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Abstract

Correlation among multiple phenotypes across related individuals may reflect some pattern of shared genetic architecture: individual 
genetic loci affect multiple phenotypes (an effect known as pleiotropy), creating observable relationships between phenotypes. A nat
ural hypothesis is that pleiotropic effects reflect a relatively small set of common “core” cellular processes: each genetic locus affects one 
or a few core processes, and these core processes in turn determine the observed phenotypes. Here, we propose a method to infer such 
structure in genotype–phenotype data. Our approach, sparse structure discovery (SSD) is based on a penalized matrix decomposition 
designed to identify latent structure that is low-dimensional (many fewer core processes than phenotypes and genetic loci), locus-sparse 
(each locus affects few core processes), and/or phenotype-sparse (each phenotype is influenced by few core processes). Our use of 
sparsity as a guide in the matrix decomposition is motivated by the results of a novel empirical test indicating evidence of sparse structure 
in several recent genotype–phenotype datasets. First, we use synthetic data to show that our SSD approach can accurately recover core 
processes if each genetic locus affects few core processes or if each phenotype is affected by few core processes. Next, we apply the 
method to three datasets spanning adaptive mutations in yeast, genotoxin robustness assay in human cell lines, and genetic loci iden
tified from a yeast cross, and evaluate the biological plausibility of the core process identified. More generally, we propose sparsity as a 
guiding prior for resolving latent structure in empirical genotype–phenotype maps.
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Introduction
A central goal of quantitative genetics is to exploit observed corre
lations between genotype and phenotype to infer the structure of 
the genotype–phenotype map (Rockman 2008; Wagner and Zhang 
2011; Paaby and Rockman 2013; Solovieff et al. 2013; Davey Smith 
and Hemani 2014; Haworth et al. 2019). That is, we aim to build 
models describing how variation in genotype influences variation 
in phenotype. However, the choice of phenotypes quantitative ge
neticists choose to analyze is inherently subjective: we typically 
focus on phenotypes that are practical to measure and/or that 
are in some sense “important” (e.g. because they are plausibly re
lated to key functions or diseases). These phenotypes are often 
correlated, presumably because multiple complex traits are often 
influenced by the same set of core cellular processes. For example, 
cellular growth rates across a range of different stressful condi
tions may be determined by a common set of processes such as 
metabolism, cell wall biosynthesis, DNA repair, and heat or os
motic stress response. This leads to apparent widespread plei
otropy, where individual genetic loci influence many observed 
phenotypes, presumably because these loci influence one or 
more core processes that are broadly important across multiple 
phenotypes.

This perspective suggests that the structure of the correlations 
between the subjective phenotypes that we choose to measure 

should contain signatures of the underlying biologically relevant 
core processes. That is, if we could measure a large and diverse en
ough set of phenotypes across a sufficiently diverse range of gen
otypes, the observed phenotypic variation should have a 
lower-dimensional latent structure that reflects the space of ac
tual core processes. Inferring this lower-dimensional latent struc
ture thus offers the promise of explaining the biological basis of 
pleiotropy, by identifying the core biological processes and infer
ring how individual loci influence these core processes to generate 
the observed phenotypic variation.

Of course, we can only hope to identify core processes which 
generate variation across the phenotypes we choose to measure, 

so the core processes we infer will always be limited by this choice. 

For example, imagine that we measure a set of phenotypes that 

correspond to the growth rates of yeast cells across a temperature 

gradient. We might expect that these phenotypes exhibit a correl

ation structure that reflects three core processes: heat-shock re

sponse, cold tolerance, and all other temperature-independent 

factors relevant to the common growth medium. We could then 

hope to infer the extent to which each genetic locus influences 

each of the core processes, as well as the mapping between these 

three core processes and the observed phenotypes. However, if we 

were to measure additional phenotypes corresponding to growth 

rates across (for example) different nutrient concentrations, we 
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might find that this splits the temperature-independent core pro
cess into additional processes that explain the variation in the 
new phenotypes.

In this manuscript, we describe how to infer this lower- 
dimensional latent structure of phenotype space using a 
penalized matrix decomposition framework (Witten et al. 2009). 
We assume that we have data that describes the map between 
genotype and some set of measured phenotypes. In general, this 
genotype–phenotype map can involve nonlinear effects such as 
interactions between multiple genetic loci (epistasis). However, 
we focus here on analyzing a standard linear approximation of 
this map, in which each locus is assumed to have an additive ef
fect on each of the phenotypes, and the observed phenotype is 
simply a sum of the additive effects of all the relevant loci. This 
linear map can be represented as an E × L matrix, F, which has 
columns corresponding to each of the L loci and rows correspond
ing to the effect of these loci on the E measured phenotypes. We 
note that inferring F from data on genotypes and corresponding 
phenotypes can be a complex problem, which we address for 
one example dataset below, but the core of our analysis in this 
paper assumes that F is given and focuses on analyzing the latent 
structure in this matrix.

In this framework, our problem reduces to inferring lower- 
dimensional structure in the matrix F. While in principle this 
structure could be nonlinear, we restrict ourselves to inferring a 
lower-dimensional subspace that can be expressed as a matrix de
composition of F. Specifically, we wish to approximate F as the 
product of two matrices, F ≈ WM + b, where M is a K × L matrix 
that describes the additive effect of each genetic locus on each 
of K putative core processes, and W is an E × K matrix that de
scribes how each core process affects each measured phenotype. 
In addition, we include a L dimensional vector b which represents 
locus-specific effects on all other processes that contribute equal
ly to the phenotypes measured (and hence cannot be disen
tangled). For ease of notation, we take WM + b to mean that b is 
added to each row of WM, i.e. WM + 1bT, where 1 is the all ones 
vector of length E. For K < E, L, this represents an approximation 
to F in terms of a lower-dimensional subspace of K core processes. 
This structure is illustrated in Fig. 1a. We emphasize that this de
composition assumes that the map between loci and core pro
cesses and the map between core processes and measured 
phenotypes are both linear, which may not be true in general. 
We return to this caveat in the “Discussion”.

Unfortunately, this matrix decomposition problem is underde
termined in general, meaning that for any choice of K there are 
many different pairs of matrices W and M that approximate F 
equally well. Thus, the fact that a given decomposition gives a 
good approximation for F does not necessarily imply that there 
is any biological meaning to the core processes inferred. This 
problem is widely recognized in a variety of fields where matrix 
decomposition is used to infer lower-dimensional structure in 
high-dimensional data. To make lower-dimensional structure in
terpretable, domain-specific knowledge must therefore be used to 
guide the choice of additional constraints, and optimization algo
rithms must be developed to efficiently find decompositions that 
obey the constraints. For example, earlier work has used sparsity 
(Olshausen and Field 1997; Zhang et al. 2015), nonnegativity 
(Paatero and Tapper 1994; Lee and Seung 2000; Wang and Zhang 
2012) and non-Gaussianity assumptions (Jutten and Herault 
1991; Comon 1994; Hyvärinen and Oja 2000) to construct powerful 
methods for identifying meaningful latent structure in specific 
contexts where those constraints are appropriate. The success 
of these approaches motivates our attempt here to find 

appropriate constraints that enable the efficient and interpretable 
reconstruction of a lower-dimensional set of core processes from 
empirical genotype–phenotype maps. Such constraints can be 
thought of as incorporating a biological “prior” on the features 
we expect the data to exhibit.

Recently, Kinsler et al. (2020) identified lower-dimensional 
structure in a dataset describing the effects of a set of yeast muta
tions on fitness in different environments. Their approach used 
singular value decomposition (SVD) (Golub and Reinsch 1971) to 
find a decomposition with K < E, L that approximates the F well. 
However, while SVD finds the K-dimensional subspace that ex
plains the most variation for a given K, the specific W and M are 
selected subject to the constraints that the core processes must 
be orthogonal and that the first j core processes describe the 
j-dimensional subspace that best approximates F. It is not clear 
that these constraints lead to putative core processes with bio
logical meaning. More recently, Pan et al. (2022) introduced an al
ternative matrix decomposition method, Webster, which is based 
on regularized dictionary learning (Yankelevsky and Elad 2016), 
and apply it to a dataset describing the fitness of cells exhibiting 
gene knockouts in the presence of various genotoxins (Olivieri 
et al. 2020). This method enforces a hard constraint that each gen
etic locus affects at most two core processes, which limits the pos
sibility that different loci exhibit different degrees of pleiotropy.

Here, we present a matrix decomposition approach based on 
the biologically motivated intuition that the lower-dimensional 
structure of the genotype–phenotype map may be sparse. 
Specifically, our sparse structure discovery (SSD) method finds de
compositions where each genetic locus affects a small subset of 
the core processes (locus-sparsity) and/or each observed pheno
type is influenced by a small subset of core processes (phenotype- 
sparsity). SSD is an example of penalized matrix decomposition, a 
broad class of matrix decomposition methods that encourage the 
matrix factors to exhibit particular properties (e.g. sparsity) 
through hard constraints or regularization (Witten et al. 2009). In 
our case, SSD has separate tunable regularization parameters to 
control the extent to which locus-sparsity and phenotype-sparsity 
are encouraged.

The sparsity assumption is consistent with various notions of 
modularity which have been proposed to explain the evolvability 
of complex traits (Altenberg 2005; Wagner et al. 2007; Crombach 
and Hogeweg 2008; Hintze and Adami 2008; Wagner and Zhang 
2011; Clune et al. 2013), and with large-scale studies of pairwise 
gene deletions in yeast, which find that genes cluster together 
based on their interaction profiles, suggesting their involvement 
in a small set of common core processes (Costanzo et al. 2010). 
However, given a matrix F representing a genotype–phenotype 
map, it is not a priori clear the extent to which the data exhibits 
locus-sparsity and/or phenotype-sparsity, making it difficult to 
justify a specific choice of regularization parameters. To address 
this, we run our SSD method across a grid of regularization values 
to obtain an array of decompositions with varying errors, locus- 
sparsities, and phenotype-sparsities and allow the user to manu
ally select a decomposition of interest for further investigation. 
Moreover, we have developed two empirical tests to independent
ly validate the extent to which the lower-dimensional structure in 
an effects matrix F exhibits locus-sparsity or phenotype-sparsity, 
the results of which can then be used to guide the selection of SSD 
decompositions (Fig. 1c). Using these tests, we find evidence of 
locus-sparsity and phenotype-sparsity across three datasets, mo
tivating the use of these sparsity-enforcing penalties in our SSD 
method. Further, we show that SSD accurately recovers synthet
ically generated maps if at least one of the true W or M is sparse.
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The structure of the paper is as follows. In “Sparse structure dis
covery,” we describe the SSD method, explain our empirical tests 
for sparsity, and demonstrate that SSD accurately recovers core 
processes in synthetic data. In “Applications to empirical data,” we 
apply our method to three datasets that measure cellular fitness 
across environments as a function of three different forms of gen
etic variability. First, we apply SSD to the Kinsler et al. (2020) data
set describing fitness effects of adaptive mutations identified 
during a laboratory yeast evolution experiment and compare 
SSD to the SVD-based analysis presented in Kinsler et al. (2020). 
Second, we apply SSD to data describing how single gene knock
outs in human cell lines affect fitness in the presence of genotoxic 
agents (Olivieri et al. 2020). We find that, compared to the Webster 
analysis of the same dataset (Pan et al. 2022), SSD solutions exhibit 

lower error with comparable average sparsity, a more interpret
able process-phenotypes map, and a broad range of pleiotropy 
across loci. Third, we analyze a large-scale quantitative trait locus 
(QTL) mapping experiment (Ba et al. 2022), which measured 18 
growth rate phenotypes in about 100,000 F1 offspring of a cross be
tween two related budding yeast strains. For this data, we first de
velop a joint mapping approach to arrive at an additive effects 
matrix F, which we do using a pipeline based on ℓ2,1-penalized re
gression (see Supplementary Material).

Sparse structure discovery
As described above, our method assumes we begin with an empir
ical linear genotype–phenotype map, represented as an E × L 
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Fig. 1. Overview and geometric interpretation of sparse structure discovery (SSD). a) SSD finds a sparse, low-rank approximation for the effects matrix F 
containing the phenotypic effects of L loci on E phenotypes. b) Each phenotype (row of F) can be viewed as a point in locus-space. The core processes (rows 
of M) can be viewed as vectors that span a lower-dimensional subspace, illustrated by the plane. The distances between each phenotype point and the 
subspace determine the reconstruction error. Since the error is a function of the subspace and there are many matrices M which generate the same 
subspace, many decompositions yield the same error. SSD applied to these phenotypes would favor a sparse decomposition, for example, the core 
processes M1, M2 which here are sparse combinations of (ℓ1), (ℓ2, ℓ3) respectively. Singular value decomposition (SVD) applied to the same phenotypes 
would yield a decomposition with core processes M′1, M′2 that incur the least error but which are unlikely to be sparse. c) In our analysis pipeline, we first 
apply SSD to find a range of decompositions F ≈ WM + b with varying errors and sparsities. The reconstruction error of the SVD solution is used to 
determine a tolerable error range for SSD solutions. The rotation tests are used to guide the selection of an SSD solution with appropriate levels of sparsity 
in phenotypes (each phenotype is described by few core processes) and in the loci (each locus is part of few core processes).
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matrix F which describes the additive effect of each of the L gen
etic loci on each of the E measured phenotypes. Our goal is to 
find latent structure in this genotype–phenotype map of the 
form F ≈ WM + b. Note that since we will generally assume that 
K < E, L, the matrices W and M contain fewer total parameters 
than F (i.e. this is a simpler description of the data). Thus, this fac
torization will in general only be an approximation, both because 
there is presumably error in the estimation of F and because the 
division into K core processes is a simplifying assumption that 
will inevitably neglect some aspects of the full complexity under
lying each measured phenotype.

Given that the factorization of F is approximate, a natural goal 
would be to find matrices W and M that minimize the error in this 
approximation. This is the motivation underlying SVD, which 
finds a factorization of F that minimizes the squared Frobenius re
construction error (i.e. lowest squared error ‖F − WM‖22). 
However, this error minimization alone is not sufficient to unique
ly determine the factorization. Instead, any factorization that de
scribes the same lower-dimensional subspace will perform 
equally well, as illustrated in Fig. 1b. This is a general problem: 
for any set of core processes, represented by the rows of M, that 
achieve a given reconstruction error, there are infinitely many 
sets of other processes that achieve the same error (obtained by 
changing the basis of the subspace, e.g. by rotating the rows of 
M in the subspace they generate). SVD chooses a particular un
ique solution to resolve this degeneracy by defining the first core 
process to be the one-dimensional subspace that minimizes the 
error for K = 1, the second core process to be orthogonal to the first 
and minimize the error for K = 2, the third to be orthogonal to the 
first two and minimize the error for K = 3, and so on. While this is a 
reasonable and well-defined procedure, there is no reason to be
lieve that the core processes defined in this way will be biologically 
meaningful.

Here, we define an alternative method for matrix decompos
ition. Like SVD, our approach attempts to minimize the 
Frobenius reconstruction error. However, we add two additional 
constraints based on sparsity. Specifically, we aim to find a locus 
to core process map M in which each locus participates in only a 
few processes (i.e. most entries in this matrix are 0). We refer to 
this as locus-sparsity. Analogously, we aim to find a core process 
to phenotype map W in which each phenotype is affected by only 
a few core processes (i.e. most entries in this matrix are also 0). We 
refer to this as phenotype-sparsity.

We do not necessarily assume that both types of sparsity exist 
in a given dataset. Instead, our framework allows us to impose 
constraints on either or both types with a tunable stringency 
(and below we describe how the choice of this stringency can be 
guided by empirical validation tests). To be precise, our SSD meth
od aims to find the matrix decomposition F ≈ WM + b that mini
mizes

C(W, M, b) = ‖F − (WM + b)‖22 + λW‖W‖1 + λM‖M‖1
such that ‖Mk, : ‖2 = 1 for all 1 ≤ k ≤ Kmax,

(1) 

where ‖F − (WM + b)‖22 is the squared Frobenius error, ‖W‖1 is an 
ℓ1-norm measure of the phenotype-sparsity, and ‖M‖1 is an 
ℓ1-norm measure of the locus-sparsity. Equation (1) is a variant 
of the penalized matrix decomposition formulations studied in 
Witten et al. (2009). The parameters λW and λM determine the rela
tive weighting of the accuracy, phenotype-sparsity, and locus- 
sparsity objectives (higher λW will yield solutions that are more 
phenotype-sparse, and higher λM will yield solutions that are 
more locus-sparse). We note that when these regularization 

parameters λW and λM are sufficiently large, the method will assign 
no loci to some of the core processes, thereby automatically pick
ing a number of core processes K smaller than the input upper 
bound Kmax. We include the constraint requiring that the 
Euclidean norm of each core process is one to ensure that the 
core processes are all of the same scale; the magnitude of the vec
tors of W may vary, reflecting that some phenotypes are more 
sensitive to the core processes than others.

For fixed values λW, λM, and Kmax, SSD will yield a unique set of 
W, M, and b. However, a key challenge is to choose values of these 
parameters to determine an appropriate weighting of the accur
acy, phenotype-sparsity, and locus-sparsity objectives that will 
produce a decomposition with plausible biological meaning. To 
do so, we first apply our method for a range of values λW and λM 

to produce a variety of decompositions that vary in reconstruction 
error, number of core processes, locus-sparsity, and phenotype- 
sparsity. In every case, the SSD decomposition will have higher re
construction error than the SVD decomposition with the same 
number of processes because of the additional constraints. We 
therefore use the SVD error as a guide to select a desired recon
struction error range, and select sparse decompositions of interest 
that fall within this range. The choice between these can then be 
guided by the empirical test described below, which we developed 
to determine the extent to which an input matrix F exhibits a low- 
dimensional structure with locus-sparsity or phenotype-sparsity. 
Fig. 1c illustrates the pipeline.

Empirical validation of sparsity constraints using 
rotation tests
To validate our choice of sparsity assumptions, we designed heur
istic tests to determine whether a given dataset F exhibits signa
tures of locus-sparsity or phenotype-sparsity. We do not assume 
that the linear term b, which describes the effects of loci on pro
cesses that do not vary across the phenotypes, is necessarily 
sparse. For the purposes of this test, we therefore first subtract 
the mean effect across phenotypes for each locus from F, as an ap
proximation of b. To test for locus-sparsity, we then apply a ran
dom orthogonal matrix O to the empirical genotype–phenotype 
map F to produce a matrix F′ = FO. This rotation conserves low- 
dimensional structure in F and leads to the same SVD error but 
disrupts any potential locus-sparsity. We then apply our SSD 
method with a range of weights on the locus-sparsity objective 
to obtain a range of decompositions for F and F′ that exhibit vary
ing locus-sparsities and reconstruction errors. If the input matrix 
F truly has locus-sparsity, our method will consistently find spar
ser solutions for F than for F′ across a range of reconstruction er
rors. If so, we consider this to be evidence of locus-sparsity in F. In 
practice, we use the shape of the sparsity-error curve for F as a 
heuristic for selecting a sparse solution of interest. For example, 
if the curve exhibits an elbow shape (i.e. below some sparsity s 
the error drops quickly with decreasing sparsity and above s the 
error increases slowly with increasing sparsity), this may indicate 
that a reasonable choice of sparsity is s.

To gain intuition for this test, consider an example with five loci 
and two core processes, with loci ℓ1 and ℓ2 both affecting core pro
cess 1 (with equal weight) and loci ℓ3, ℓ4 and ℓ5 all affecting core 
process 2 (also with equal weight). The rows of the matrix F will 
each have the form (α, α, β, β, β), where α and β describe the effect 
of the first and second processes on the phenotype corresponding 
to that row, respectively. In other words, the phenotype values lie 
on a 2D plane in 5D space. This plane contains the sparse vectors 
(1, 1, 0, 0, 0) and (0, 0, 1, 1, 1), which describe the two core pro
cesses, and every point on the plane can be written as a weighted 
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sum of these vectors. Now, imagine that we randomly rotate F, 
producing a matrix F′ which has rows that lie on a rotation of 
the 2D plane containing the rows of F and columns that corres
pond to random linear combinations of the actual genetic loci. 
Since the rotation was random, the 2D plane containing the 
rows of F′ is a random 2D plane in 5D. Most 2D planes in 5D are 
not spanned by two sparse basis vectors. Therefore, while it is still 
possible to find two vectors such that each row of F′ can be written 
as the weighted sum of these vectors (the low-dimensional struc
ture is preserved), the two vectors almost certainly will not be 
sparse.

To test for phenotype-sparsity, we use an analogous method, 
except that we rotate the columns of F to obtain F′ = OF and 
vary the phenotype-sparsity objective in SSD to test whether 
SSD consistently finds sparser solutions for F than F′ across a 
range of reconstruction errors.

Sparse structure recovery on synthetic data
To validate our method, we constructed synthetic genotype– 
phenotype maps with lower-dimensional latent structure of vary
ing sparsity. That is, for a given E, L, and K, we construct simulated 
data matrices F = WM + η by randomly choosing M and W as de
scribed below. The noise η in each element is drawn independent
ly with scale 0.3 times the standard deviation of the entries in WM. 
We construct simulated F matrices across a range of sparsities in 
M and W. Specifically, for M-sparsity p, entries are nonzero with 
probability p, and if nonzero, the entry is drawn from a standard 
normal. We then normalize M so that each row is a unit vector. 
We generate W analogously with W-sparsity q, but without nor
malization. By not normalizing W, we allow for the possibility 
that some phenotypes are influenced more strongly by the core 
processes than others.

We begin by constructing four sets of simulated data: one with 
both locus-sparsity and phenotype-sparsity (p = 0.2, q = 0.2), one 
each with only one type of sparsity (p = 0.2, q = 1 and p = 1, 
q = 0.2), and one with neither (p = 1, q = 1). For each set, we first ap
plied the locus and phenotype rotation tests. The results are pre
sented in the left column of Fig. 2. Note that the presence of the 
gap between the error curves for F and rotated F′ in the locus 
(phenotype) rotation test depends on whether M (W) is sparse. 
Repeating this test across a range of locus-sparsities and 
phenotype-sparsities, we show that the size of the gap grows con
tinuously with sparsity (Supplementary Fig. 1).

Next, we evaluated whether SSD can accurately reconstruct 
the true M and W matrices. We applied our SSD method to each 
dataset across a range of locus-sparsity (λM) and phenotype- 
sparsity (λW) constraints and selected one decomposition using 
the SVD error and rotation tests as guides. The reconstruction er
ror of the SVD decomposition on each dataset is in the range 
0.047–0.049. Keeping in mind that any SSD solution will necessar
ily have higher error, we focus on “low-error” decompositions with 
error up to 0.85, illustrated by dark green, teal, and blue in the 
space of SSD decompositions (Fig. 2, center column). When either 
M or W is sparse, the space of solutions below a certain error is 
rectangular (Fig. 2). In this case, we select a decomposition that 
exhibits the most sparsity for the chosen error criterion, that is, 
the bottom left vertex of the rectangular contour (indicated by a 
white star in Fig. 2). When both M and W are not sparse, we pick 
a solution with similar degrees of locus-sparsity and phenotype- 
sparsity that satisfies our error criterion.

Finally, we compared the M and W of the selected SSD solu
tions to the true M and W matrices using a cosine error metric de
scribed in the Supplementary Material (third column of Fig. 2). We 

find that exhibiting sparsity in either W or M (first three rows) suf
fices for SSD to accurately reconstruct both W and M. Given a non
redundant set of core processes M, there is a unique set of 
phenotype weights W that best reconstruct F (and vice versa for 
W). In contrast to SSD, the SVD decompositions are unable to ac
curately reconstruct M and W, despite lower reconstruction er
rors when reconstructing F.

The phenotypes constructed as described in this section are 
correlated in so far as each is a random linear combination of a 
common set of core processes. However, empirical studies may 
measure phenotypes with nontrivial structure, e.g. fitness mea
surements where the same environmental perturbations are 
added to various growth mediums. To validate the rotation tests 
and SSD in such a setting, we generated synthetic data with a 
hub-and-spoke structure. Specifically, we introduce “hub” pheno
types (representing the growth mediums) whose effects are a ran
dom linear combination of a common set of core processes and 
“spoke” phenotypes (each representing a growth medium with a 
perturbation) whose effects are a linear combination of the corre
sponding hub phenotype and one core process representing the 
perturbation (Supplementary Fig. 2a). See Supplementary 
Material for further details.

Next, we apply the rotation tests to the hub-and-spoke synthet
ic data and find evidence of both locus-sparsity and phenotype- 
sparsity (Supplementary Fig. 3). We find that a selected SSD 
solution exhibiting both types of sparsity accurately recovers 
the initially described generative structure. If we instead ignore 
evidence of locus-sparsity and select an SSD solution that exhibits 
a greater degree of phenotype-sparsity and little locus-sparsity, 
the decomposition resembles an alternate generative structure 
where each hub phenotype is instead described by a single core 
process (Supplementary Fig. 2b). In contrast, SVD finds a solution 
with lower reconstruction error but with matrices M and W that 
lack any clear relationship to the core processes that generated 
the synthetic data.

Applications to empirical data
Fitness effects of adaptive mutations in yeast
To illustrate the applicability of our framework, we first analyze 
data from a recent study by Kinsler et al. (2020). This study at
tempted to infer a lower-dimensional latent structure of pheno
type space by measuring the fitness effects of a set of specific 
yeast mutations across a range of environmental perturbations. 
Specifically, they isolated 292 yeast strains from an earlier labora
tory evolution experiment, each of which contains one or a few 
putatively adaptive mutations. They measured the fitness of 
each of these strains across a set of 45 environments (Fig. 3a). 
Based on these measurements, they divided the 45 environments 
into 25 “subtle” perturbations (in which fitness effects of muta
tions vary only slightly) and 20 “strong” perturbations. Applying 
SVD on the data from the subtle perturbations, they identified 
an 8-dimensional subspace that explains most of the variation 
in the data across these perturbations. They then showed that 
this latent structure can also predict the fitness effects of the mu
tations across the 20 “strong” perturbations, which they interpret 
as evidence that the subtle perturbations reveal a “local” modular
ity that is able to predict the global pleiotropic effects of adapta
tion in this system.

We sought to investigate whether our SSD method can recover 
an alternative sparse lower-dimensional structure in the Kinsler 
et al. data. Rather than divide environments into “subtle” and 
“strong” perturbations, we took the entire mutational effects 

S. Petti et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/1/iyad127/7223405 by H
arvard U

niversity Library user on 05 February 2024

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data


Locus 
Rotation Test

Phenotype
Rotation Test

Sparse Structure 
Discovery Solution Space

Reconstruction
Error (M and W)

0.16

S
pa

rs
e 

Lo
ci

 (
M

)
S

pa
rs

e 
P

he
n.

(W
)

3
Ave. Processes/Locus

M
ea

n 
C

os
 E

rr
or

0.00

0.02

4

0.00

R
ec

on
st

ru
ct

io
n 

E
rr

or

0.04

0.06

0.08

0.10

0.12

0.14

6 93 6 9
Ave. Proc./Locus Ave. Proc./Phen.

1

2

3

5

6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

SSD M

SVD M

SSD W

SVD W
1 2 3 4 5 6

S
pa

rs
e 

Lo
ci

 (
M

)
N

on
-s

pa
rs

e 
P

he
n.

 (
W

)

3

A
ve

. P
ro

ce
ss

es
/P

he
no

ty
pe

M
ea

n 
C

os
 E

rr
or

0.00

0.02

4

R
ec

on
st

ru
ct

io
n 

E
rr

or

0.04

0.06

0.08

0.10

0.12

0.14

6 93 6 9
Ave. Proc./Locus Ave. Proc./Phen.

1

2

3

5

6

1 2 3 4 5 6

SSD M

SVD M

SSD W

SVD W

0.16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ave. Processes/Locus

N
on

-s
pa

rs
e 

Lo
ci

 (
M

)
S

pa
rs

e 
P

he
n.

 (
W

)

3

A
ve

. P
ro

ce
ss

es
/P

he
no

ty
pe

Ave. Processes/Locus

M
ea

n 
C

os
 E

rr
or

0.00

0.02

4

R
ec

on
st

ru
ct

io
n 

E
rr

or

0.04

0.06

0.08

0.10

0.12

0.14

6 93 6 9
Ave. Proc./Locus Ave. Proc./Phen.

1

2

3

5

6

1 2 3 4 5 6

SSD M

SVD M

SSD W

SVD W

0.16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
on

-s
pa

rs
e 

Lo
ci

 (
M

)
N

on
-s

pa
rs

e 
P

he
n.

 (
W

)

3

A
ve

. P
ro

ce
ss

es
/P

he
no

ty
pe

Ave. Processes/Locus

M
ea

n 
C

os
 E

rr
or

0.00

0.02

4

R
ec

on
st

ru
ct

io
n 

E
rr

or

0.04

0.06

0.08

0.10

0.12

0.14

6 93 6 9
Ave. Proc./Locus Ave. Proc./Phen.

1

2

3

5

6

1 2 3 4 5 6

SSD M

SVD M

SSD W

SVD W

0.16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

Solution for F

Solution for rotated F’
Solution for F Reconstruction Error

A
ve

. P
ro

ce
ss

es
/P

he
no

ty
pe

Fig. 2. SSD on synthetic data. Each row corresponds to a synthetic additive effects matrix F = WM + η generated with different sparsities in M and W. All 
examples have E = 96 phenotypes, L = 200 loci and K = 6 true core processes. First column: Locus (phenotype) rotation test illustrates that when F is 
generated with sparsity in M (W), there is a gap between the sparsity of the SSD solutions for F in colored circles and rotated F′ = FO (F′ = OF) in 
gray diamonds. Each scatter point corresponds to a solution for a particular value of the regularization parameter λM (λW). Error bars are over three 
random rotations; error bars were often so small that they were not visible over the scatter point. The red and blue horizontal dashed lines indicate the 
6-component SVD reconstruction error. The gray dashed line indicates the average 6-component SVD reconstruction error of OF. Note that the SVD error 
for FO is equal to that for F. The vertical line indicates the average processes per locus (phenotype) for the true M (W). Second column: Each scatter point 
depicts the average processes per locus/phenotype of an SSD solution. The colored background illustrates the interpolated reconstruction errors of the 
solutions. The solutions selected for further investigation are marked by a star. Third column: The mean cosine error between each row of the inferred M 
(column of inferred W) for the selected SSD solution and for the 6-component SVD solution and the true M (W). The error in W in the first row is almost 
exclusively due to 4 phenotypes that use no processes, but are assigned very small weights in some processes by SSD.
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Fig. 3. SSD applied to pleiotropic fitness effects of adaptive mutations in yeast. a) A reduced representation of the effects matrix F (45(E) × 288(L)) where 
the effects of mutations with common annotations are grouped together. The number of mutations with each annotation is shown in parenthesis. b) The 
locus and phenotype rotation tests show extensive sparsity in both the process-phenotype and locus-process maps. c) The solution space illustrating 
highly sparse solutions with low reconstruction error. The integers indicate the number of processes in the solution. The chosen solution with 8.5% error 
is marked with a white star. d) The M matrix with loci clustered into 8 groups based on linkage clustering of loci with a modified cosine similarity metric 
(see Supplementary Material). On the right, the fraction of loci types in each of the 8 groups is shown. The number of loci in each group is shown in 
parenthesis next to its label. e) The process-phenotype map W.
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matrix representing 288 strains across 45 environments as our in
put F (we use 288 instead of the original 292 due to a minor differ
ence in a pre-processing step, see Supplementary Material). We 
then applied our locus and phenotype rotation tests (Fig. 3b), 
which confirm that there is strong evidence for sparsity in both 
the process-phenotype map (W) and the locus-process map (M). 
Note however that removing most diploids from this data (one 
key type of mutation that represents 188 of the 288 mutations 
studied) eliminates sparsity in M but not in W (Supplementary 
Fig. 4). Further analysis (discussed below) finds that the diploids 
predominantly affect one core process and thus the locus-sparsity 
indicated by the rotation test can be explained by the large num
ber of diploids in the data. This is not an issue for applying SSD, as 
SSD requires sparsity in only one of W and M.

We find that SSD can identify a sparse, 4-dimensional approxi
mation of F that incurs less than 8% error in reconstructing the 
original F (Fig. 3c). For concreteness, we focus here on the sparse 
solution indicated by the white star in Fig. 3c. We selected this solu
tion because the locus-sparsity and phenotype-sparsity levels (an 
average of 1.5 processes per locus and 2 processes per environment) 
lie within the region of the rotation test sparsity-error curves where 
the error goes from dropping quickly to dropping slowing as a func
tion of the sparsity (Fig. 3b). In Supplementary Fig. 5, we highlight 
the differences between the SVD and SSD solutions. By construc
tion, the SSD solution has a higher reconstruction error than the cor
responding SVD solution (7.5% error for the sparse SSD solution, 
compared to 4% error for the 4-dimensional SVD solution). We 
find that the SVD solution on a training set also shows lower error 
in predicting the fitness effects in held-out environments (the 20 
strong perturbations or a random subset of 9 environments) com
pared to the SSD solutions of equal rank (Supplementary Fig. 5). 
This suggests that SVD tends to find a better low-rank approxima
tion, even when it fails to find meaningful (and potentially sparse) 
basis vectors (see “Discussion”). To highlight this point, if SVD finds 
the locus-process and process-phenotype maps MSVD, WSVD on 
the training set, it can be mathematically shown that the maps M′ = 
OMSVD, W′ = WSVDOT for any arbitrary orthogonal matrix O will 
match SVD’s generalization error. In contrast, the SSD solution is 
significantly sparser than the SVD solution (Supplementary Fig. 5) 
at the expense of a larger generalization error. Thus, while SVD by 
construction finds the subspace with the lowest reconstruction er
ror, the SSD approach is able to identify sparse basis vectors, captur
ing the sparsity in the genotype–phenotype map suggested by the 
rotation tests.

To examine if loci with similar effects on core processes identi
fied by SSD align with existing annotations, we further clustered 
loci into 8 groups by comparing the columns of the M matrix 
with a modified cosine metric (Supplementary Material). We ob
serve that core process 1 is enriched for mutations in genes in
volved in the Ras and TOR pathways (Fig. 3d). Missense and 
nonsense mutations in IRA1 (also involved in the Ras pathway) 
clustered in the “IRA1+other” group have additional pleiotropic ef
fects on core process 3, which has a large influence on fitness in 
environments with an extended stationary phase (4, 5, and 6 
day environments in Fig. 3e). Diploids are primarily enriched in 
core process 2, which has broad pleiotropic effects across environ
ments. Diploids with additional mutations in IRA1/2 (clustered in 
the “Diploid + adaptive” group) exhibit effects that combine the ef
fects shown independently by IRA1/2 in the Ras cluster and the 
Diploids cluster. Thus, the core processes identified by SSD do ap
pear to have some correspondence with our prior expectations. To 
ensure that the many diploids do not significantly bias our results, 
we repeated this analysis on a reduced dataset which excludes a 

random subset of 168 of the 188 diploids, finding similar features 
in the W and M maps despite lower average sparsity in M 
(Supplementary Fig. 4).

Finally, it is easier to read off hypotheses from a sparse SSD decom
position than from a dense SVD decomposition (Supplementary Fig. 
5b). For example, since SSD core process 3 almost exclusively impacts 
environments with an extended stationary phase (4, 5, and 6 days), it 
is reasonable to hypothesize that loci involved in this core process in
fluence a pathway relevant in stationary phase. In contrast, each SVD 
core process affects most environments (Supplementary Fig. 5c), 
thereby confounding an analogous interpretation. The SSD solution 
further suggests that diploidy primarily contributes to core process 2, 
and the contribution of this process across environments is a succinct 
summary of its effect. For the SVD solution, the diploids do not form a 
single cluster (Supplementary Fig. 5c and d), and no such summary is 
apparent.

Robustness of gene knockouts to genotoxins  
in human cell lines
Next, we apply our SSD method to the genotoxic fitness screen col
lected in Olivieri et al. (2020) and curated in Pan et al. (2022)
(Fig. 4a). This dataset was constructed by performing 
CRISPR-Cas9 knockouts on an immortalized human cell line 
(RPE1-hTERT) and subjecting each knockout variant to 31 geno
toxic stressors. We show that the core processes described by 
our SSD decomposition are enriched for particular gene annota
tions and compare our decomposition to one identified by 
Webster (Pan et al. 2022).

Our rotation tests find evidence of both locus-sparsity and 
phenotype-sparsity in this genotoxin data (Fig. 4b). 
Phenotype-sparsity is not assumed by Webster (Pan et al. 2022), 
suggesting that SSD may lead to a more interpretable 
process-phenotype map. In order to compare directly to the 
Webster decomposition analyzed in Pan et al. (2022), we restrict 
our attention to SSD solutions that have the same number of 
core processes (K = 10). Note that alternate SSD solutions with 
fewer core processes incur more error. We observe that at 
approximately 2.5 processes per locus the rotation test 
sparsity-error curve (Fig. 4b, right) transitions from sharply de
creasing to slowly decreasing, suggesting this level of sparsity in 
the process-phenotype map. Guided by these constraints and ob
servations, we select a solution that is sparse in both loci and phe
notypes (3.3 average processes per locus, 2.5 average processes 
per genotoxin), indicated by the white star in Fig. 4c.

First, we evaluate whether the core processes described by our 
solution are enriched for loci with particular functional effects. 
We organize the locus-process map M by the loci annotations 
compiled in Olivieri et al. (2020) and observe that core processes 
1, 2, and 7 are enriched for loci involved with the repair of inter
strand cross-links (ICLs) by Fanconi Anemia (FA) proteins, nucleo
tide excision repair (NER), and DNA replication fork quality 
control (FORK QC), respectively (Fig. 4d). Loci involved with end 
joining are primarily split between core processes 6 and 10. 
Finally, core process 5 is enriched for loci involved with base exci
sion repair and single-strand break repair as well as homologous 
recombination. The functional meaning of the other four processs 
are not immediately clear from the annotations so we leave them 
unlabeled; investigating the loci with the strongest effects could 
elucidate their meaning, as was done by Pan et al. (2022). 
Figure 4e illustrates the process-genotoxin map W; the sparsity 
indicates that a small number of core processes explain the effect 
of each genotoxic stressor.
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In the Supplementary Material, we further describe the differ
ences between Webster and SSD and compare the decomposi
tions of this dataset found by each method. Our SSD method 
more accurately reconstructs the additive effects matrix while 

exhibiting more phenotype-sparsity and only slightly less locus- 
sparsity. Moreover, our SSD decomposition exhibits variation in 
the degree of pleiotropy across loci, measured by the number of 
processes each locus participates in (Supplementary Fig. 6).
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Fig. 4. SSD applied to dataset of human cell responses to gene knockouts under genotoxic stressors. a) The input additive effects matrix F generated by 
Olivieri et al. (2020) and curated by Pan et al. (2022). b) The locus and phenotype rotation test indicate there is both locus-sparsity and phenotype-sparsity. 
c) The space of solutions found by SSD. The integers indicate the number of processes in the solution. The white star indicates the solution that we 
illustrate in d) and e). d) Sorting the loci by GO annotation in the locus-process map M reveals that certain processes are enriched for particular annotated 
functions. e) The process-phenotype map W demonstrates that the response to each genotoxin can be explained by a small number of core processes.

S. Petti et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/1/iyad127/7223405 by H
arvard U

niversity Library user on 05 February 2024

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad127#supplementary-data


The genotype–phenotype map of a yeast cross
Next, we analyze data from a recent study (Ba et al. 2022) analyz
ing genotypes and phenotypes of N ≈ 100, 000 F1 haploid yeast 
offspring (segregants) of a cross between RM (a European wine 
strain) and BY (a standard lab strain). These two parental strains 
differ by S ≈ 42, 000 single-nucleotide-polymorphisms (SNPs), 
leading to a highly diverse set of genotypes in the segregant 
pool. This earlier work measured the fitness (growth rate relative 
to the parental BY strain) of each of the segregants in E = 18 envir
onments using a bulk barcode-based phenotyping assay.

The base condition for most of these environments is propaga
tion in batch culture with 1:128 dilutions every 24 hours in rich la
boratory media [yeast extract-peptone-dextrose (YPD)] at optimal 
temperature (30◦C). We refer to this as the 30◦C environment. 
Other environments are then constructed by adding stressors to 
this base condition (e.g. lithium, 4-nitroquinoline oxide, ethanol), 
by varying the temperature (23–37◦C), by using defined media 
with various carbon sources (glucose, mannose, raffinose) instead 
of YPD, and by using complex natural media (molasses).

To apply SSD to this data, we must first infer the genotype– 
phenotype map for each of these 18 environments (i.e. we must 
infer F). This is a complex problem; Ba et al. (2022) includes an 
extensive discussion of the challenges associated with this infer
ence and introduces a modified stepwise forward search proced
ure for this purpose. A particular difficulty is that this mapping 
is typically not able to precisely pinpoint specific loci that affect 
each phenotype. Because our goal is to use the genotype–pheno
type map across these different environments to infer lower- 
dimensional latent structure, we adopt a simpler approach here. 
Instead of identifying putative causal loci separately for each 
phenotype, we use a penalized regression approach to jointly 
identify a sparse set of loci that explain the fitness across environ
ments (see Supplementary Material). Then, we use a statistical 
test to establish a confidence interval for the location of each pu
tative causal locus. This procedure identifies 1,089 genomic re
gions containing putative loci and their fitness effects in the 18 
environments. We use this 18 × 1, 089 matrix as the effects matrix 
F for SSD, represented schematically in Fig. 5a.

We next apply the loci and phenotype rotation tests (Fig. 5b), 
finding evidence for extensive sparsity in the process-phenotype 
map W and moderate levels of sparsity in the locus-processes 
map M. The SSD solution space shows an error landscape that fa
vors low-rank (K ≈ 6−9) approximations to F which are sparse in 
W (Fig. 5c). We focus here on the K = 8 solution indicated by the 
white star in Fig. 5c, which represents a tradeoff between achiev
ing high sparsity in W and moderate sparsity in M while retaining 
relatively low reconstruction error. The phenotype-sparsity of this 
solution is approximately 1.5 processes per locus, which corre
sponds to the sparsity value in the rotation test sparsity-error 
curve (Fig. 5b, right) where the function transitions from sharply 
decreasing to slowly decreasing. We verified that this solution ex
plains a fraction of variance on a test set of genotypes comparable 
to that explained by the full F and the 8-component SVD solution 
(Supplementary Fig. 7a). Other reasonable choices of solutions 
lead to qualitatively similar results (Supplementary Fig. 7b).

In Fig. 5d, we show the resulting inferred W. We find that this 
matrix is sparse and has some intuitive features. First, we note 
that the term b in our SSD decomposition represents a constant 
effect of each locus on all of the measured phenotypes (i.e. the as
pect of the genotype–phenotype map that is constant across all 
the environments). The inferred W then represents how the loci 
in a given process produce deviations from these constant effects 

across the different environments. We find that none of the in
ferred processes have substantial weight in W for our 30◦C envir
onment, indicating that b fully captures the genotype–phenotype 
map for this environment. This is intuitive, given that this envir
onment is the basis for all other conditions. The environments 
which represent this same condition at slightly lower tempera
tures are also largely captured by b, though processes 4 and 8 do 
become slightly more important as we decrease the temperature. 
As we increase temperature, we find that process 7 becomes 
important, suggesting that this process is associated with high 
temperature response. Several processes are specific to given en
vironments (e.g. process 1 primarily affects fitness in guanidinium 
chloride (gu), process 2 affects fitness in lithium (li), process 5 in 
suloctidil (suloc), and 6 in molasses (mol)). Some of these pro
cesses, such as processes 2 and 6, contain a largely nonoverlap
ping set of loci that affect their respective environments (li and 
mol) in addition to the constant effects captured by b. Finally, pro
cesses 3, 4, and 8 reflect processes that influence a few conditions, 
including some observed tradeoffs (e.g. between fitness in raffin
ose and ynb or mannose).

In Supplementary Table 1, we provide a list of the ORFs localized 
to each putative causal locus, GO annotations and descriptions from 
the Saccharomyces Genome Database (Cherry et al. 2012), and their 
influence on each core process (i.e. value in M). In Fig. 5e, we show a 
Sankey figure that illustrates W and the most prominent features of 
M. This figure shows both how a number of key loci affect each of 
the processes (i.e. features of M), and how these processes in turn af
fect fitness in each of the environments (i.e. W). For example, we see 
that the genes ENA1 and ENA5 are the primary contributions to pro
cess 2, and that this process primarily influences fitness in lithium. 
This is consistent with prior expectations, as the ENA cluster is in
volved in salt tolerance and is known to be important for lithium tol
erance (Wieland et al. 1995). Similarly, we see that BUL2, known to 
affect heat-shock element mediated gene expression (see 
Supplementary Table 1), is the primary contributor to process 7, 
which influences fitness in the high temperature environments. In 
addition, some loci which are known to have large effects on fitness 
across these conditions (e.g. MKT1, IRA2) are also represented in M. 
There are also many other loci (some of unknown function and 
other unannotated genes) that play a role, and the rationale for 
these patterns is unclear. Additional experiments measuring fitness 
across a larger set of environments may help further disentangle 
structure in this genotype–phenotype map, and help resolve add
itional processes.

Discussion
Extensive work in quantitative genetics has aimed to develop 
models that explain the relationship between genotype and a var
iety of different phenotypes. This work often finds widespread 
pleiotropy, where specific genetic variants affect multiple pheno
types, creating a complex pattern of correlations between pheno
types. Using these patterns to infer a lower-dimensional structure 
in the map between genotype and multiple phenotypes is an im
portant goal, which offers the promise of identifying a biologically 
meaningful explanation for observed patterns of pleiotropy.

A central challenge in achieving this goal is that discovering 
lower-dimensional structure in high-dimensional data is funda
mentally underdetermined. Thus, we must always choose some 
set of objective functions and/or constraints as the basis for any 
such decomposition. This choice is inherently somewhat arbi
trary, and it is not immediately clear how to select objectives 
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and constraints that will lead to solutions that reflect biologically 
meaningful structure in the data.

In this paper, we address this challenge using a penalized ma
trix decomposition framework, SSD, which allows us to identify a 
low-dimensional set of “core processes” that concisely explains 
the observed patterns of pleiotropy in genotype–phenotype data. 
The method uses sparsity as a key constraint to decompose a 
model for how genotype influences multiple phenotypes into 
two linear sparse lower-dimensional maps: a map between the 
genetic loci and the set of putative core biological processes they 

affect, and a map explaining how these core processes determine 
the observed phenotypes. Using simulated data, we demonstrate 
that SSD can accurately recover the true locus-process and 
process-phenotype maps as long as at least one of them is sparse. 
We then apply the method to three empirical datasets, which in
clude the fitness effects of adaptive mutations in different growth 
conditions, robustness of gene knockouts to a set of genotoxic 
agents, and the fitness effects of QTLs identified in a yeast cross.

SSD is a flexible method which offers a range of solutions that 
correspond to different strengths of the sparsity constraints on the 
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locus-process and process-phenotype maps (formally, one unique 
solution per choice of the hyperparameters that enforce sparsity). 
This choice could be made based on some prior biological 
expectations, or by using standard statistical approaches such as 
cross-validation to find the set of hyperparameters that minimizes 
generalization error. However, since our goal is to identify biologic
ally meaningful low-dimensional structure rather than minimize 
generalization error, we explore the space of solutions found by 
SSD across a range of hyperparameters, and use the reconstruction 
error landscape and proposed rotation tests to guide the examin
ation of specific solutions. We do not prescribe a method for select
ing a single solution. Instead, by exploring solutions with different 
levels of sparsity, we can examine features of the solutions which 
are robust to the choice of specific hyperparameters.

Of course, the use of sparsity as the guiding constraint in our SSD 
method is a choice, and it would certainly be possible to identify al
ternative lower-dimensional decompositions of a given dataset by 
choosing a different set of objectives and constraints. Our choice 
of sparsity is guided by two main factors. First, because we can 
use rotation tests to provide evidence for sparsity, we can demon
strate whether or not this constraint is appropriate directly from 
empirical data (and in cases where there is no evidence for sparsity, 
SSD should not be used). Second, intuitive notions of modularity in 
biological systems suggest that sparsity in M and W may reflect 
characteristic features of biological organization. For example, 
sparsity in the locus-process map may reflect a situation where 
each gene participates in one or a few biological “modules” with spe
cific defined functions, and each such module relies primarily on a 
relatively small fraction of all possible genes. Sparsity in the 
process-phenotype map may hold less generally, but could reflect 
scenarios where any observed phenotype typically depends primar
ily on a subset of all possible modules. We also note that our method 
only requires sparsity in one of these two maps, so it could be useful 
in scenarios where W is sparse and M is not, or vice versa.

Naturally, even in scenarios where a biological system has a 
modular structure and sparsity seems intuitively appropriate, 
all biological processes are inherently coupled at some level. For 
example, the “omnigenic” model recently introduced by Boyle 
et al. (2017) suggests that most loci affect almost every complex 
trait. The omnigenic model reflects the observation that large 
numbers of small-effect loci often dominate the heritability of 
complex traits. This is not inconsistent with the sparsity-inducing 
ℓ1 constraint used in SSD. Formally, the ℓ1 constraint reflects a 
prior assumption about the distribution (i.e. the spread) of effect 
sizes, namely, that a small subset of loci have much larger effect 
sizes than most other loci that affect each process. In contrast, an 
ℓ2 constraint, for example, imposes a prior with a tighter spread of 
effect sizes. This constraint will instead lead to a dense (and non
unique) set of solutions. The sparsity assumption thus remains 
valid as long as the effects of mutations in the core genes of a 
pathway are significantly larger than the small effects of the genes 
outside the pathway, even if there are so many such small-effect 
genes that they dominate the heritability of the trait.

By using sparsity as a key constraint, our approach produces a dif
ferent lower-dimensional latent structure in the data than SVD, a 
commonly used method which finds the subspace of a chosen di
mensionality that achieves the lowest error in reconstructing the ef
fects matrix (without any additional constraints). By construction, 
SVD produces a set of processes (formally, basis vectors that span 
this subspace) which are orthogonal and which are ordered mono
tonically based on the variation explained by each process. 
Previous work Kinsler et al. (2020) has shown that SVD applied to a 
subset of mutations and similar environments generalizes to a held- 

out set of mutations and dissimilar environments, which suggests 
that SVD can be fruitfully used to identify an appropriate low- 
dimensional subspace of processes. However, any set of independ
ent basis vectors which span the subspace will lead to the same 
generalization error. That is, even though SVD achieves good 
generalization performance by finding the optimal lower- 
dimensional decomposition of the genotype–phenotype map, it 
does not necessarily lead to a unique set of biologically meaningful 
processes.

Our approach is similar in spirit to Webster, a method based on 
graph-based dictionary learning introduced recently by Pan et al. 
(2022). Like SSD, Webster relies on a penalized matrix decomposition 
framework to identify the locus-process and process-phenotype 
maps. However, Webster imposes a hard constraint that each locus 
affects at most two processes and imposes no sparsity constraint 
on the process-phenotype map. In contrast to Webster, SSD finds 
sparser solutions with an equivalent reconstruction error, and vari
able degrees of pleiotropy across loci.

We emphasize that the processes identified by SSD or any other 
method are fundamentally constrained by the genotypes we 
study and the phenotypes we choose to measure. We cannot 
hope to resolve any effects of loci that do not vary across the gen
otypes we analyze. Thus, it is important to consider the nature of 
the genetic variation in a given study in interpreting the results of 
an SSD decomposition: if a given type of variant is not repre
sented, we may fail to identify core processes which depend on 
those variants. Moreover, it is important to note that expanding 
a dataset by including additional genotypes can in principle 
change the inferred structure.

Similarly, the constant effects of loci on all the measured pheno
types are represented by the b term in SSD. This reflects the effects 
of loci on phenotypes that cannot be resolved by the variation in the 
measured phenotypes. For example, if some core process influences 
a given type of stress response and we did not measure any pheno
types that depend on that particular type of stress, we would expect 
the effects of this core process to be absorbed into b along with all 
other processes whose effects do not vary across the measured phe
notypes. By measuring additional phenotypes, we could hope to be
gin to resolve these processes, though our success in doing so would 
depend on the phenotypes chosen.

We note that by using a matrix decomposition framework, we 
have implicitly made several important assumptions about the 
structure of the genotype–phenotype map. First, we have ignored 
the effects of interactions between loci on the core processes. In 
other words, we assume that the effect of each locus on each 
core process does not depend on other loci. Second, the 
process-phenotype map is assumed to be a linear function of 
the core processes. Nonlinear structure in the locus-process and 
process-phenotype maps will lead to structured epistasis between 
loci in the genotype–phenotype data. This structure is in principle 
resolvable by measuring epistatic effects between loci for differ
ent phenotypes. However, we have focused here on the additive 
effects matrix, because this is both simpler and can be more reli
ably estimated given the scope of current datasets.

Finally, our study and others Kinsler et al. (2020), Pan et al. (2022)
assume a strictly hierarchical genotype to process to phenotype 
map. That is, we assume that the genotype determines the core 
processes, which in turn determine the observed phenotypes. 
This structure has some intuitive appeal, and it is central to any 
latent structure discovery method of this type. However, it may 
not always hold in reality. For example, one can imagine a scen
ario where the effects of mutations on one core process depend 
on the state of another core process (in other words, core 
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processes affect mutational effects in addition to phenotypes). 
Our method (along with other matrix decomposition approaches 
such as SVD) is fundamentally unsuited to describe such scen
arios, and developing methods to infer the structure of this and 
other more general types of genotype–phenotypes maps is an im
portant goal for future work.

Data availability
Our code, including a tutorial, is available at https://github.com/ 
spetti/sparse-structure-discovery. The three previously published 
data sets used in this work are accessible from refs. Kinsler et al. 
(2020), Olivieri et al. (2020), and Ba et al. (2022).

Supplementary material is available at GENETICS online.
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