongly that they never
grow to a substantial fraction of the population). As a result, we expect the deterministic approximation to
hold roughly when Nse−Ud/(s+R/2) � 1. This approximation forms the foundation for previous results in
background selection, including the structured coalescent results of Zeng and Charlesworth (2011) and the
original background selection formulae from Charlesworth et al. (1993) and Hudson and Kaplan (1995).

The main difference between the classic background selection analysis and our analysis is that we include
the transient period during which deleterious alleles may segregate in the population prior to being removed
by selection. The traditional analysis assumes that this time-period is sufficiently small relative to the total
coalescence time that it can be neglected. In general, the time-scale of this transition is roughly of order
1/s, and therefore, by definition, should be small relative to the typical coalescence times, ≈ Ne, whenever
the deterministic approximation holds.

However, in practice, as seen in Figures 3-5, the deterministic approximation is still reasonable even
when the time-scale of the transition begins to represent a significant fraction of the total coalescence times.
Thus, by incorporating this transition time, we are able to more accurately describe the distribution of
coalescence times and other statistics. This allows us to capture the distortions that begin to arise as a
consequence of this transition period, and thus to qualitatively understand how selection distorts the shapes
of genealogies, and how this depends upon the parameters involved. Even when this effect is small, by
taking advantage of the fact that, in the presence of recombination, sites far away from one another become
effectively independent, it may be possible to detect even small differences with enough sequence data. We
note, however, that our method is only able to account for the distortions that arise due to this transition
period, and not the additional effects that arise from fluctuations. As Nes becomes smaller, our analysis
begins to break down as fluctuations in the population become very strong. When this happens, additional
distortions (including topological distortions) arise which we are not able to capture with our analysis.

The breakdown of the deterministic approximation when Nes ≈ 1 has been discussed in several notable
studies considering the weak selection regime (Barton and Etheridge, 2004; O’Fallon et al., 2010). Earlier
studies have suggested that the deterministic approximation is reasonable for the calculation of pairwise
coalescence times when Nes > 3 (Barton and Etheridge, 2004; Charlesworth, 2012), which is consistent with
our findings in Figure 4. However, it is unclear whether such a precise threshold would remain accurate for
more extreme parameter combinations, where additional logarithmic corrections could arise.

The Independent-Sites Approximation

The second key approximation made in the main text is that we may treat the ancestral fitness distribu-
tion at each site as independent. In other words, we assume that the joint ancestral fitness distribution
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across all sites is equal to the product of the ancestral fitness distribution at each site, Pk1,k2,k3...kL(t) =
Pk1(t)Pk2(t) . . . PkL(t), where ki is either 0 or 1, indicating whether a mutation exists at site i.

In an asexual population, this holds whenever the deterministic approximation is valid. However, in the
presence of recombination, correlations will exist between neighboring sites. This is a consequence of the
fact that, when an ancestral recombination event occurs between the focal site and multiple index sites, all
of those sites will now be randomly chosen from the population at the same time, and thus will all be ‘reset’
to the steady state mutation-selection balance simultaneously. Thus, sites that share the same history will
be correlated.

However, this effect will be small provided that the deterministic approximation is valid (Nes� 1) and
that the probability of a mutation at any given site is small (µ/s� 1). This approximation is prominent in
previous literature on background selection, and is discussed in detail in the appendix of Hudson and Kaplan
(1995). In order to justify this approximation, we will show that, provided the conditions stated above hold,

the joint fitness distribution at two loci are approximately independent, i.e. Pk1,k2(t) = Pk1(t)Pk2(t)+O(µ
2

s2 ).
The same argument can then be extended to additional loci.

We denote the ancestral fitness distribution of an individual as Pij(t), where i and j represent whether
a mutation exists at two sites of distances x1 and x2 from the focal site, respectively. We know from the
main text that, to first order in µ/s:

P00(t) + P01(t) = 1− µ

s

(
rx1

rx1 + s
+

s

rx1 + s
e−st−rx1t

)
P00(t) + P10(t) = 1− µ

s

(
rx2

rx2 + s
+

s

rx2 + s
e−st−rx2t

)
.

We can now write out the backwards-in-time master equation for P00(t), again keeping only first-order terms
in µ, s, rx1, and rx2:

P00(t+ 1) = P00(t)(1− rx1(1− f00)− r(x2 − x1)(1− f00 − f10))

+P01(t)
f00
f01

(µ+ rx1f01 + r(x2 − x1)(f01 + f11))

+P10(t)
f00
f10

(µ+ rx1f10)

+P11(t)
f00
f11

(rx1f11).

Making the continuous approximation this becomes:

dP00(t)

dt
= −rx2P00(t) + rx1f00(P00(t) + P01(t) + P10(t) + P11(t))

+r(x2 − x1)
(
P00(t)(f00 + f10) +

f00
f01

P01(t)(f01 + f11)
)

+ µf00

(
P01(t)

f01
+
P10(t)

f10

)
= −(rx2 + 2s− 2µ)P00(t) + rx1

(
1− µ

s

)2
+r(x2 − x1)

(
1− µ

s

)(
1− µ

s

(
rx1

rx1 + s
+

s

rx1 + s
e−st−rx1t

))
+s
(

1− µ

s

)(
2− µ

s

(
rx1

rx1 + s
+

s

rx1 + s
e−st−rx1t

)
− µ

s

(
rx2

rx2 + s
+

s

rx2 + s
e−st−rx2t

))
.

Solving this to first order in µ/s:
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P00(t) = 1− µ

s

(
rx1

rx1 + s
+

s

rx1 + s
e−st−rx1t

)
− µ

s

(
rx2

rx2 + s
+

s

rx2 + s
e−st−rx2t

)
+O

(
µ2

s2

)
P01(t) =

µ

s

(
rx2

rx2 + s
+

s

rx2 + s
e−st−rx2t

)
+O

(
µ2

s2

)
P10(t) =

µ

s

(
rx1

rx1 + s
+

s

rx1 + s
e−st−rx1t

)
+O

(
µ2

s2

)
P11(t) = O

(
µ2

s2

)
.

Thus, we see that Pij(t) = Pi(t)Pj(t) +O
(
µ2/s2

)
, such that the sites are approximately independent. We

note, however, that this independence does not hold to higher-order in µ
s , and corrections would be required

to accurately capture the joint ancestral probability at those orders. Thus, the independence approximation
will only strictly hold when µ/s� 1, and when the deterministic approximation holds.

We note that this approximation is discussed in detail in the appendix of Hudson and Kaplan (1995).
They provide an analogous derivation of the joint mutation probability at two loci (see Equation A10), and
similarly find that sites may be treated as independent provided the deterministic approximation holds and
µ/s� 1.
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INCORPORATING BACK MUTATIONS

In our derivation of the time-dependent effective population size, we have neglected the effect of back
mutations. In practice, back mutations only introduce terms of higher-order in µ/s, and thus are of negligible
contribution in the regime we consider. However, it is straightforward to incorporate these terms into our
analysis, which we do here.

First, we consider the steady-state distribution of mutations at a single site. This is determined by the
solution to the equations:

f1 =
f1(1− s)

ω
(1− µb) +

f0
ω
µf

f0 =
f1(1− s)

ω
µb +

f0
ω

(1− µf ),

where µf and µb are the forward and back mutation rates, respectively. This yields:

f1 =
s+ µb(1− s) + µf −

√
(s+ µb(1− s) + µf )2 − 4sµf

2s

f0 =
s− µb(1− s)− µf +

√
(s+ µb(1− s) + µf )2 − 4sµf

2s
.

When µb = 0, these reduce to the usual mutation-selection balance results, f1 = µf/s and f0 = 1 − µf/s.
Furthermore, if we define µf ≡ µ and µb ≡ cµ, and expand this result in orders of µ/s, we see that:

f1 =
µ

s
− µ2

s2
c(1− s) +

µ3

s3
(c2(1− s)2 − c(1− s)) . . .

f0 = 1− µ

s
+
µ2

s2
c(1− s)− µ3

s3
(c2(1− s)2 − c(1− s)) . . .

Thus, we see that incorporating back mutations leads to a correction of order µ2/s2. As a consequence, the
effect of back mutations is negligible in the regime we consider. However, we may derive Equation 2 from
the main text including them. We have that:

dPmut(t)

dt
= −

(
rx+

µfNf0
Nf1

+
µbNf1
Nf0

)
Pmut(t) + rxf1 +

µbNf1
Nf0

Solving this yields:

Pmut(x, t) =
rxf1 + µbf1

f0

rx+
µff0
f1

+ µbf1
f0

+
µff0 − µbf1

rx+
µff0
f1

+ µbf1
f0

e
−
(
rx+

µf f0
f1

+
µbf1
f0

)
t
.

which replaces Equation 2 in the main text. Similarly, Equation 1 may be recovered by substituting rx →
r(xi, xf ). We note that these equations are identical to those given in the main text to leading-order in µ/s,
and thus back mutations represent only a small correction to our results in the regime we consider.
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