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Abstract Epistasis between mutations can make adaptation contingent on evolutionary history.

Yet despite widespread ‘microscopic’ epistasis between the mutations involved, microbial

evolution experiments show consistent patterns of fitness increase between replicate lines. Recent

work shows that this consistency is driven in part by global patterns of diminishing-returns and

increasing-costs epistasis, which make mutations systematically less beneficial (or more deleterious)

on fitter genetic backgrounds. However, the origin of this ‘global’ epistasis remains unknown.

Here, we show that diminishing-returns and increasing-costs epistasis emerge generically as a

consequence of pervasive microscopic epistasis. Our model predicts a specific quantitative

relationship between the magnitude of global epistasis and the stochastic effects of microscopic

epistasis, which we confirm by reanalyzing existing data. We further show that the distribution of

fitness effects takes on a universal form when epistasis is widespread and introduce a novel fitness

landscape model to show how phenotypic evolution can be repeatable despite sequence-level

stochasticity.

Introduction
Despite the idiosyncrasies of epistasis, a number of laboratory microbial evolution experiments show

systematic patterns of convergent phenotypic evolution and declining adaptability. A striking exam-

ple is provided by the Escherichia coli long-term evolution experiment (LTEE) (Figure 1a): 12 repli-

cate populations that adapt in parallel show remarkably similar trajectories of fitness increase over

time (Wiser et al., 2013; Lenski et al., 2015), despite stochasticity in the identity of fixed mutations

and the underlying dynamics of molecular evolution (Tenaillon et al., 2016; Good et al., 2017). Sim-

ilar consistent patterns of fitness evolution characterized by declining adaptability over time have

also been observed in parallel yeast populations evolved from different genetic backgrounds and ini-

tial fitnesses (Kryazhimskiy et al., 2014; Figure 1b) and in other organisms (Elena and Lenski,

2003; Perfeito et al., 2014; Wünsche et al., 2017; Sanjuán et al., 2005; Couce and Tenaillon,

2015; Jerison et al., 2017; Schenk et al., 2013). Declining adaptability is thought to arise from

diminishing-returns epistasis (Khan et al., 2011; Chou et al., 2011; Kryazhimskiy et al., 2014),

where a global coupling induced by epistatic interactions systematically reduces the effect size of

individual beneficial mutations on fitter backgrounds. Diminishing-returns manifests as a striking lin-

ear dependence of the fitness effect of a mutation on background fitness (Figure 1c). While dimin-

ishing-returns can be rationalized as the saturation of a trait close to a fitness peak, recent work

shows a similar dependence on background fitness even for deleterious mutations, which become

more costly on higher fitness backgrounds (Johnson et al., 2019). This suggests that fitter back-

grounds are also less robust to deleterious effects (Figure 1d), a phenomenon that has been termed

increasing-costs epistasis. The origin of the global coupling that results in these effects is unknown.
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Put together, these empirical observations suggest that the contributions to the fitness effect, si,

of a mutation at a locus i in a given genetic background can be written as

si ¼ sadditive;i þ sgenotype;i� ciy; (1)

where sadditive;i is the additive effect of the mutation, sgenotype;i is its genotype-dependent epistatic

contribution independent of the background fitness y (i.e., idiosyncratic epistasis), and ci quantifies

the magnitude of global epistasis for locus i. Equation (1) reflects the observation that the strength

of global epistasis depends on the specific mutation and applies independently of whether its addi-

tive effect is deleterious (increasing-costs) or beneficial (diminishing-returns). Over the course of

a b

c d

Figure 1. Declining adaptability and global epistasis in microbial evolution experiments. (a) Convergent phenotypic evolution in the E. coli long-term

evolution experiment: the fitness relative to the common ancestor of 11 independently adapting populations over 50,000 generations is shown (data

from Wiser et al., 2013). The 12th population, Ara + 6, has limited data and is not shown. (b) Yeast strains with lower initial fitness adapt faster (data

from Kryazhimskiy et al., 2014). The fitness gain after 250 (green) and 500 (orange) generations of 640 independently adapting populations with 64

different founders and 10 replicates of each founder. Mean and SE are computed over replicates. (c) Diminishing returns of specific beneficial mutations

on fitter backgrounds for three knocked out genes (green, orange, and purple) (data from Kryazhimskiy et al., 2014). Control in pink. (d) Increasing

costs of specific deleterious mutations on fitter backgrounds (data from Johnson et al., 2019). The fitness effect relative to the least fit background for

the mean over 91 mutations (in red) and 5 of the 91 mutations is shown. Linear fits for the five specific mutations and the mean using dashed and solid

lines respectively are shown.
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adaptation in a fixed environment, global epistatic feedback on mutational effects can lead to a

long-term decrease in adaptability. If this feedback dominates, Equation (1) suggests that the

dependence of the fitness effect on evolutionary history is summarized entirely by the current fitness,

and therefore results in predictable fitness evolution.

Here, we show that diminishing-returns and increasing-costs epistasis are a simple consequence

of widespread epistasis (WE). This is consistent with recent work (Lyons et al., 2020) that proposes

a similar argument to explain these phenomena. However, while the core idea is similar, we present

here an alternative framework based on the Fourier analysis of fitness landscapes, which leads to

new insights and quantitative predictions. In particular, our framework leads to novel predictions for

the relationship between the magnitude of global epistasis and the stochastic effects of microscopic

epistasis, which we confirm by reanalyzing existing data. Extending this framework, we further quan-

tify how the distribution of fitness effects (DFEs) shifts as the organism adapts and how the fitness

effect of a mutation depends on the sequence of mutations that have fixed over the course of adap-

tation (i.e., historical contingency). While specific historical relationships depend on the genetic

architecture, we introduce a novel fitness landscape model with an intuitive architecture for which

the entire history is summarized by the current fitness. Using this fitness landscape model, we inves-

tigate the long-term dynamics of adaptation and elucidate the architectural features that lead to

predictable fitness evolution.

Results

Diminishing-returns and increasing-costs epistasis
We begin by examining the most general way to express the relationship between genotype and fit-

ness (i.e., to describe the fitness landscape). A map between a quantitative trait (such as fitness), y,

and the underlying genotype can be expressed as a sum of combinations of ‘ biallelic loci

x1; x2; . . . ; x‘ that take on values xi ¼ �1 (Hordijk and Stadler, 1998; Neher and Shraiman, 2011;

Weinberger, 1991; Szendro et al., 2013; Weinreich et al., 2013):

y¼ �yþ
X

i

fixiþ
X

i>j

fijxixjþ
X

i>j>k

fijkxixjxk þ . . . ; (2)

where �y is a constant that sets the overall scale of fitness. The symmetric convention xi ¼�1 for the

two allelic variants is less often used than xi ¼ 0;1, but it is an equivalent formulation, which we

employ here because it will prove more convenient for our purposes (see Poelwijk et al., 2016 for a

discussion). The coefficients of terms linear in xi represent the additive contribution of each locus to

the fitness (i.e., its fitness effect averaged across genotypes at all other loci), the higher-order terms

quantify epistatic interactions of all orders, and �y is the average fitness across all possible genotypes.

Importantly, Equation (2) makes apparent the idiosyncrasies induced by epistasis: a mutation at a

locus with ‘ interacting partners has an effect composed of 2‘�1 contributions.

To explicitly compute the fitness effect of a mutation at locus i on a particular genetic back-

ground, we simply flip the sign of xi, keeping all other xj constant, and write down the difference in

fitness that results. This fitness effect will generally involve a sum over a large number of terms

involving the f ’s in Equation (2). While this may suggest that an analysis of fitness effects via Equa-

tion (2) is intractable, the analysis in fact simplifies considerably if the locus has a significant number

of independent interactions that contribute to the fitness (i.e., provided that the number of indepen-

dent, nonzero epistatic terms associated to the locus is large). In this case, we show that the fitness

effects of individual mutations decrease linearly with background fitness and the fluctuations around

this linear trend are normally distributed. In other words, widespread independent idiosyncratic epi-

static interactions lead to the observed patterns of diminishing-returns and increasing-costs

epistasis.

We present a derivation of this result in the SI. Here, we explain the key intuition using a heuristic

argument. The argument is based on a simple idea: for a well-adapted organism (y>�y) with complex

epistatic interactions, a mutation is more likely to disrupt rather than enhance fitness. To be quanti-

tative, consider a highly simplified scenario where some number N of the f ’s in Equation (2) are ±1

at random and the others are 0. In this case, the fitness of a given genotype is a sum of Nþ and N�
interactions that contribute positively and negatively to the trait, respectively, each with unit
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magnitude, so that y ¼ �yþ Nþ � N�. When positive and negative interactions balance, the organism

is in a ‘neutrally adapted’ state (y »�y). By selecting for positive interactions, adaptation generates a

bias so that Nþ>N� and y>�y. If locus i involved in a fraction vi of all of N ¼ Nþ þ N� interactions is

mutated, the effect of the mutation, on average, is to flip the sign of Nþvi positive interactions and

N�vi negative interactions. The new fitness is then yi ¼ y� 2Nþvi þ 2N�vi ¼ �yþ ð1� 2viÞðy� �yÞ and

thus si ¼ yi � y ¼ �2viðy� �yÞ. The negative linear relation between the background fitness, y, and the

fitness effect of the mutation, si, is immediately apparent and emerges as a systematic trend simply

due to a sampling bias towards positive interactions. Of course, while this relation is true on average,

it is possible that locus i affects more or less positive interactions due to sampling fluctuations. Pro-

vided only that N is large and the interactions are independent, these fluctuations are approximately

Gaussian with magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nvið1� viÞ
p

.

This basic argument holds beyond the simple model with unit interactions. In the more general

case, if the mutation is directed from xi ¼ �1 ! þ1, we show in the SI that its fitness effect, si, on a

background of fitness y can be written as

si ¼ 2fið1�~viÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

additive

� 2~viðy��yÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

global epistasis

þ ~�i
|{z}

genotype

; (3)

where,

~vi �
P

j 6¼i f
2

ij þ
P

j>k 6¼i f
2

ijk þ . . .
� �

� P

j 6¼i fjfijþ
P

j>k 6¼i fjkfijk þ . . .
� �

P

j 6¼iðfj� fijÞ2 þ
P

j>k 6¼iðfjk � fijkÞ2þ . . .
; (4)

and ~�i is a genotype and locus-dependent term that is distributed across genotypes with mean zero

and variance expressed in terms of the f ’s from Equation (2) (see SI for details). In the following

equation and similar ones henceforth, a summation such as
P

j>k 6¼i f
2

ijk is meant to denote a sum over

pairs j;k, where each pair appears only once and no pair that includes index i appears. Symmetry of

the f ’s w.r.t. interchanged indices is also assumed (e.g., fijk ¼ fjik). The numerator of ~vi in Equation (4)

is proportional to the covariance of fitness effects and background fitness, and the denominator is

the variance of background fitness across genotypes. A similar equation for the case xi ¼þ1!�1

can be derived. The choice of þ1!�1 or �1!þ1 is simply a matter of convention. If the conven-

tion is reversed, the coefficients of odd-order in Equation (2), that is, fi; fijk ; . . ., should also switch

signs. It can be easily checked that reversing the signs of these quantities in the expression for ~vi
above leads to the expression for ~vi when xi ¼þ1!�1.

Note that in general ~vi is not guaranteed to be positive and ~�i is arbitrary and determined by the

genotype-fitness map. However, consistent patterns emerge when locus i has a large number of

independent, nonzero epistatic terms and the additive effects f1; f2; . . . of its interacting partners are

not much larger than the epistatic terms (defined further below), which we call the WE limit. In the

WE limit, ~�i is normally distributed across genotypes with variance proportional to ~við1� ~viÞ. This fol-
lows from the same reasoning as in our heuristic argument with unit interactions above (see SI for

details). In addition, ~vi is typically positive, giving rise to a negative linear trend (i.e., diminishing-

returns and increasing-costs). We can see this by taking the third- and higher-order terms in Equa-

tion (4) to be zero, in which case ~vi is positive if
P

j 6¼i f
2

ij>
P

j 6¼i fjfij. This will typically be true in the WE

limit because we expect
P

j 6¼i f
2

ij to scale with the number of interacting partners ‘, while each term

in
P

j 6¼i fjfij can be positive or negative and thus the sum scales as
ffiffi

‘
p

if the terms are independent.

Thus when locus i has a large number of interacting partners, ~vi is typically positive unless the magni-

tude of the additive terms (a) is much larger than the magnitude of the epistatic terms (e), a � e
ffiffi

‘
p

.

This argument is easily extended to the case when the third- and higher-order terms are nonzero

(see SI); the upshot is that the bias towards ~vi positive gets stronger with increasing epistasis.

The conditions for the WE limit are more likely to hold when the number of loci, ‘, that affect the

trait is large. Therefore, we expect to generically observe patterns of diminishing-returns and

increasing-costs epistasis for a complex trait involving many loci. Importantly, whether we observe a

negative linear trend does not depend on the magnitude of a locus’ epistatic interactions relative to

its own additive effect, but rather relative to the additive effects of its interacting partners. If we are

not in the WE limit, and instead the additive effects dominate (i.e., a � e
ffiffi
l

p
), then Equation (4)
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suggests that the slope of the linear trend can be either positive or negative. We will show further

below that recent experimental data demonstrates that both scenarios can be relevant: some loci

have a � e
ffiffi

l
p

while others have a � e
ffiffi

l
p

, with the former creating a bias towards the observed nega-

tive linear trends that characterize diminishing-returns and increasing-costs epistasis.

We note that Equation (3) immediately leads to testable quantitative predictions: in the WE limit,

the distribution of the residuals, ~�i, obtained from regressing si and y is entirely determined by the

slope of the regression, �2~vi. Specifically, we predict that these residuals (the deviations of individual

genotype fitnesses from the overall diminishing-returns or increasing-costs trend) should be normally

distributed with a variance proportional to ~við1� ~viÞ. However, this condition only applies if diminish-

ing-returns arises from the WE limit. It does not hold if epistasis is negligible, if locus i interacts sig-

nificantly with only a few other dominant loci, or if the epistatic terms are interrelated (e.g., when

global epistasis arises from a nonlinearity applied to an unobserved additive trait; Starr and Thorn-

ton, 2016; Sailer and Harms, 2017; Otwinowski et al., 2018). The latter case may still lead to a

negative linear trend, but the statistics of the residuals will differ from Equation (3) (see SI for a

discussion).

It is convenient to subsequently work with the symmetric version of Equation (3), where the fit-

ness effects of both xi ¼ �1 ! þ1 and its reversion xi ¼ þ1 ! �1 (whose fitness effect is negative of

the former) are included in the regression against their respective background fitness. In this case,

the additive term is averaged out, and we show (SI) that in the WE limit,

si ¼�2viðy��yÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

við1� viÞ
p

hi; (5)

where hi depends on the genetic background and the locus, and is normally distributed with zero

mean and variance V , and

vi �
Vi

V
¼

f 2i þPj 6¼i f
2

ij þ . . .
P

k f
2

k þ
P

k>l f
2

kl þ . . .
: (6)

Here, V is the total genetic variance due to all loci (i.e., the variance in fitness across all possible

genotypes) while Vi is the contribution to the total variance by the f ’s involving locus i. We therefore

refer to vi as the variance fraction (VF) of locus i. We show further below that for certain fitness land-

scapes vi can also be interpreted as the fraction of pathways affected by a locus. For these reasons,

we focus on vi, which is half of the negative slope, rather than the slope. Note that the vi’s do not

sum to one unless there is no epistasis (with epistasis,
P

i vi>1, reflecting the fact that the variance

contributed by different loci overlap). While the directed mutation case discussed previously is the

relevant one when presenting experimental data (e.g., Figure 1c, d), it is conceptually simpler to

work with the symmetric case. These two cases coincide and vi »~vi in the WE limit if the additive

effect of a locus is small (i.e., f 2i �
P

j 6¼i f
2

ij þ
P

j>k 6¼i f
2

ijk þ . . .).

Our results show that the VF vi plays an important role. It determines the slope of the negative

relationship between the fitness effect and background fitness. At the same time, it determines the

magnitude of the idiosyncratic fluctuations away from this trend. We also note that this slope can be

used to experimentally probe the contribution of a locus to the trait (i.e., its VF) taking into account

all orders of epistasis, which circumvents the estimation of the individual f ’s in Equation (2). The the-

ory additionally predicts that the slope obtained by regressing the sum of fitness effects of two

mutations at loci i; j against background fitness is proportional to vij ¼ vi þ vj � 2eij, where eij quanti-

fies the magnitude of epistatic interactions of all orders between i and j (SI).

Importantly, while the fitness effects of individual mutations (and hence the DFEs) may change

over the course of evolution due to epistasis, the distribution of variance fractions (DVF) across loci,

PðvÞ, is an invariant measure of the range of effect sizes available to the organism during adaptation.

As we will see, this means that the DVF plays an important role in determining long-term

adaptability.

Numerical results and experimental tests
To illustrate our analytical results, we first demonstrate that the effects described above are repro-

duced in numerical simulations. To do so, we numerically generated a genotype-phenotype map of

the form in Equation (2), with ‘ ¼ 400 loci and an exponential DVF, PðvÞ ¼ �v�1e�v=�v, where �v ¼ 0:02
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(Materials and methods). This DVF is shown in Figure 2a. Note that �v‘ � 1 corresponds to an epi-

static landscape; �v‘ ¼ 8 chosen here thus corresponds to a model within the WE limit (note that

~vi » vi in this parameter range). Using this numerical landscape, we measured the fitness effect of

mutations at 30 loci across 640 background genotypes with a range of fitnesses (Figure 2b). Our

results recapitulate the predicted linear dependence on background fitness (Figure 1c, d), with a

negative slope equal to twice the VF predicted from Equation (5). We further simulated the evolu-

tion of randomly generated genotypes similar to the experimental procedure used in

Kryazhimskiy et al., 2014 (Figure 2c), finding that our results reproduce the patterns of declining

adaptability observed in experiments (Figure 1b). Note that ~10 mutations are fixed during this sim-

ulated evolution; declining adaptability here is not due to a finite-sites effect.

As described previously, Equation (5) implies a proportional relationship between the magnitude

of global epistasis (quantified by the slope of the relationship between the fitness effect of a muta-

tion and the background fitness) and the magnitude of microscopic epistasis (quantified by the resid-

ual variance around this linear trend); see also Figure 3a. We verify this relationship in simulations

(Figure 2d). We predict that the slope obtained by regressing the sum of fitness effects of two

a b c

d e f

Figure 2. Global epistasis is recapitulated in a generic model of a complex trait and leads to testable predictions. (a) The distribution of variance

fractions over 400 loci for the simulated genotype-phenotype map. (b) The predicted linear relationship between fitness effect (relative to the fitness

effect on the least fit background) and background fitness for the mean over 30 randomly chosen loci (red, solid line) and five loci (dashed lines in

colors) is recapitulated. The slope of the linear fit for each locus is proportional to its variance fraction, v (slope = �2v). Mean and SE are over

backgrounds of approximately equal fitness. See Materials and methods for more details. (c) The mean fitness gain after 25 (green) and 50 (orange)

generations of simulated evolution of 768 independently adapting populations with 64 unique founders and 12 replicates each. Means and SEs are

computed over the 12 replicates. Error bars are s.e.m. (d) The relationship predicted from theory between the residual variance from the linear fit for

each locus and its slope is confirmed in simulations. (e) The mean fitness effect for single mutants at 30 loci and double mutants from all possible pairs

of the 30 loci. The slope for the double mutants is predicted to be roughly twice that of single mutants. (f) The estimated variance fraction of a double

mutant with mutations at two loci is predicted from theory and confirmed in simulations to be approximately the sum of the variance fractions for single

mutations at the two loci. Sub-additivity is due to epistasis between the two loci. See Materials and methods for more details.
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mutations at loci i; j against background fitness is proportional to vij ¼ vi þ vj � 2eij. We further

assume that eij ¼ Oð�v2Þ (specifically, eij ¼ vivj for the genotype-phenotype map used for numerics).

Since vi and vj are typically small for a complex trait, we expect near-additivity vij » vi þ vj and that

any deviations are sub-additive, which is confirmed in simulations (Figure 2e, f).

While testing the latter prediction on double mutants requires further experiments, we can imme-

diately test the relationship between the slope and the distribution of residuals from existing experi-

mental data. To do so, we reanalyzed the data from Johnson et al., 2019, which measured the

fitness effect of 91 insertion mutants on about 145 backgrounds. These background strains were

obtained by crossing two yeast strains that differed by » 40; 000 single-nucleotide polymorphisms

(SNPs). Of these 40,000 loci, ‘ » 40 have been identified as causal loci with currently available map-

ping resolution (Bloom et al., 2015). In Figure 3, we show the estimated ~vi (negative one-half of the

slope of the best-fit line) and the VF vi for each of the 91 mutations. These mutations were selected

after screening for nonzero effect, and thus the DVF is biased upwards. The mean VF is �v» 0:06. The

wide range of vi observed in the data implies that the epistatic influence of loci varies greatly across

loci, and we will show further below that this is crucial for maintaining a supply of beneficial muta-

tions even when the organism is well-adapted to the environment.

Our theoretical results imply that we expect the linear relationship between background fitness

and fitness effect to be negative if the additive effects of a locus’ interacting partners are not much

larger than the epistatic terms. Specifically, we define the additivity of interacting loci (AoIL) for locus

i as

b

e

Residual

(Residual 

variance)1/2

Slope = -2a c d

f

Figure 3. Experimental observations from Johnson et al., 2019 are consistent with theoretical predictions. (a) The fitness effect of one of the 91

mutations from Johnson et al., 2019 plotted against background fitness. (b) The distribution of the measured ~vi (negative one-half of the slope from a)

and variance fractions vi for the 91 insertion mutations. (c, d) ~vi plotted against the additivity of interacting loci (AoIL) and the additivity of the mutated

locus (see main text for definitions). The histograms are shown below the plots. The sign of the trend depends on the AoIL rather than the additivity of

the mutated locus. (e) The measured variance of the residuals against the prediction ~við1� ~viÞ, shown here for the 91 mutations. The yellow circles

correspond to the loci with AoIL lt0.5. The best-fit line (yellow dashed line) to these loci has R2 ¼ 0:50 (R2 ¼ 0:42 for all points). (f) The shape of the

distribution of residuals pooled from all 91 mutations aligns well with the prediction from Equation (3). The variances of the two distributions are

matched. Inset: same plot in log-linear scale. See Materials and methods for more details.
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AoILðiÞ �
j
P

j 6¼i fjfijþ
P

j>k 6¼i fjkfijk þ . . . j
P

j 6¼i f
2
ij þ

P

j>k 6¼i f
2

ijk þ . . .
� �

þ jPj 6¼i fjfijþ
P

j>k 6¼i fjkfijk þ . . . j
; (7)

which we show can be estimated from data (Materials and methods and SI). If the AoIL is less than

half, Equation (4) implies that the linear trend is guaranteed to be negative. If instead the AoIL is

greater than 0.5, the trend can be either positive or negative. The data shows a range of AoIL

between 0 and 1 across loci. As predicted by our theory, we find that the loci with AoIL lt0.5 always

show negative trends and the ones with AoIL gt0.5 show both negative and positive trends

(Figure 3c). Importantly, the sign of the trend is determined by the AoIL and not by the additivity of

the mutated locus, which we define as

AdditivityðiÞ � f 2i
f 2i þ

P

j 6¼i f
2
ij þ

P

j>k 6¼i f
2

ijk þ . . .
: (8)

The additivity across loci also has a wide range. However, small additivity does not necessarily

imply a negative trend (Figure 3d).

We next used the data from Johnson et al., 2019 to analyze the relationship between the slope

of the linear trend and the residual variance around this trend. We find that the experimental data

confirms our theoretical prediction that the residual variance is proportional to ~við1� ~vi) if the AoIL is

small (Figure 3e, R2 ¼ 0:5 for loci with AoIL ¡ 0.5 and R2 ¼ 0:42 for all loci). The Gaussian-distributed

term in Equation (3) also predicts the shape of the distribution of the residuals given the VFs, which

aligns well with the empirical distribution of the residuals (Figure 3f).

Together, these theoretical results and our reanalysis of experimental data show that linear pat-

terns of global diminishing-returns and increasing-costs epistasis are a simple consequence of wide-

spread epistatic interactions. The DVFs observed in data (Figure 3b) further imply that the epistatic

influence of different loci on fitness can vary across a wide range. In what follows, we show that

these two observations can be put together to make general predictions about the DFEes, and con-

sequently the long-term dynamics of adaptation. The key ingredient that enables this analysis

(including Equation (5)) is that in the WE limit fitness and fitness effects are jointly normal (with

respect to a uniform distribution over all possible genotypes), which allows us to quantify complex

dependencies between these variables in terms of pairwise covariances.

The distribution of fitness effects
Long-term adaptation is determined by the DFEs of possible mutations and the stochastic dynamical

processes that lead to fixation. While Equation (5) represents the distribution of the fitness effects

of a specific mutation at locus i over all genotypes in the population that have fitness y, we are

instead interested in the DFE, where fitness effects are measured for all the mutations arising in the

background of a particular genotype that has fitness y. For now we ignore the influence of evolution-

ary history on the DFE; we expand on that complication in the following section.

Examining the DFE over ‘ loci for a randomly chosen genotype of fitness y can be thought of as

sampling the fitness effects s1; s2; . . . ; s‘ from the conditional joint distribution Pðs1; s2; . . . ; s‘jyÞ, which
generally depends on epistasis. If the number of independent, nonzero epistatic terms is large, then

Pðs1; s2; . . . ; s‘jyÞ is a multivariate normal distribution defined by the means and covariances of the

‘þ 1 variables y; s1; s2; . . . ; s‘, which in turn can be computed in terms of the f ’s from Equation (2). In

particular, the conditional means and covariances are MeanyðsiÞ ¼ �2viðy� �yÞ,
Covyðsi; sjÞ ¼ 4Vðeij � vivjÞ, where eij is the epistatic VF between loci i and j and eii ¼ vi. This implies

that the conditional correlation between fitness effects is ðeij � vivjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vivjð1� viÞð1� vjÞ

p
.

The DFE simplifies considerably if we make certain additional assumptions on the magnitude of

epistatic interactions. If we assume the typical VF �v is small (i.e., �v � 1) and also that eij is Oð�v2Þ, then
correlations are Oð�vÞ and thus negligible. Then, in a particular sample s1; s2; . . . ; s‘, we can think of

each si as being drawn independently with mean �2viðy� �yÞ and variance 4viV . To compute the

DFE, �ðsjyÞ, we first sample the VF from the DVF, PðvÞ, and then sample a Gaussian random variable

with the aforementioned mean and variance. This leads to the DFE
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�ðsjyÞ ¼
Z

1

0

dvð2
ffiffiffiffiffiffi

vV
p

Þ�1
PðvÞ’ sþ 2vðy��yÞ

2
ffiffiffiffiffiffi
vV

p
� �

; (9)

where ’ is the standard normal pdf. Curiously, the correlations between si’s vanish when eij ¼ vivj, in

which case the above equation is exact and the DFE is determined entirely by the DVF. Further

below, we introduce a specific fitness landscape model for which this relation does hold. Diminish-

ing-returns is naturally incorporated in Equation (9): the mean of s is �2�vðy��yÞ, that is, the DFE

shifts progressively towards deleterious values with increasing fitness.

Historical contingency in adaptive trajectories
A key unresolved question is the extent to which evolutionary history influences the DFE and the

dynamics of adaptation (Agarwala and Fisher, 2019). That is, what does our theory say about his-

torical contingency?

Suppose a clonal population of fitness y0 accumulates k successive mutations resulting in fitnesses

y1; y2; . . . ; yk. By virtue of arising on the same ancestral background, the fitness gain of a new muta-

tion, skþ1, is in general correlated with the full sequence of past fitnesses and the identity of the k

mutations through its epistatic interactions with them. Based on these correlations, we use well-

known properties of conditional normal distributions (Eaton, 1983) to write

skþ1 ¼
Xk

i¼0

wkþ1;iyi þ �; (10)

where the weights wkþ1;i depend on the VF (vkþ1) of the new mutation and its epistatic interactions

with past mutations. Here, � is the normally distributed residual that depends on the initial genotype

and the weights (SI). Equation (10) is a generalization to a sequence of mutations of Equation (5),

which we can think of as the special case where k¼ 0.

To gain intuition, it is useful to first analyze Equation (10) when k ¼ 1 (i.e., to compute the effect

of a second mutation conditional on the first). In this case, we show in the SI that

s2 ’�2v2ðy1 ��yÞþ v1v2 � e12

v1
s1þ �; (11)

where s1 ¼ y1� y0 is the fitness effect due to mutation 1. The first term on the right-hand side is the

dependence on the fitness of the immediate ancestor, similar to the corresponding term in Equa-

tion (5). The second term quantifies the influence of epistasis between loci 1 and 2 on s2. When

e12 ¼ v1v2, dependence on s1 vanishes entirely and s2 depends only on y1. In contrast, if loci 1 and 2

do not interact, e12 ¼ 0, and s2 is, on average, larger if the mutation at 1 is beneficial compared to

when it is deleterious. This has an intuitive interpretation: diminishing-returns applies to the overall

fitness and the mechanism through which it acts is epistasis. However, if mutations 1 and 2 do not

interact, then the increase in fitness corresponding to mutation 1 does not actually reduce the effect

of mutation 2 (as expected by diminishing-returns) so the expected effect of mutation 2 is larger.

This analysis suggests that during adaptation, since selection favors mutations with stronger fitness

effects on the current background, a mutation that interacts less with previous mutations is more

likely to be selected.

To identify the conditions under which history plays a minimal role, we would like to examine

when skþ1 depends only on the current fitness, yk, and is independent of both the past fitnesses and

idiosyncratic epistasis. If this were true, then Equation (5) would apply for new mutations that arise

through the course of a single evolutionary path (i.e., the fitness effect of a new mutation is ‘memo-

ryless’ and depends only on its VF and the current fitness). Surprisingly, such a condition does exist.

We show that this occurs when the magnitude of epistatic interactions between the new mutation

and the k previous mutations, ekþ1;1:k, satisfies a specific relation: ekþ1;1:k ¼ vkþ1v1:k, where v1:k is the

combined VF of the k previous mutations (SI). In general, this condition is not satisfied, implying that

there will be historical contingency that can be analyzed using the framework above. Remarkably, it

turns out that a fitness landscape model for which the condition is satisfied does exist and arises

from certain intuitive assumptions on the organization of biological pathways and cellular processes.
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This fitness landscape model additionally serves as an example of a landscape where global epistasis

can vary substantially across loci. We describe this model below.

The connectedness model
We introduce the ‘connectedness’ model (CN model, for short). In this model, each locus i is

involved in a fraction �i of independent ‘pathways,’ where each pathway has epistatic interactions

between all loci involved in that pathway (Figure 4a). The probability of an epistatic interaction

between three loci (i; j; k) is then proportional to �i�j�k since this is the probability that these loci are

involved in the same pathway. When the number of loci ‘ is large, we show that in this model

vi ¼ �i=ð1þ �iÞ, and when ‘ is small, vi ¼ �i=��‘, where �� is the average over all loci (SI). The CN

model therefore has a specific interpretation: the outsized contribution to the fitness from certain

loci (large vi) is due to their involvement in many different complex pathways (large �i) and not from

an unusually large perturbative effect on a few pathways. The distribution, Pð�Þ, across loci deter-

mines the DVF.

Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model

(Neidhart et al., 2013; Agarwala and Fisher, 2019; Kauffman and Weinberger, 1989;

Stadler and Happel, 1999; Aita et al., 2000; Altenberg, 1997) are related to the CN model. Spe-

cifically, the CN model is a subclass of the broader class of generalized NK models (see

Hwang et al., 2018 for a review). However, often-studied fitness landscape models have one impor-

tant difference that distinguishes them and gives qualitatively different dynamics of adaptation

(shown further below): in contrast to the CN model, classical fitness landscapes are typically

1/5

2/5

d

e

c
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Figure 4. The distribution of fitness effect (DFE) and long-term adaptation dynamics predicted for the connectedness model. (a) Schematic of the

connectedness (CN) model, where each locus is associated with a fraction m of pathways that contribute to the organism’s fitness. (b) An alternative

model with modular organization, where sets of loci interact only within the pathways specific to a single module. (c) The DFE predicted from

Equation (14) matches those obtained from simulated evolution of genotypes from the CN model. 128 randomly drawn genotypes (400 loci) with initial

fitness y close to zero are evolved to y ¼ 2:5 and y ¼ 5, and the DFE is measured across loci and genotypes. We chose �y ¼ 0 and V ¼ 1 so that y

represents adaptedness. Insets: same plots in log-linear scale. Note that the number of beneficial mutations acquired during the simulated evolution

( ~ 10-20) is much less than the total number of loci (400). (d) For a neutrally adapted organism, the theory predicts quick adaptation to a well-adapted

state beyond which the adaptation dynamics are independent of the specific details of the genotype-fitness map. Shown here is the mean adaptation

curve predicted under strong-selection-weak-mutation (SSWM) assumptions, which leads to a power-law growth of fitness with exponent 1/5 in the

well-adapted regime (inset). (e) The number of fixed beneficial mutations under SSWM, which grows as a power-law with exponent 2/5 in the well-

adapted regime (inset). The shaded region is the 95 confidence interval around the mean for (c) and (d). See Materials and methods and SI for more

details.
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‘regular.’ That is, the VF of every locus is assumed to be the same (except the star neighborhood

model, which has a bimodal DVF; Hwang et al., 2018).

The CN model is equivalent to a Gaussian fitness landscape with exponentially decaying correla-

tions (SI). The CN model has tunable ruggedness, where the landscape transitions from additivity to

maximal epistasis with increasing ��. Maximal epistasis corresponds to �i ¼ 1 (and hence vi ¼ 1=2) for

all i. From Equation (5), this implies that the new fitness after a mutation occurs is independent of

the previous fitness, consistent with the expectation from a House-of-Cards (HoC) model

(Kauffman and Levin, 1987) (where genotypes have uncorrelated fitness). Regular fitness landscape

models with exponentially decaying correlations have memoryless fitness effects under the restrictive

assumption that every locus is equivalent (Agarwala and Fisher, 2019). We show that the dynamics

of adaptation of the more general CN model are also memoryless, that is, the condition detailed in

the previous section holds true (SI). Yet, as we show below, the predicted dynamics for the CN

model are very different to those from a regular fitness landscape model.

We emphasize that the well-connectedness assumed for the CN model is not a requirement for

Equation (5) to hold. However, how diminishing-returns influences the long-term dynamics of adap-

tation depends on the specific genetic architecture and the corresponding fitness landscape. Con-

sider, for example, an alternative model of genetic networks organized in a modular structure

(Figure 4b). In this model, each locus is part of a single module and interacts epistatically with other

loci in that module to determine the fitness of that module; overall fitness is then determined as a

function of the module fitnesses. In this case, the variance contributed by a locus is due to its addi-

tive contribution and from epistasis between loci restricted to its module. While the argument for

diminishing-returns still applies to the fitness as a whole, it follows from the same argument that

diminishing-returns should also apply to each module separately. Consequently, the dynamics of

adaptation for the modular model are different from the CN model. For simplicity, we analyze the

dynamics of adaptation for the CN model and postpone a discussion of how the dynamics differ for

different models to subsequent work.

The dynamics of adaptation
We now examine the DFE that follows from Equation (5) and what that implies for long-term adap-

tation under the conditions for memoryless fitness effects. We henceforth assume a large number of

loci with sparse epistasis (though the total number of nonzero epistatic terms is still large). This

implies that ‘ � 1, vi � 1 and �v‘ � 1; for simplicity, we also assume strong-selection-weak-mutation

(SSWM) selection dynamics and s � 1;Ns � 1, where s are fitness effects and N is the population

size. Under these conditions, a mutation sweeps and fixes in a population before another one arises.

The probability of fixation of a beneficial mutation, pfix, is then proportional to its fitness effect

(Haldane, 1927).

It is convenient to rescale fitnesses based on the total variance in fitness across all possible geno-

types by defining z ¼ V�1=2ðy� �yÞ;s ¼ V�1=2s; n ¼ V�1=2h. Note that n is normally distributed with

zero mean and unit variance. Here, z has an intuitive interpretation as the ‘adaptedness’ of the

organism. When the organism is neutrally adapted (jzj � 1), positive and negative epistatic contribu-

tions to the fitness are balanced and diminishing-returns is negligible. Diminishing-returns is relevant

when the organism is well-adapted (z � 1). Below, we give the intuition behind our analysis, which is

presented in full detail in the SI.

In the neutrally adapted regime, the linear negative feedback in Equation (5) is negligible and

the DFE is determined by the distribution of ’ v1=2n. Loci with large v can lead to a DFE with a long

tail. If �v is the typical VF of a locus, the fitness increases as z~ ns�v
1=2, where ns is the number of substi-

tutions. Since �v is a measure of overall epistasis, this implies that epistasis speeds adaptation in the

neutrally adapted regime by allowing access to more influential beneficial mutations.

Fitness increases until the effect of the negative feedback cannot be neglected. From Equa-

tion (5), this happens when �vz~�v1=2n (i.e., when z2 ~�v�1). Intuitively, fitness begins to plateau when

its accumulated benefit from substitutions is comparable to the scale of the total genetic variance

(ns�v~ 1) and further improvements are due to rare positive fluctuations. In this well-adapted regime,

diminishing-returns and increasing-costs epistasis strongly constrain the availability of beneficial

mutations, whose effects can be quantified in this model: for a mutation to have a fitness effect s,

we require from Equation (5) that n ’ s=2v1=2 þ v1=2z, which has probability ~ e�n2=2. Beneficial
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effects of large s arise when n has a large positive deviation. The most likely v that leads to a particu-

lar s is when n is smallest (i.e., at v� ’ s=2z), in which case n ’
ffiffiffiffiffiffiffiffi
2sz

p
, yielding a tail probability

~ e�sz. Remarkably, the beneficial DFE in the well-adapted regime is quite generally an exponential

distribution independent of the precise form of the DVF (unless it is singular). In particular, we show

in the SI that for the DFE, �ðsjzÞ,

�ðsjzÞ
�ð�sjzÞ ¼ e�sz; (12)

which depends solely on the adaptedness of the organism. The exponential form arises because of

the Gaussianity of n, but the argument can be easily extended to n with non-Gaussian tails.

An exponential beneficial DFE has been previously proposed by Orr, 2003 but arises here due to

a qualitatively different argument. Orr’s result instead follows from extreme value theory: suppose

the fitness effects of ‘ loci (‘ � 1) are sampled from a DFE �ðsÞ and FðsÞ �
R s

�¥ �ðs0Þds0. Then, the

probability that a beneficial mutation has at least a certain effect size s is Pðsb � sÞ ¼ 1�FðsÞ
1�Fð0Þ »

lnFðsÞ
lnFð0Þ,

where the latter approximation holds when beneficial mutations are rare (i.e., 1� Fð0Þ is small). A

well-known result from extreme value theory (Gumbel, 2004; Majumdar et al., 2020) implies that

for a large family of distributions �ðsÞ and for ‘ � 1, we have �‘ lnFðsÞ / e�ks (for some constant k)

and therefore Pðsb � sÞ ¼ e�ks. This argument is consistent with our results, but does not yield the

dependence of k on adaptedness and the rate of beneficial mutations without additional information

about �ðsÞ.
Under SSWM assumptions, from Equation (12), the typical effect size of a fixed mutation is

sfix ~ z
�1, which typically has a VF,

v�fix ’ sfix=2z~1=2z
2: (13)

The above relation makes precise the effects of increasing-costs epistasis on adaptation. As adap-

tation proceeds, the delicate balance of high fitness configurations constrains fixed beneficial muta-

tions to have moderate VFs. A mutation of small VF is likely to confer small benefit and is lost to

genetic drift, while one with a large VF is more likely to disrupt an established high fitness

configuration.

This intuition is not captured in regular fitness landscape models, which assume statistically equiv-

alent loci, that is, vi ¼ �v for all i and PðvÞ ¼ dðv� �vÞ is singular. From Equation (9), we see that this

leads to a Gaussian DFE whose mean decreases linearly with increasing fitness, in contrast to the

exponential DFE in our theory. The key difference is the lack of loci with intermediate effect, which

drive adaptation in the well-adapted regime. As a consequence, the rate of beneficial mutations

declines exponentially (Ub ~ e
��vz2=2) and the fitness thus sharply plateaus at z ~�v�1=2. In contrast, our

theory predicts a much slower depletion of beneficial mutations, Ub ~ z
�2 (SI). The rate of adaptation

is dz=dt ~Ubpfixsfix ~ z
�4 (since pfix ~sfix), which leads to a slow but steady power-law gain in fitness,

z~ t1=5. The rate of fixation of beneficial mutations is dns=dt ~Ubpfix ~ z
�3 ~ t�3=5, which gives ns ~ t

2=5.

We verify our analytical results using numerics. As before, we generated a genotype-phenotype

map using the CN model with an exponential DVF, PðvÞ ¼ �v�1e�v=�v and ‘ ¼ 400 loci. The DFE can be

calculated exactly by plugging in this PðvÞ in Equation (9):

�ðsjzÞ ¼ �v�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�v�1 þ z2
p e�sz=2�jsj

ffiffiffiffiffiffiffiffiffiffiffiffi
2�v�1þz2

p
=2: (14)

We simulated the evolution of randomly generated genotypes from z¼ 0 to z¼ 2:5 and z¼ 5, and

the DFE across all loci was measured (we chose �y¼ 0;V ¼ 1 so that y¼ z; s¼ s). The theoretical pre-

diction for the DFE, Equation (14), closely aligns with the numerical results (Figure 4c).

Due to computational constraints, it is difficult to simulate evolution deep into the well-adapted

regime. To compute the shape of adaptive trajectories and their variability, we instead simulated

SSWM dynamics using the DFE directly from Equation (14), beginning from a neutrally adapted fit-

ness (z ¼ 0). Typical trajectories (Figure 4d) show rapid adaptation to the well-adapted regime

beyond which the fitness grows slowly as t1=5, as predicted from theory. The predictions for the num-

ber of fixed beneficial mutation are also recapitulated (Figure 4e).
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Discussion
Recent empirical studies have observed consistent patterns of diminishing-returns and increasing-

costs epistasis. Our model gives a simple explanation for these observations. In particular, we

showed that these patterns are generic consequences of widespread microscopic epistatic interac-

tions. The intuition underlying this result is that a random mutation typically has a larger disruptive

effect on the delicate balance of microscopic epistasis that underpins a fitter background. Our

model predicts a quantitative relationship between the magnitudes of global epistasis (i.e., the neg-

ative slope of diminishing-returns and increasing-costs epistasis) and microscopic epistasis, which we

confirmed using existing data (Figure 3).

A similar explanation for diminishing-returns and increasing-costs epistasis has been recently pro-

posed by Lyons et al., 2020. While our core argument for diminishing-returns and increasing-costs

epistasis is the same as in that work, our Fourier analysis framework dissects the features of the fit-

ness landscape necessary to observe these phenomena in terms of experimentally measurable aver-

age effects (i.e., the f ’s in Equation (2)). In particular, we show that the additivity of a locus’

interacting partners critically determines whether the trend is negative or unbiased. In addition, the

Fourier analysis framework yields predictions for the DFEs, the historical influence of past mutations

on the fitness effect of a newly mutated site, and motivates the proposed ‘connectedness’ fitness

landscape model. The analysis of experimental data presented in Lyons et al. complements the

experimental data considered here, lending further empirical support for the prevalence of epistasis

and its importance in determining long-term adaptability.

Our model leads to other experimentally testable predictions. The most direct and accessible test

of the theory is to measure the fitness for all possible combinations of mutations at ~ 10–15 signifi-

cant loci and compare (using Equation (6)) the magnitude of global epistasis to the measured fitness

coefficients (the f ’s). Additionally, we predict that the magnitude of global epistasis of a double

mutant should be nearly the sum of magnitudes of the corresponding single mutants, and any devia-

tions should be biased towards sub-additivity. Since the predictions involve measuring residual vari-

ance, experimental noise can be an important confounding factor.

The observation that diminishing-returns occurs as a ‘regression to the mean’ effect on certain fit-

ness landscapes has been noted previously (Draghi and Plotkin, 2013; Greene and Crona, 2014).

The theory developed here quantifies precisely when we should expect to observe these patterns.

We emphasize that our key result, Equation (5), is a general statistical relation that holds if epistasis

is widespread, irrespective of the specific genetic architecture and the corresponding fitness land-

scape. Weak epistasis with many loci is sufficient to observe noticeable patterns of global epistasis.

However, the argument fails if the contribution of a locus is purely additive or when epistasis is lim-

ited to one or a handful of other loci. In the latter case, we expect the fitness effect of a mutation to

be dominated by the allelic states of its partner loci, and thus take on a few discrete values. A few

examples from Johnson et al., 2019 indeed exhibit this pattern (e.g., cases where the fitness effect

of a specific mutation depends primarily on the allelic state at a single other locus).

We highlight a distinction between global epistasis discussed in this work and another form of

global epistasis (also known as ‘nonspecific’ epistasis) typically used in protein evolution to describe

nonspecific epistatic interactions due to a nearly additive trait transformed by a nonlinear function

(Starr and Thornton, 2016; Otwinowski et al., 2018; Otwinowski, 2018; Sailer and Harms, 2017;

Husain and Murugan, 2020). This nonlinear function creates systematic relationships between epis-

tasis terms and breaks the condition of independent epistatic terms required for our arguments to

apply. Specific nonlinearities such as an exponential function may indeed lead to a negative linear

trend on average, but the structure of the residuals differs from the one in Equation (5) and

observed in data.

A surprising empirical observation is that the negative linear relationship between fitness effect

and ancestral fitness characteristic of global epistasis has different slopes for different loci. Our

model identifies the negative slope as twice the fraction of variance contributed by a locus to the

trait. To explain the wide range of VFs observed in data, we developed the CN model, a framework

to think about the organization of cellular processes that can lead to loci of widely varying VFs. In

the CN model, loci have a large VF due to their involvement in many different pathways rather than

due to a large effect on a single pathway. The CN model can be viewed as a statistical fitness land-

scape where loci can have a range of VFs, specified by the DVFs. In the special case of every locus
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having the same VF, the CN model corresponds to a fitness landscape with tunable ruggedness and

exponentially decaying correlations.

Extending our framework to incorporate adaptation, we showed that the DFE depends only on

the current fitness, rather than the entire evolutionary history, under the intuitive assumptions behind

the CN model. The theory therefore gives a simple explanation for why phenotypic evolution can be

predictable, even while the specific mutations that underlie this evolution are highly stochastic.

Our framework has an implicit notion of ‘adaptedness’ without referencing a Gaussian-shaped

phenotypic optimum, often assumed in models of adaptation (e.g., Fisher’s geometric model)

(Fisher, 1930; Orr, 2005; Martin and Lenormand, 2006). Over the course of adaptation, the DFE

shifts towards deleterious values, reflecting diminishing-returns, which naturally arises from our basic

arguments. For a well-adapted organism, we show that the DFE for beneficial mutations takes on an

exponential form and leads to universal adaptive dynamics. While an exponential DFE for beneficial

mutations has been proposed previously based on extreme value theory (Orr, 2003), our result

arises due to an entirely different argument: the tail of the beneficial DFE is determined by loci of

intermediate size whose disruptive effect due to increasing-costs is small, yet whose effect size is

large enough not to be lost due to genetic drift.

Our theory further predicts declining adaptability, with rapid adaptation in a neutrally adapted

regime followed by much slower increases in fitness, resulting in power-law adaptive trajectories

when the organism is well-adapted. This is consistent with observations from the E. coli LTEE

(Wiser et al., 2013; Lenski et al., 2015). Our model predicts a quicker decline in the number of sub-

stitutions (ns ~ t
2=5) compared to the near linear trend observed in the LTEE data (Good et al., 2017).

However, the dynamics of fixation in the LTEE deviate strongly from SSWM assumptions. This may

explain the discrepancy, although we note that existing theory has only analyzed the effects of clonal

interference and other breakdowns in SSWM assumptions for a constant DFE and weak epistasis

(Good et al., 2012; Schiffels et al., 2011). Further work will be required to understand how these

effects interact with global epistasis. For example, we may expect that the effect of a highly benefi-

cial mutation at a segregating locus is more likely to be attenuated due to interference from subse-

quent deleterious mutations, while a less-fit lineage has a larger pool of beneficial mutations and is

thus more likely to ‘leapfrog’ over more-fit lineages.

Materials and methods
The code and data to generate the figures are available at Reddy, 2020.

Simulations
We use a fitness landscape model with ‘ loci to generate the genotype-fitness map. Each locus is

assigned a sparsity m from Pð�Þ, which is an exponential distribution with mean ��. Each of M inde-

pendent pathways sample loci with each locus i having probability �i of being selected to a pathway.

We choose ‘ ¼ 400; �� ¼ 0:02;M ¼ 500 so that ��‘ ¼ 8 ensures significant epistasis. All loci in a path-

way interact with each other, where additive and higher-order coefficient terms of all orders were

drawn independently from a standard normal distribution. The total fitness is the sum of contribu-

tions from the M pathways. We normalize the coefficients so that the sum of squares of all coeffi-

cients is 1, that is, the total variance across genotypes is 1. The mean, �y, is close to zero from our

sampling procedure. The above procedure is a simple and efficient way to generate epistatic terms

to order ~20, beyond which the computational requirements are limited by the exponentially

increasing demand. Note that the effects described in the paper were also observed with only pair-

wise and cubic epistatic terms.

The VFs shown in Figure 2a can be calculated numerically from the definition. From the theory,

given our choice of Pð�Þ, these should follow an exponential distribution with mean �v » ��=ð1þ ��Þ.
There may be deviations since M is finite whereas the calculations assume M ! ¥. To generate

Figure 2b, in order to get a range of background fitnesses, we first sample 128 random genotypes.

These have fitnesses close to zero; in order to obtain a range of fitness values, we simulated the evo-

lution of these 128 genotypes up to y ¼ 1; 2; 3; 4; 5 under SSWM assumptions to get 128� 5 ¼ 640

genotypes at roughly five fitness values. The fitness effect of applying a mutation (i.e., flipping its

sign) is measured for 30 randomly chosen loci (which are kept fixed) over each of the 640 genotypes.

This is shown for 5 of the 30 and for the mean over the 30 loci in Figure 2b.
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To generate Figure 2c, we sampled 64 random genotypes and 12 replicates of each. The evolu-

tion of these 768 genotypes was simulated for a total of 50 generations with a mutation rate of 1

per generation. The mean fitness gain over the 12 replicates is plotted for each of the 64 founders

against their initial fitness.

To generate Figure 2d, the residuals are measured using the same procedure as for the experi-

mental data analysis described below for the initial 128 genotypes at y » 0 and the 30 loci with the

largest VF.

Double mutants were created by mutating all pairs of the 30 randomly chosen loci on the 640

evolved genotypes. Their mean fitness effect was computed and plotted along with the mean fitness

effect for single mutants, shown in Figure 2e. The VF of the pair of loci for the double mutant was

estimated as before and compared to the sum of the estimated VFs of the corresponding single

mutants. This is shown in Figure 2f.

To generate the plots in Figure 4c, we simulated the evolution of 128 randomly sampled geno-

types to y ¼ 2:5 and y ¼ 5. The fitness effect of 200 randomly sampled loci was measured and the

distribution is plotted.

Analysis of the data from Johnson et al.
The data from Johnson et al., 2019 consists of the fitness after the addition of 91 insertion muta-

tions on each of 145 background genotypes. The fitness of a particular mutation at locus i can be

modeled as

yi ¼�ciyþ bi þResidualiðgÞ; (15)

where yi;y are the mutant and background fitnesses, respectively, ci;bi are constants for each locus,

and the residual ResidualiðgÞ depends on the background genotype g.

We estimate the VF vi ¼ ð1� �̂iÞ=2, where the Pearson correlation �̂i ¼ Corrðyi � y; y� yiÞ, where
the symbol ¯ denotes that the mutant and background fitness datasets are concatenated. ~vi is esti-

mated as the negative one-half of the slope of the best linear fit of si ¼ yi � y and y. The residuals for

each of the 145 genotypes for each of the 91 mutations are simply

ResidualiðgÞ ¼ ðyiþ ciyÞ� ðyiþ ciyÞ; (16)

where the overline represents an average over the 145 genotypes, which is used as an estimate of

the constant term and ci ¼ 2~vi� 1. In Figure 3b, we plot the distribution of estimated vi and ~vi. In

Figure 3c, we compute the AoIL for each locus using Equation (7), which we show in the SI to be

jCovðsi;yiþ yÞj=ðjCovðsi;yiþ yÞjþVarðsiÞÞ. In Figure 3d, we compute the additivity using Equation (8).

The additive effect is fi ¼ ðyi � yÞ=2, and VarðsiÞ=4 gives the sum of squares of the epistatic terms (SI).

In Figure 3e, we compute the variance of the residuals across the 145 genotypes for each locus and

plot it against the locus’ estimated ~við1�~viÞ. In Figure 3f, we plot the distribution of residuals over

all genotypes and loci. The prediction is that in the WE limit the distribution of residuals is deter-

mined by 2~við1�~viÞh, where h is a Gaussian random variable. We multiply
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~við1�~viÞ
p

for each locus

with 10,000 i.i.d. standard normal random variables, pool the resulting numbers for all loci, and plot

the predicted distribution in Figure 3f. The distributions are variance-matched. While Figure 3e

shows that the variance of the residuals aligns with the theoretical prediction of being proportional

to slope, Figure 3f shows that the data is also consistent with the predicted Gaussianity of the back-

ground-genotype-dependent contribution.
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Chou HH, Chiu HC, Delaney NF, Segrè D, Marx CJ. 2011. Diminishing returns epistasis among beneficial
mutations decelerates adaptation. Science 332:1190–1192. DOI: https://doi.org/10.1126/science.1203799,
PMID: 21636771

Couce A, Tenaillon OA. 2015. The rule of declining adaptability in microbial evolution experiments. Frontiers in
Genetics 6:99. DOI: https://doi.org/10.3389/fgene.2015.00099, PMID: 25815007

Draghi JA, Plotkin JB. 2013. Selection biases the prevalence and type of epistasis along adaptive trajectories.
Evolution 67:3120–3131. DOI: https://doi.org/10.1111/evo.12192, PMID: 24151997

Eaton ML. 1983. Multivariate Statistics: A Vector Space Approach. JOHN WILEY & SONS, INC. DOI: https://doi.
org/10.2307/2347710

Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of
adaptation. Nature Reviews Genetics 4:457–469. DOI: https://doi.org/10.1038/nrg1088, PMID: 12776215

Fisher R. 1930. The Genetical Theory of Natural Selection. Clarendon Press. DOI: https://doi.org/10.1046/j.1365-
2540.2000.0713b.x

Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM. 2012. Distribution of fixed beneficial mutations and
the rate of adaptation in asexual populations. PNAS 109:4950–4955. DOI: https://doi.org/10.1073/pnas.
1119910109, PMID: 22371564

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. 2017. The dynamics of molecular evolution over 60,
000 generations. Nature 551:45–50. DOI: https://doi.org/10.1038/nature24287, PMID: 29045390

Greene D, Crona K. 2014. The changing geometry of a fitness landscape along an adaptive walk. PLOS
Computational Biology 10:e1003520. DOI: https://doi.org/10.1371/journal.pcbi.1003520, PMID: 24853069

Gumbel EJ. 2004. Statistics of Extremes. Courier Corporation.
Haldane JBS. 1927. A mathematical theory of natural and artificial selection, part v: selection and mutation. In:
Haldane J. B. S (Ed). Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University
Press. p. 838–844. DOI: https://doi.org/10.1111/j.1469-185X.1924.tb00546.x

Hordijk W, Stadler PF. 1998. Amplitude spectra of fitness landscapes. Advances in Complex Systems 01:39–66.
DOI: https://doi.org/10.1142/S0219525998000041

Husain K, Murugan A. 2020. Physical constraints on epistasis. Molecular Biology and Evolution 37:2865–2874.
DOI: https://doi.org/10.1093/molbev/msaa124, PMID: 32421772

Hwang S, Schmiegelt B, Ferretti L, Krug J. 2018. Universality classes of interaction structures for NK fitness
landscapes. Journal of Statistical Physics 172:226–278. DOI: https://doi.org/10.1007/s10955-018-1979-z

Jerison ER, Kryazhimskiy S, Mitchell JK, Bloom JS, Kruglyak L, Desai MM. 2017. Genetic variation in adaptability
and pleiotropy in budding yeast. eLife 6:e27167. DOI: https://doi.org/10.7554/eLife.27167, PMID: 28826486

Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. 2019. Higher-fitness yeast genotypes are less robust to
deleterious mutations. Science 366:490–493. DOI: https://doi.org/10.1126/science.aay4199, PMID: 31649199

Kauffman S, Levin S. 1987. Towards a general theory of adaptive walks on rugged landscapes. Journal of
Theoretical Biology 128:11–45. DOI: https://doi.org/10.1016/S0022-5193(87)80029-2, PMID: 3431131

Kauffman SA, Weinberger ED. 1989. The NK model of rugged fitness landscapes and its application to
maturation of the immune response. Journal of Theoretical Biology 141:211–245. DOI: https://doi.org/10.1016/
S0022-5193(89)80019-0, PMID: 2632988

Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative epistasis between beneficial mutations in
an evolving bacterial population. Science 332:1193–1196. DOI: https://doi.org/10.1126/science.1203801,
PMID: 21636772

Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Microbial evolution. global epistasis makes adaptation
predictable despite sequence-level stochasticity. Science 344:1519–1522. DOI: https://doi.org/10.1126/
science.1250939, PMID: 24970088

Kubo R. 1966. The fluctuation-dissipation theorem. Reports on Progress in Physics 29:255–284. DOI: https://doi.
org/10.1088/0034-4885/29/1/306

Lenski RE, Wiser MJ, Ribeck N, Blount ZD, Nahum JR, Morris JJ, Zaman L, Turner CB, Wade BD, Maddamsetti R,
Burmeister AR, Baird EJ, Bundy J, Grant NA, Card KJ, Rowles M, Weatherspoon K, Papoulis SE, Sullivan R,
Clark C, et al. 2015. Sustained fitness gains and variability in fitness trajectories in the long-term evolution
experiment with Escherichia coli. Proceedings of the Royal Society B: Biological Sciences 282:20152292.
DOI: https://doi.org/10.1098/rspb.2015.2292, PMID: 26674951

Lyons DM, Zou Z, Xu H, Zhang J. 2020. Idiosyncratic epistasis creates universals in mutational effects and
evolutionary trajectories. Nature Ecology & Evolution 4:1685–1693. DOI: https://doi.org/10.1038/s41559-020-
01286-y, PMID: 32895516

Majumdar SN, Pal A, Schehr G. 2020. Extreme value statistics of correlated random variables: a pedagogical
review. Physics Reports 840:1–32. DOI: https://doi.org/10.1016/j.physrep.2019.10.005

Martin G, Lenormand T. 2006. A general multivariate extension of Fisher’s geometrical model and the
distribution of mutation fitness effects across species. Evolution 60:893–907. DOI: https://doi.org/10.1111/j.
0014-3820.2006.tb01169.x, PMID: 16817531

Neher RA, Shraiman BI. 2011. Statistical genetics and evolution of quantitative traits. Reviews of Modern Physics
83:1283–1300. DOI: https://doi.org/10.1103/RevModPhys.83.1283

Neidhart J, Szendro IG, Krug J. 2013. Exact results for amplitude spectra of fitness landscapes. Journal of
Theoretical Biology 332:218–227. DOI: https://doi.org/10.1016/j.jtbi.2013.05.002, PMID: 23685065

Olver FW, Lozier DW, Boisvert RF, Clark CW. 2010. NIST Handbook of Mathematical Functions Hardback and
CD-ROM. Cambridge university press.

Reddy and Desai. eLife 2021;10:e64740. DOI: https://doi.org/10.7554/eLife.64740 17 of 36

Research article Evolutionary Biology Physics of Living Systems

https://doi.org/10.1126/science.1203799
http://www.ncbi.nlm.nih.gov/pubmed/21636771
https://doi.org/10.3389/fgene.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/25815007
https://doi.org/10.1111/evo.12192
http://www.ncbi.nlm.nih.gov/pubmed/24151997
https://doi.org/10.2307/2347710
https://doi.org/10.2307/2347710
https://doi.org/10.1038/nrg1088
http://www.ncbi.nlm.nih.gov/pubmed/12776215
https://doi.org/10.1046/j.1365-2540.2000.0713b.x
https://doi.org/10.1046/j.1365-2540.2000.0713b.x
https://doi.org/10.1073/pnas.1119910109
https://doi.org/10.1073/pnas.1119910109
http://www.ncbi.nlm.nih.gov/pubmed/22371564
https://doi.org/10.1038/nature24287
http://www.ncbi.nlm.nih.gov/pubmed/29045390
https://doi.org/10.1371/journal.pcbi.1003520
http://www.ncbi.nlm.nih.gov/pubmed/24853069
https://doi.org/10.1111/j.1469-185X.1924.tb00546.x
https://doi.org/10.1142/S0219525998000041
https://doi.org/10.1093/molbev/msaa124
http://www.ncbi.nlm.nih.gov/pubmed/32421772
https://doi.org/10.1007/s10955-018-1979-z
https://doi.org/10.7554/eLife.27167
http://www.ncbi.nlm.nih.gov/pubmed/28826486
https://doi.org/10.1126/science.aay4199
http://www.ncbi.nlm.nih.gov/pubmed/31649199
https://doi.org/10.1016/S0022-5193(87)80029-2
http://www.ncbi.nlm.nih.gov/pubmed/3431131
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.1016/S0022-5193(89)80019-0
http://www.ncbi.nlm.nih.gov/pubmed/2632988
https://doi.org/10.1126/science.1203801
http://www.ncbi.nlm.nih.gov/pubmed/21636772
https://doi.org/10.1126/science.1250939
https://doi.org/10.1126/science.1250939
http://www.ncbi.nlm.nih.gov/pubmed/24970088
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1098/rspb.2015.2292
http://www.ncbi.nlm.nih.gov/pubmed/26674951
https://doi.org/10.1038/s41559-020-01286-y
https://doi.org/10.1038/s41559-020-01286-y
http://www.ncbi.nlm.nih.gov/pubmed/32895516
https://doi.org/10.1016/j.physrep.2019.10.005
https://doi.org/10.1111/j.0014-3820.2006.tb01169.x
https://doi.org/10.1111/j.0014-3820.2006.tb01169.x
http://www.ncbi.nlm.nih.gov/pubmed/16817531
https://doi.org/10.1103/RevModPhys.83.1283
https://doi.org/10.1016/j.jtbi.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23685065
https://doi.org/10.7554/eLife.64740


Orr HA. 2003. The distribution of fitness effects among beneficial mutations. Genetics 163:1519–1526.
PMID: 12702694

Orr HA. 2005. The genetic theory of adaptation: a brief history. Nature Reviews Genetics 6:119–127.
DOI: https://doi.org/10.1038/nrg1523, PMID: 15716908

Otwinowski J. 2018. Biophysical inference of epistasis and the effects of mutations on protein stability and
function. Molecular Biology and Evolution 35:2345–2354. DOI: https://doi.org/10.1093/molbev/msy141,
PMID: 30085303

Otwinowski J, McCandlish DM, Plotkin JB. 2018. Inferring the shape of global epistasis. PNAS 115:E7550–
E7558. DOI: https://doi.org/10.1073/pnas.1804015115, PMID: 30037990

Perfeito L, Sousa A, Bataillon T, Gordo I. 2014. Rates of fitness decline and rebound suggest pervasive epistasis.
Evolution 68:150–162. DOI: https://doi.org/10.1111/evo.12234, PMID: 24372601

Poelwijk FJ, Krishna V, Ranganathan R. 2016. The Context-Dependence of mutations: a linkage of formalisms.
PLOS Computational Biology 12:e1004771. DOI: https://doi.org/10.1371/journal.pcbi.1004771, PMID: 273376
95

Reddy G. 2020. Greddy992. https://github.com/greddy992/global_epistasis
Rice DP, Good BH, Desai MM. 2015. The evolutionarily stable distribution of fitness effects. Genetics 200:321–
329. DOI: https://doi.org/10.1534/genetics.114.173815, PMID: 25762525

Sailer ZR, Harms MJ. 2017. Detecting High-Order epistasis in nonlinear Genotype-Phenotype maps. Genetics
205:1079–1088. DOI: https://doi.org/10.1534/genetics.116.195214, PMID: 28100592

Sanjuán R, Cuevas JM, Moya A, Elena SF. 2005. Epistasis and the adaptability of an RNA virus. Genetics 170:
1001–1008. DOI: https://doi.org/10.1534/genetics.105.040741, PMID: 15879507

Schenk MF, Szendro IG, Salverda ML, Krug J, de Visser JA. 2013. Patterns of epistasis between beneficial
mutations in an antibiotic resistance gene. Molecular Biology and Evolution 30:1779–1787. DOI: https://doi.
org/10.1093/molbev/mst096, PMID: 23676768
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Appendix 1

Diminishing-returns and increasing-costs epistasis in a model of a
complex trait
In the main text, we propose that the fitness effect after a mutation at locus i can be written as

si ¼�2viðy��yÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

við1� viÞ
p

hi; 0� vi � 1: (17)

Here, hi is a genotype and locus-dependent contribution, which is distributed as a mean-zero

Gaussian with variance equal to the total genetic variance, �y is a constant, and vi is the variance frac-

tion, which is defined further below. Equation (17) corresponds to the symmetric case where the fit-

ness effects of the mutations xi ¼�1!þ1 and xi ¼þ1!�1 are simultaneously regressed against

their respective background fitness. The directed case when the mutation is specified to change

from xi ¼�1!þ1 (or xi ¼þ1!�1) will be considered in the directed mutation section below.

We show that Equation (17) arises under certain conditions in a generic model of a complex trait

with ‘ � 1 biallelic loci. Essentially, we would like to compute the distribution of the new fitness, yi,

across genotypes after a mutation at locus i given the current fitness y and the set of all parameters

Q of the model (i.e., Pðyijy;QÞ, with si ¼ yi � y). Using the chain rule of probability, we can write

Pðyijy;QÞ ¼
X

g

Pðyijg;QÞPðgjy;QÞ; (18)

where the sum is over all possible genotypes. While Pðyijg;QÞ is determined by the genotype-fitness

map, Pðgjy;QÞ is the crucial factor that gives weight only to the genotypes that yield the current fit-

ness y. If the fitness is much larger than the mean fitness over all possible genotypes, Equation (18)

implicitly ensures that weight is given to only those genotypic configurations that lead to such an

unusually large fitness. We will analyze the case of a ‘microcanonical ensemble’ where every geno-

typic configuration that leads to a particular fitness is equally likely (with no linkage), that is, the prior

PðgÞ across genotypes is uniform (see the section ’Maximum entropy interpretation’ for a

discussion).

It is difficult to directly evaluate the sum in Equation (18). In the following sections, we give a sim-

ple derivation but elaborated to highlight the key assumption that leads to Equation (17). In short,

the negative correlation between si ¼ yi � y and y implied by Equation (17) is a trivial consequence

of yi and y having the same distribution w.r.t. PðgÞ. hi is in general arbitrary and determined by the

genotype-fitness map. However, hi is normally distributed if we make certain assumptions about the

structure of epistasis in the genotype-fitness map. The emergence of the negative linear relationship

for a directed mutation xi ¼ �1 ! þ1 is subtler.

Fourier representation of the fitness function
The fitness yðgÞ for a genotype of length ‘, g ¼ fx1; x2; . . . ; x‘g, where xi ¼ �1, can be generally writ-

ten as Poelwijk et al., 2016; Neher and Shraiman, 2011

yðgÞ ¼ �yþ
X

i

fixiþ
X

i>j

fijxixjþ
X

i>j>k

fijkxixjxk þ . . . (19)

The symmetric choice of xi ¼�1 is chosen for mathematical convenience. In this form, the total

variance contribution from the qth-order epistatic terms is
P

i1>i2>...iq
f 2i1i2 ...iq , and the total genetic vari-

ance, defined as

V � 1

2‘

X

g

ðyðgÞ��yÞ2; (20)

is the sum of variance contributions from orders q¼ 1 to ‘, that is, the sum of squares of all the f ’s.

The sum over the 2
‘ genotypes is an expectation value assuming all genotypes are equally likely; we

will denote this expectation using an overline hereafter. We use this expectation value as a proxy for

empirical averages over the ‘background’ genotypes in a population. With a sufficient number of

background genotypes, the empirical average should converge to this expectation value.
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The representation in Equation (19) is a Fourier representation of the fitness function on the ‘-

dimensional hypercube and makes calculations much simpler. For instance, to get the terms from

each order, we have

�y¼ yðgÞ; fi ¼ xiyðgÞ; fij ¼ xixjyðgÞ; . . . (21)

It is useful to define the variance contribution due to a particular locus i as (symmetry w.r.t. inter-

changing indices is used for each term throughout)

Vi � f 2i þ
X

j 6¼i

f 2ij þ
X

k<j 6¼i

f 2ijk þ . . . : (22)

We also define the variance fraction of locus i,

vi �
Vi

V
; (23)

which plays a key role in the model.

Derivation of Equation (17)
We would like to relate the fitness before and after locus i is flipped (i.e., xi ! �xi), denoted by y

and yi, respectively. We have from Equation (19),

y��y¼ y�iþ �i; (24)

yi��y¼ y�i � �i; (25)

where y�i and �i respectively contain all the terms not containing and containing locus i, that is,

�i ¼ fixiþ
X

j 6¼i

fijxixjþ
X

k<j 6¼i

fijkxixjxk þ . . . : (26)

We have y�i ¼ ðyþ yiÞ=2��y and �i ¼ ðy� yiÞ=2. Since y�i and �i contain all the genotype dependence,

we can write

Pðyijy;QÞ / Pðyi;yjQÞ (27)

¼
Z

Pðyi;yjy�i; �iÞPðy�i; �ijQÞdy�i�i (28)

¼ P y�i ¼
yþ yi

2
��y; �i ¼

y� yi

2
jQ

� �

: (29)

From the properties of the Fourier representation in Equation (21), it is easy to see that the

means are y�i ¼ 0; �i ¼ 0, the variances are y2�i ¼ V �Vi, �2i ¼ Vi, and the covariance is y�i�i ¼ 0.

The calculations so far have been exact. We now make the key assumption that y�i and �i are both

normal-distributed across genotypes. This assumption is similar to that of Fisher’s infinitesimal

model, where the distribution of trait values across strains for a complex trait is argued to be nor-

mal-distributed since the trait value is due to infinitesimal independent contributions from many loci.

While y�i is easily seen to be normal-distributed for large ‘, an argument can be made for �i only if

locus i has a large number of independent, nonzero epistatic terms and the additive term fi is smaller

in magnitude than the epistatic terms; specifically, we require that f 2i <~
P

j 6¼i f
2

ij þ
P

k<j 6¼i f
2

ijk þ . . .. If

instead f 2i �P

j 6¼i f
2

ij þ
P

k<j 6¼i f
2

ijk þ . . ., then �i is bimodal, where the two modes correspond to �i » �
fi at xi ¼ �1. For loci with pairwise and third-order epistasis, the number of pairwise and third-order

epistatic terms scale / ‘ and / ‘2, respectively, which justifies the normality assumption for large ‘

even if individual epistatic terms are smaller in magnitude than the additive terms.

Under these assumptions and since y�i and �i are linearly independent, we have

Pðyijy;QÞ / ’
yþ yi� 2�y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V �Vi

p
� �

’
y� yi

2
ffiffiffiffiffi
Vi

p
� �

; (30)
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where ’ is the standard normal pdf. Therefore, yi is normal-distributed across genotypes and from

the above equation can be written as

yi ��y¼ ð1� 2viÞðy��yÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

við1� viÞ
p

hi; (31)

where the VF vi ¼ Vi=V was defined previously and hi ¼ 0;h2
i ¼ V . This leads to the form in

Equation (17),

si ¼�2viðy��yÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

við1� viÞ
p

hi: (32)

The above derivation was presented to clarify the basic assumptions. Simply computing the

covariance between y and yi in Equations (24) and (25), we get ðy��yÞðyi ��yÞ ¼ y2�i � �2i ¼ V � 2Vi. The

correlation is then 1� 2vi. Equation (32) follows if additionally yi;y are jointly Gaussian, which is true

if locus i has many independent, nonzero epistatic terms.

Directed mutation
Previously, we considered the symmetric flip xi ! �xi and averaged over all ‘ loci including i. Here,

we consider the case when the mutation is specified to change either from xi ¼ �1 ! þ1 or

xi ¼ þ1 ! �1. In this case, we should average over all loci except i.

We consider xi ¼ �1 ! þ1 (the opposite case is similar). The fitness before the mutation is

y�i ¼ �y� fi þ
X

j 6¼i

ðfj� fijÞxj þ
X

j>k 6¼i

ðfjk � fijkÞxjxk þ . . . ; (33)

and the fitness after the mutation is

yþi ¼ �yþ fi þ
X

j 6¼i

ðfjþ fijÞxj þ
X

j>k 6¼i

ðfjk þ fijkÞxjxk þ . . . ; (34)

so that

si ¼ yþi � y�i ¼ 2fiþ 2

X

j 6¼i

fijxjþ 2

X

j>k 6¼i

fijkxjxk þ . . . : (35)

The tilde and hat are used here to distinguish the fitness from the yi defined previously for the

symmetric case corresponding to the flip xi !�xi. We can easily compute averages over genotypes

using the Fourier orthogonality relations. To compute the expectation value of products of two

quantities, say si and y�i , we simply compute a dot product where the components of the vectors are

the coefficients of terms in the expansion above. For example, siy
�
i is

ð�y� fiÞð2fiÞþ
P

j 6¼iðfj� fijÞð2fijÞþ
P

j>k 6¼iðfjk � fijkÞð2fijkÞþ . . .. We have for the means, variances, and

covariances,

si ¼ 2fi; (36)

y�i ¼ �y� fi; (37)

ðsi� siÞ2 ¼ 4

X

j 6¼i

f 2ij þ 4

X

j>k 6¼i

f 2ijk þ . . . ; (38)

ðy�i � y�i Þ2 ¼
X

j 6¼i

ðfj � fijÞ2þ
X

j>k 6¼i

ðfjk � fijkÞ2þ . . . ; (39)

ðsi��siÞðy�i � y�i Þ ¼ 2

X

j 6¼i

ðfj� fijÞfijþ 2

X

j>k 6¼i

ðfjk � fijkÞfijk þ . . . (40)
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¼ 2

X

j 6¼i

fjfij þ
X

j>k 6¼i

fjkfijk þ . . .

 !

�ðsi ��siÞ2
2

(41)

The slope when si is regressed against y�i is ðsi� siÞðy�i � y�i Þ=ðy�i � y�i Þ2. We can define a ‘modi-

fied’ VF ~vi as half the negative slope,

~vi �
ðsi � siÞ2=4�

P

j 6¼i fjfij þ
P

j>k 6¼i fjkfijk þ . . .
� �

P

j 6¼iðfj� fijÞ2 þ
P

j>k 6¼iðfjk � fijkÞ2þ . . .
; (42)

¼
P

j 6¼i f
2

ij þ
P

j>k 6¼i f
2

ijk þ . . .
� �

� P

j 6¼i fjfij þ
P

j>k 6¼i fjkfijk þ . . .
� �

P

j 6¼iðfj � fijÞ2þ
P

j>k 6¼iðfjk � fijkÞ2 þ . . .
: (43)

Writing the linear form based on this correlation, we get

si ¼ 2fi � 2~viðy�i � yþ fiÞþKihi; (44)

where hi is again normally distributed (in the WE limit) with zero mean and variance ðy�i � y�i Þ2 and

K2

i ¼
ðsi��siÞ2

ðy�
i
�y�

i
Þ2
� 4~v2i . Note that, unlike vi, ~vi can be negative.

However, we argue that ~vi is typically positive in the WE limit, which leads to a negative linear

trend. The second term in the numerator on the right-hand side of Equation (42) has the same num-

ber of terms as ðsi � �siÞ2, but these terms appear as products of Fourier coefficients that may have

opposing signs. In particular, if
P

j6¼i f
2

ij>
P

j 6¼i fjfij,
P

j>k 6¼i f
2

ijk>
P

j 6¼i fjkfijk, and so on, then ~vi is guaran-

teed to be positive. If we denote the typical magnitude of qth-order epistasis terms as eq (e1 corre-

sponds to additive effects), each of this relationships has the form e2qþ1
‘>eqeqþ1

ffiffi

‘
p

when ‘ � 1,

that is, eq<eqþ1

ffiffi

‘
p

. If the number of loci is sufficiently large, then these relationships will hold even if

the typical magnitude of individual higher-order epistasis terms is smaller than the lower-order

terms. We therefore expect that the second term in the numerator on the right-hand side of Equa-

tion (42) is smaller than ðsi��siÞ2
2

when ‘ � 1. A similar argument can be made for the cross terms

fjfij; fjkfijk ; . . . once the squares in the denominator of the right-hand side of Equation (42) are

expanded.

When ‘ � 1, we can then write

~vi »
Vi� f 2i
V � f 2i

¼ vi� f 2i =V

1� f 2i =V
»vi� f 2i =V : (45)

Further, in the WE limit, K2

i »4~vi� 4~v2i so that the variance of Kihi is / ~við1�~viÞ.
To estimate the ratio of the magnitudes of the second and first terms in the numerator on the

right-hand side of Equation (42) from data, we use the expression for the covariance,

ðsi � siÞðyþi � yþi Þ ¼ 2

X

j 6¼i

ðfj þ fijÞfij þ 2

X

j>k 6¼i

ðfjk þ fijkÞfijk þ . . . ; (46)

to get

jPj 6¼i fjfijþ
P

j>k 6¼i fjkfijk þ . . . j
P

j 6¼i f
2
ij þ

P

j>k 6¼i f
2

ijk þ . . .
¼ jCovðsi;y�i ÞþCovðsi;yþi Þj

VarðsiÞ
¼ jCovðsi;y�i þ yþi Þj

VarðsiÞ
(47)

Comments on the result
Fitness as a nonlinear function of an additive trait

The negative linear trend observed in data may arise due to the measured fitness being a nonlinear

function of an unobserved additive trait. In this case, the epistasis terms are systematically related to
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each other and the independence assumptions used to derive Equation (32) break down. In short,

we show that specific nonlinearities can indeed lead to a negative linear trend, but the statistics of

the residuals observed in data make this possibility unlikely.

Suppose the fitness is y ¼ fðuÞ, where f is a nonlinear function, u ¼ f0 þ
P

i fixi is the unobserved

additive trait, f0 is a constant, and fi are additive coefficients. For a linear trend, we require

si ¼ fðuiÞ � fðuÞ / fðuÞ, where ui ¼ u� 2fixi for the flip xi ! �xi. For small fi relative to the other

coefficients, we can Taylor expand fðuiÞ and show that we require fðuÞ / eu to get a linear trend.

This nonlinearity creates a linear trend with slope e�2fixi � 1. For a negative linear trend, we require

2fixi>0. However, even if this condition is true, the relation si ¼ ðe�2fixi � 1Þy is exact and there are no

residuals.

To introduce residuals, suppose instead that u ¼ f0 þ
P

i fixi þ h, where h is a HoC term, that is, it

is an independent Gaussian random variable (mean 0, variance s2

h) across genotypes and repeatable

across measurements. h introduces epistasis in the unobserved trait. We have si ¼ ðe�2fixiþhi�h � 1Þy,
where hi is the HoC term after the mutation, so that the average fitness effect conditional on y is

�si ¼ ðe�2fixiþs2

h � 1Þy. The conditional variance of the residuals is ðsi � �siÞ2 ¼ e�4fixiþ2s2

hðe2s2

h � 1Þy2. Note

that the residual variance is no longer proportional to the slope and this variance increases as y2,

which are both inconsistent with the data.

Maximum entropy interpretation

The expectation values are averages over all the genotypes assuming that every genotype of a par-

ticular fitness is equally likely, that is, the distribution over genotypes is uniform. This assumption is

analogous to ensemble averages over a microcanonical ensemble in statistical physics, where one

assumes that all the particle configurations that have a particular energy are equally likely. The

experimental setting in Johnson et al., 2019 is similar. The background genotypes are generated

from a cross between two strains, which due to recombination makes each locus have equal proba-

bility of being one of the two alleles. Closely linked loci may be considered together as blocks.

Some of the loci are partially linked, which may lead to deviations from the predictions. The expres-

sions derived above can be easily extended to the case with different background genotype

statistics.

The uniform distribution has an information-theoretic interpretation as the distribution that has

the maximum entropy (MaxEnt) given no additional knowledge of how the genotype was generated.

Equation (32) can therefore be viewed as the MaxEnt prediction of the fitness effect if locus i is

mutated conditioned on the current observed fitness y. A key idea that will be used throughout the

paper is that when each locus i has a significant number of independent, nonzero epistatic terms,

the distribution of fitness and fitness effects is jointly normal with respect to the uniform prior over

genotypes. From well-known properties of multivariate normal distributions, the MaxEnt predictions

of unobserved variables are multilinear forms of the observed variables. For example, the MaxEnt

prediction for si given an observed sequence of past fitness is an autoregressive Gaussian process

defined by the covariance between the unobserved and observed variables (see section

’History dependence’ below).

Varying a subset of loci

In addition, the sums in Equation (19) are over ‘ loci involved in a trait. In reality, we may vary a sub-

set P of all loci and take averages over only this subset. The derivation still follows through in this

case; we can simply write the fitness in terms of effective parameters as

yðgÞ ¼ ~yþ
X

i2P
~fixi þ

X

i;j2P
~fijxixjþ . . . ; where (48)

~y¼ �yþ
X

i 62P
fixiþ

X

i;j 62P
fijxixjþ . . . ; (49)
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~fi ¼ fi þ
X

j 62P
fijxj þ

X

j;k 62P
fijkxjxk þ . . . ; and so on: (50)

Here, we are abusing notation — it is to be assumed that a coefficient with a particular combina-

tion of indices appears only once in the sums. The results from the previous section still apply w.r.t.

these new effective parameters. For instance, the total variance and the variance due to locus i 2 P

are

~V ¼
X

i2P
~f 2i þ

X

i;j2P
~f 2ij þ

X

i;j;k2P

~f 2ijk þ . . . ; (51)

~Vi ¼ ~f 2i þ
X

j2P
~f 2ij þ

X

j;k2P

~f 2ijk þ . . . ; (52)

and the effective VF is ~Vi=~V .

Relationship to the fluctuation-dissipation relation

Equation (32) is analogous to the fluctuation-dissipation theorem in statistical physics (Kubo, 1966),

which relates the response of a thermodynamic system to a perturbation. The relationship between

the magnitude of macroscopic epistasis (the slope in Equation (32)) and the variance due to the

background genotypes is analogous to the relationship between viscous drag and Brownian motion

(Kubo, 1966). For Brownian motion, the normality arises due to numerous independent collisions of

a particle with neighboring particles. In our case, natural selection acts as an external perturbation

that pushes the system away from equilibrium (here �y). Diminishing-returns naturally arises as the

tendency of the system to revert to its entropically favored equilibrium state.

Variance fraction of double mutants

Using the arguments from the previous section, it is easy to show that the variance of a double

mutant at loci i and j, Vij, is necessarily sub-additive. In particular, we have

Vij ¼ ViþVj � 2Iij; where (53)

Iij ¼ f 2ij þ
X

k 6¼i;j

f 2ijk þ . . . (54)

is the total epistatic variance between loci i and j. The correlation between the new fitness after a

double mutation and the previous fitness is 1� 2Vij=V � 1� 2vij ¼ 1� 2vi � 2vj þ 2eij, where eij � Iij=V is

the epistatic variance fraction between i and j.
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Appendix 1—figure 1. The mean fitness trajectory and the mean number of substitutions predicted

by the model in the strong-selection-weak-mutation regime. (a) The scaled fitness vs. scaled time.

Shown below is the fitness in log-scale to highlight the different scalings in the neutrally adapted

and well-adapted regimes. The slopes of the dashed lines are shown. (b) The scaled number of

substitutions vs. scaled time as in (a).
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Appendix 2

Connectedness model
We introduce a ‘connectedness’ model (the CN model, for short), where each locus has a probability

�i of being involved in any particular interaction. We can interpret �i as the fraction of independent

pathways that involve locus i, where each pathway has epistatic interactions between all loci involved

in that pathway. The number of independent pathways, M, is assumed to be very large. The proba-

bility of an epistatic interaction between, say loci i; j; k, is proportional to �i�j�k since this is the prob-

ability that these loci are involved in the same pathway. The magnitude of the interaction term is

f 2ijk / �i�j�k, where the proportionality is the magnitude of the perturbative effect of the mutations,

which is assumed to be constant for all orders of interaction. We set this quantity to unity since it

simply scales the fitness coefficients and does not affect subsequent results. The CN model leads to

a specific interpretation (and hence its name): the outsized contribution to the variance from a partic-

ular locus is due to its involvement in many different complex pathways and not from an unusually

large perturbative effect on a few pathways. For large ‘, the CN model is specified by the distribu-

tion, Pð�Þ, across loci. In particular, given Pð�Þ, we can calculate the total genetic variance, V , and

the variance due to locus i, Vi. We define �� �
R
1

0
�Pð�Þd�.

We calculate the expected total variance across statistical ensembles. Note that here the expecta-

tions are averages over ensembles where the parameters of the model are resampled, in contrast to

the derivations presented in sections above, which were ensemble averages over equally likely geno-

types. Since each pathway is independently sampled, expectations approximate the values in a sin-

gle realization as M ! ¥. All expectations are denoted h:i. We calculate the expected variance

contribution from one pathway: since all pathways are statistically identical, the total variance from

M pathways is simply M times the expected contribution from a single pathway. The contribution

from the qth-order interaction between loci i1; i2; . . . ; iq is hf 2i1 i2 ...iqi ¼
Qq

n¼1
�in . The expected total vari-

ance is

V ¼
X

i

hf 2i iþ
X

i>j

hf 2ij iþ
X

i>j>k

hf 2ijkiþ . . . ; (55)

¼
X

i

�iþ
X

i>j

�i�jþ
X

i>j>k

�i�j�k þ . . . ; (56)

¼
Y‘

i¼1

ð1þ�iÞ� 1 (57)

The variance due to terms involving locus i is

Vi ¼ hf 2i iþ
X

j 6¼i

hf 2ij iþ
X

j>k 6¼i

hf 2ijkiþ . . . ; (58)

¼ �iþ�i

X

j 6¼i

�j þ�i

X

j>k 6¼i

�j�k þ . . . ; (59)

¼ �i

Y

j 6¼i

ð1þ�jÞ: (60)

Therefore, we have

vi ¼ Vi=V ¼ �i

Q

j 6¼ið1þ�jÞ
Q

jð1þ�jÞ� 1
: (61)

There are two qualitatively different regimes, ��‘� 1 and ��‘� 1. When ��‘� 1, each pathway typi-

cally contains a single locus and should lead to an additive model. In this limit, we can write from

Equation (61),
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vi »
�i

‘��
; ��‘� 1; (62)

which is consistent with the expectation that vi ~‘
�1 for an additive model. In the opposite limit,

��‘� 1, we have

vi »
�i

1þ�i

; ��‘� 1: (63)

The CN model therefore leads to an intuitive interpretation of the VF as being determined by the

sparsity of interactions of a locus. Equation (63) yields an upper bound at vi ¼ 0:5, at �i ¼ 1. From

Equation (31), we see that this case is equivalent to the HoC model of maximal epistasis where the

new fitness after a mutation is independent of the previous fitness. The DVF PðvÞ is directly deter-

mined by Pð�Þ; the CN model can therefore be used as a generative model to generate fitness land-

scapes with arbitrary DVFs.

We can further calculate the epistatic variance between two loci in the CN model. The total epi-

static variance Iij between loci i and j is

Iij ¼ hf 2ij iþ
X

k 6¼i;j

hf 2ijkiþ . . . (64)

¼ �i�j

Y

k 6¼i;j

ð1þ�kÞ: (65)

In the limit ��‘� 1, the epistatic VF after dividing by V is then simply

eij ¼ �i�j=ð1þ�iÞð1þ�jÞ ¼ vivj. Using Equation (53), we have

vij ¼ vi þ vj � 2vivj: (66)

If vi’s are small, the CN model predicts near-additivity between the effects of two loci. This is not

inconsistent with the strong epistasis assumption implicit in the limit ��‘� 1: though the total contri-

bution of epistatic interactions to the genetic variance may be large, the epistatic variance between

two specific loci can still be negligible. This is because the majority of epistatic variance is due to the

combinatorially large number of higher-order epistatic terms whose individual effects themselves

can be weak.

Relationship to statistical fitness landscapes
Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model are closely related

to the CN model described above. The CN model falls under the broad class of generalized NK

models (Hwang et al., 2018). In generalized NK models, epistasis is due to modules (or ‘pathways’)

of K loci that interact epistatically with each other. The different NK models differ in how the loci are

assigned to the modules and the interaction structure within the module. In the CN model, each

locus has a locus-specific probability of being part of any module and the interaction structure within

a module is all-to-all. The locus-specific probability gives rise to a highly non-regular model, that is,

loci can have a wide range of contributions to the total variance. This feature gives rise to qualita-

tively different adaptation properties. We will show this further below in addition to showing that

the CN model has a special memoryless property.

Well-studied fitness landscapes such as Kauffman’s NK model and the Rough Mt. Fuji landscape

are regular, that is, every locus contributes equally to the variance. In other words, the DFE, which is

determined by the DVF in our picture, instead comes from a single constant value v ¼ �v. The fluctua-

tions of the fitness effects are solely due to the genotype-dependent term h, which is a Gaussian. In

a later section, we show that the DFE in this case corresponds to a Gaussian with mean �2�vðy� �yÞ.
As adaptation proceeds and y increases, the DFE shifts to the deleterious side but retains its Gauss-

ian shape. The adaptation properties that result from this DFE are quite different from those arising

from our theory. Further, while the regular fitness landscape picture may lead to a good approxima-

tion of our results when the number of mutations is large, it does not capture the different magni-

tudes of diminishing-returns for different loci observed in experiments.
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The landscape of the regular CN model
The CN model for the special case of homogeneous loci, �i ¼ �� for all i, is similar to the NK model

but with one major difference: the number of loci in each pathway in the NK model is fixed at K loci,

whereas in the CN model the typical pathway size is controlled by a continuous parameter ��. This

introduces contributions at every epistatic order while effectively imposing sparsity on the contribu-

tions from higher-order interactions. We now show that the regular CN model has tunable rugged-

ness, that is, it transitions from an additive model to a model with maximal epistasis with increasing

�� and has exponentially decaying correlations for ��‘ � 1.

The regular fitness landscapes often discussed are stationary Gaussian processes on a ‘-dimen-

sional hypercube. The regular CN model (i.e., �i ¼ �� for all i) also falls into this class as M ! ¥. The

key quantity that defines such a fitness landscape is the covariance function between the fitnesses of

genotypes g and g0, Cðg; g0Þ ¼ CðdÞ, where d � jg� g0j is the Hamming distance between two geno-

types. We now compute the covariance CðdÞ for the regular CN model. Each order term in each

pathway is independent and the covariances for each order add up over all pathways. We first calcu-

late the expectation of the first-order term in a single pathway, which is
X

i;i0
hfixifi0x0i0i ¼ ��

X

i;i0
dii0xix

0
i0 (67)

¼ ��g:g0 (68)

¼ �� ‘� 2dð Þ: (69)

Here, we have used hf 2i i ¼ ��, where the �� comes from the probability of locus i being selected for

the module as argued previously. The covariance is linear in the distance between genotypes, as one

would expect from an additive model. Directly calculating the higher-order terms is more compli-

cated because of the ordering restriction i>j for the second-order term and for higher orders. As

noted previously (Stadler and Happel, 1999; Neidhart et al., 2013; Agarwala and Fisher, 2019),

these can instead be calculated using combinatorics, which we will demonstrate with the second-

order term. We have for the second-order covariance
X

i>j;i0>j0
hfijxixjfi0j0x0i0x0j0i ¼ ��2

X

i>j;i0>j0
dii0djj0xix

0
i0xjx

0
j0 (70)

¼ ��2
X

i>j

ðgg0Þiðgg0Þj; (71)

where the element-wise product ðgg0Þi � xix
0
i is 1 if xi ¼ x0i match and �1 otherwise. If d is the distance

between g and g0, then the element-wise product gg0 has d terms and ‘� d 1 terms. The term in the

summation above is 1 if both ðgg0Þi and ðgg0Þj are chosen from the ‘� d subset or both are chosen

from d subset. This term is �1 if one of the two is chosen from the ‘� d subset and the other from

the d subset. The number of terms that are 1 s are therefore ‘�d
2

� �
d
0

� �
þ ‘�d

0

� �
d
2

� �
and the number of

terms that are �1 s are ‘�d
1

� �
d
1

� �
. This argument is easily extended to higher orders. The general qth-

order contribution to the covariance is

��q
Xminðq;dÞ

k¼0

ð�1Þk ‘� d

q� k

� �
d

k

� �

: (72)

It is easily verified that the first-order term matches. When d¼ 0, we recover the binomial coeffi-

cients, as expected. The summation above is precisely the Krawtchouk polynomial Kqðd;‘;2Þ
(Olver et al., 2010), which we will denote by Kqð‘;dÞ. We therefore have
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CðdÞ ¼
Xd

q¼1

��qKqð‘;dÞ: (73)

The generating function of the Krawtchouk polynomials yields

CðdÞ ¼ ð1þ ��Þ‘�dð1� ��Þd � 1: (74)

The above expression is consistent with intuition: when ��‘� 1, the covariance is linear in d, as

expected for an additive model. In the opposite limit of ��‘� 1 and 0<d<‘=2, the constant term 1

can be ignored, and we see that the covariance is proportional to e�ld, where l¼ ln
1þ��
1���

� �

. Epistasis

is maximal when ��! 1, in which case l!¥ and the covariance rapidly goes to zero with d. This is

the HoC model of maximal epistasis.

The landscape of the general CN model
The landscape of the general CN model, where loci can have different �i, is no longer stationary but

the correlation structure can still be calculated. The qth-order contribution to the covariance

between genotypes g and g0 in the general case is

X

i1>i2>...>iq

hf 2i1i2...iqi
Yq

n¼1

ðxinx0inÞ ¼
X

i1>i2>...>iq

Yq

n¼1

�inxinx
0
in
: (75)

It is easy to see that when the contributions from all orders are added up, the covariance Cðg;g0Þ
has a rather simple product form

Cðg;g0Þ ¼
Y‘

i¼1

ð1þ�ixix
0
iÞ� 1 (76)

The correlation cðg;g0Þ ¼Cðg;g0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðg;gÞCðg0;g0Þ
p

is

cðg;g0Þ ¼
Q‘

i¼1
ð1þ�ixix

0
iÞ� 1

Q‘
i¼1

ð1þ�iÞ� 1
: (77)

The above relation is exact. When �i � 1, ��‘� 1, then 1��i »e
��i and the 1’s in the numerator

and denominator above can be ignored. We get

cðg;g0Þ»e
�2

P

i:xi 6¼x0
i

�i

: (78)

When �i’s are equal, we recover the homogeneous case with exponentially decaying correlations.
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Appendix 3

Adaptation
The distribution of fitness effects

Long-term adaptation is determined by the DFEs and the stochastic dynamical processes that lead

to fixation. Before analyzing the properties of adaptive walks, we clarify what our previous analysis,

which ultimately led to Equation (32), means for the DFE.

Equation (32) represents the distribution of the fitness effect of a specific mutation at locus i

over all genotypes in the population that have fitness y. We are instead interested in the DFE, where

fitness effects are measured for all the mutations of a particular genotype that has fitness y. The DFE

for a particular genotype generally depends on idiosyncratic epistatic interactions between loci. In

order to make this explicit, we turn to our analysis framework described previously. For notational

convenience, we will assume �y ¼ 0 and V ¼ 1 in this subsection and the next.

The DFE over ‘ loci for a particular genotype of a fitness y can be thought of as a sample,

s1; s2; . . . ; s‘, from the conditional joint distribution Pðs1; s2; . . . ; s‘jyÞ. From our assumption of numer-

ous, independent epistatic terms for each locus, this joint distribution is defined entirely in terms of

the means and covariances of the ‘þ 1 variables y; s1; s2; . . . ; s‘. Recall that the fitness effect of a

mutation at locus i is si ¼ yi � y ¼ �2�i as defined in Equation (26). As shown previously, we have

siy ¼ �2vi. We also have sisj ¼ 4eij with eii ¼ vi. The means of all the variables are zero. Based on this

covariance structure, we can compute Pðs1; s2; . . . ; s‘jyÞ using the properties of the conditional distri-

bution of a multivariate normal distribution. It is straightforward to show that conditional on the fit-

ness y, the conditional means are given by MeanyðsiÞ ¼ �2viy and the conditional covariances are

Covyðsi; sjÞ ¼ 4ðeij � vivjÞ. This relation makes clear that in general the DFE from a sample

s1; s2; . . . ; s‘ ~Pðs1; s2; . . . ; s‘jyÞ depends on the epistatic interactions between all pairs of loci via eij.

Note that VaryðsiÞ ¼ 4við1� viÞ, which leads to Equation (32) for the marginal distribution PðsijyÞ of a
particular locus.

The DFE simplifies considerably if we make certain additional assumptions on the nature of epi-

static interactions. In particular, the conditional correlation between fitness effects is

Corryðsi; sjÞ ¼
eij � vivj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vivjð1� viÞð1� vjÞ

p : (79)

If we assume the typical VF, �v is small (i.e., �v� 1) and also that eij is Oð�v2Þ, then correlations are

Oð�vÞ and thus negligible. Then, in a particular sample s1; s2; . . . ; s‘, we can think of each si as being

drawn independently with mean �2viy and variance 4við1� viÞ. If ‘ is large, then this leads to a DFE

�ðsjyÞ ¼
Z

1

0

dvð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1� vÞ
p

Þ�1
PðvÞ’ sþ 2vy

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1� vÞ
p

 !

; (80)

where PðvÞ is the DVFs across the loci and ’ is the standard normal pdf. Surprisingly, this relation

becomes exact for the CN model, where we have shown that eij ¼ vivj (Equation (66)) and therefore

the correlations between si’s vanish. In this case, the DFE is thus determined entirely by the DVF, but

we will show later that it has certain universal properties independent of even the DVF. Note that we

derive the DFE starting from rather general assumptions on the organization of the genotype-pheno-

type map in contrast to past models that assume the DFE as a starting point.

Above, we have measured the DFE for the subset of genotypes that have fitness y without regard

to their evolutionary history. Over the course of adaptation, mutations are fixed and certain fitness

changes are observed. We would then like to measure the DFE for those genotypes that have under-

gone a particular adaptive trajectory. As we show below, the DFE again simplifies considerably if

certain relations hold.

History dependence
Using an analysis similar to the one in the previous section, we quantify history dependence by calcu-

lating the correlations between the new fitness and the adaptive history conditional on the geno-

types that have undergone a specific sequence of events in the past.
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To be precise, suppose an initial clonal population of fitness y0 gains k successive mutations and

the corresponding sequence of fitnesses is y1; y2; . . . ; yk. We would like to quantify how the fitness of

a new mutation at locus k þ 1, ykþ1, depends on past fitnesses and the idiosyncratic epistatic interac-

tions between the previous k mutations and the new mutation. The correlation between any two fit-

nesses yi and yj (i<j) is given by 1� 2viþ1:j, where viþ1:j is the VF of the loci iþ 1; iþ 2; . . . ; j (the

subscript notation will be used throughout). In general, viþ1:j accounts for the epistatic interactions of

all orders between these j� i loci and is expressible in terms of the coefficients of our original com-

plex trait model in Equation (19). One can then write the covariance matrix between y0; y1; . . . ; ykþ1.

In block form, this is

S¼
S0:k;0:k S0:k;kþ1

Skþ1;0:k Skþ1;kþ1

� �

: (81)

The mean of ykþ1 conditional on y0;y1; . . . ;yk is a linear weighted sum of the past fitnesses:

ykþ1 ¼ Skþ1;0:kS
�1

0:k;0:ky; (82)

where y is a vector with elements y0;y1; . . . ;yk. In other words, ykþ1 can be written as

ykþ1 ¼
Xk

i¼0

wkþ1;iyi þ �; (83)

where � is a mean-zero stochastic term that depends on the genotype of the initial population and

whose variance can be calculated from S. To gain intuition, it is useful to explicitly calculate the case

of k¼ 1. In this case, the covariance matrix is

S¼
1 1� 2v1 1� 2v12

1� 2v1 1 1� 2v2

1� 2v12 1� 2v2 1

0

B
@

1

C
A: (84)

We have

S2;01S
�1

01;01 ¼
1

4v1ð1� v1Þ
1� 2v12 1� 2v1ð Þ

1 2v1 � 1

2v1 � 1 1

� �

(85)

¼ 1

4v1ð1� v1Þ
1� 2v12�ð1� 2v1Þð1� 2v2Þ ð1� 2v2Þ� ð1� 2v1Þð1� 2v12Þð Þ: (86)

We therefore have

y2 ¼
v1 � v2 þ v12� 2v1v12

2v1ð1� v1Þ
y1 þ

v1 þ v2 � 2v1v2 � v12

2v1ð1� v1Þ
y0: (87)

The dependence on the past has complex dependencies on epistasis between loci 1 and 2 even

in this highly simplified case. To identify what contributes to history dependence beyond just the

most recent fitness, we rewrite Equation (87) as

y2 ¼ ð1� 2v2Þy1 þ
ð1� 2v1Þðv12� v1 � v2 þ 2v1v2Þ

2v1ð1� v1Þ
y1 þ

v1þ v2 � 2v1v2 � v12

2v1ð1� v1Þ
y0: (88)

From here, we observe that the dependence on v1 and y0 vanishes precisely when

v12 ¼ v1 þ v2 � 2v1v2. This is not true for all landscapes. However, as noted previously, this is in fact

true for the CN model (Equation (66)) when ��‘� 1. In this case, we get the simple relation

y2 ¼ ð1� 2v2Þy1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ð1� v2Þ
p

h; (89)

where the pre-factor in the second term comes from normalization and h is a Gaussian random

variable.

From Equation (53), we have the general relation v12 ¼ v1 þ v2 � 2e12, where e12 is the epistatic

VF between loci 1 and 2. We can then rewrite Equation (88) as
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y2 »ð1� 2v2Þy1 þ
v1v2 � e12

v1
s1; (90)

for v1 � 1 and s1 ¼ y1 � y0. An intuitive interpretation of this result is presented in the main text.

Sufficient condition for memoryless fitness gains
The k ¼ 1 case suggests that the relation for memoryless fitness gains (e12 ¼ v1v2) could in fact be

true for all k under the CN model, which indeed turns out to be the case, as we show below. Moti-

vated by the k ¼ 1 case, we would like to have wkþ1;k ¼ 1� 2vkþ1 in Equation (83) and the rest of the

weights equal to zero. If this is the case,

ykþ1 ¼ ð1� 2vkþ1Þyk þ �: (91)

Multiplying both sides by yj and computing the correlations, we get the condition 1� 2vjþ1:kþ1 ¼
ð1� 2vjþ1:kÞð1� 2vkþ1Þ for all j. Therefore, a sufficient condition for memoryless fitness gain is

vjþ1:kþ1 ¼ vkþ1þ vjþ1:k � 2vkþ1vjþ1:k (92)

for all k and for all j<k. We will now show that this is true for the CN model for j¼ 0, that is,

v1:kþ1 ¼ vkþ1 þ v1:k � 2vkþ1v1:k; the rest trivially follows. Let us first analyze what terms contribute

towards V1:k (dividing by V gives v1:k). When loci 1 through k are mutated, their effect is to flip the

signs of their coefficients in Equation (19). The ones that have changed sign contribute to the de-

correlation between the fitnesses before and after the set of mutations, but the epistatic terms that

have an even number of flips do not change and therefore their contribution has to be subtracted.

V1:k therefore is the sum of squares of all the coefficients in Equation (19) whose loci have flipped an

odd number of times. To keep track of indices, suppose i1; i2; . . . are used to denote the indices of

the k loci (which take values from 1 to k) and j1; j2; . . . for the rest. Then,

V1:k ¼
Xk

i1¼1

F2

i1
þ
Xk

i1>i2>i3

F2

i1i2 i3
þ . . . ; where

F2

i1
¼ f 2i1 þ

X

j1 6¼1:k

f 2i1j1 þ
X

j1>j2 6¼1:k

f 2i1j1j2 þ . . . ;

F2

i1 i2i3
¼ f 2i1 i2 i3 þ

X

j1 6¼1:k

f 2i1i2 i3j1 þ
X

j1>j2 6¼1:k

f 2i1i2 i3j1j2 þ . . . ;

(93)

and so on. Now, when the kþ 1th locus is also flipped, to compute V1:kþ1, we can add up the two var-

iances V1:k and Vkþ1 except for the cross terms that have an even number of sign flips and

that include both the kþ 1th locus and the other k loci. These have to be subtracted twice because

they appear both in V1:k and Vkþ1. These terms are

I1:k;kþ1 ¼
Xk

i1¼1

F2

i1kþ1
þ
Xk

i1>i2>i3

F2

i1i2 i3kþ1
þ . . . ; (94)

where the Fs are defined in a similar fashion as in Equation (93) except the sums over js run from

kþ 2 to ‘ instead of kþ 1 to ‘. We get the general relation

V1:kþ1 ¼ Vkþ1 þV1:k � 2I1:k;kþ1: (95)

For the CN model specifically, we have hf 2i1i2 ...ik i ¼
Qk

j¼1
�ij . This implies
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hI1:k;kþ1i ¼
Xk

i1¼1

hF2

i1kþ1
iþ
Xk

i123

hF2

i1i2i3kþ1
iþ . . . ;

¼ �kþ1

Y‘

j¼kþ2

ð1þ�jÞ
Xk

i1¼1

�i1 þ
Xk

i123

�i1�i2�i3 þ . . .

 !

¼ �kþ1

Y‘

j¼kþ2

ð1þ�jÞ
 !

Yk

i¼1

ð1þ�iÞ� 1

 !

(96)

Performing a similar calculation for hV1:ki, we find

hV1:ki ¼
Y‘

j¼kþ1

ð1þ�jÞ
Xk

i1¼1

�i1 þ
Xk

i123

�i1�i2�i3 þ . . .

 !

¼ ð1þ�kþ1Þ
Y‘

j¼kþ2

ð1þ�jÞ
 !

Yk

i¼1

ð1þ�iÞ� 1

 ! (97)

which gives

hI1:k;kþ1i ¼ vkþ1hV1:ki: (98)

for �‘� 1 since vkþ1 ¼ �kþ1=ð1þ�kþ1Þ. Dividing Equation (95) by V throughout concludes the

derivation.

Adaptedness
Under the conditions of memoryless fitness gains from the previous section, we can write

s¼�2vzþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1� vÞ
p

n; (99)

where variables have been rescaled as z¼ V�1=2ðy��yÞ;s¼ V�1=2s;n¼ V�1=2h. This equation suggests

various forms for the DFE, �ðsjzÞ, depending on the DVF, PðvÞ.
z is an intuitive measure of ‘adaptedness’: (1) when z is negative, the organism is in the unlikely sit-

uation of being ‘negatively adapted’ to the environment. Beneficial mutations are much more likely

than deleterious mutations and adaptation is dominated by loci that have a large v. (2) When jzj � 1,

the organism is ‘neutrally adapted’. The number of beneficial and deleterious mutations is balanced.

(3) When z � 1, the organism is ‘well-adapted,’ where the DFE is strongly skewed towards deleteri-

ous mutations.

We will analyze adaptation in the neutrally adapted and the well-adapted regimes. When the

organism is negatively adapted, Equation (99) predicts that a few substitutions are sufficient to

quickly reach the neutrally adapted state. In addition, we assume the VF of each locus is small,

that is, v � 1 but the number of loci ‘ is large enough so that overall epistasis »�v‘ � 1 (�v is the

mean VF). We can then ignore the 1� v factor and rewrite Equation (99) as

s¼�2vzþ 2
ffiffiffi
v

p
n: (100)

The intuition behind the analytical results is discussed in the main text. We present the formal cal-

culations here.

Analytical results for an exponential DVF
We begin by calculating the DFE, �ðsjzÞ, for the specific case when the DVF is an exponential,

PðvÞ ¼ �v�1e�v=�v; (101)

where �v� 1 is the mean VF across loci. The true DVF likely has a large fraction of loci that have no

effect; accounting for these loci simply scales the mutation rate and will be ignored in this analysis.

The exponential DVF leads to analytical predictions for the shape of the average fitness trajectories

under certain simplifying assumptions about the underlying selective forces.
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From Equation (100), we have

�ðsjzÞ ¼
Z Z

dvdnPðvÞPðnÞd sþ 2vz� 2
ffiffiffi
v

p
n

� �
: (102)

Here, n is a standard normal random variable, which we integrate out, giving

�ðsjzÞ ¼
Z

1

0

dvð2
ffiffiffi
v

p
Þ�1

PðvÞ’ sþ 2vz

2
ffiffiffi
v

p
� �

; (103)

where ’ is the normal pdf. For PðvÞ given in Equation (101), this integral can be calculated exactly:

�ðsjzÞ ¼ �v�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�v�1 þ z2
p e�sz=2�jsj

ffiffiffiffiffiffiffiffiffiffiffiffi
2�v�1þz2

p
=2: (104)

The resulting DFE is a double exponential with scale ~ ðz=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�v�1þ z2
p

=2Þ�1. For jzj � 1 small,

the DFE is symmetric around the origin, as expected, with a scale determined by the DVF. As z

increases, the DFE skews towards deleterious effects. The typical magnitudes of beneficial and dele-

terious effects are not independent from the overall ratio of beneficial to deleterious mutations. The

well-adapted regime is reached when z2 is comparable to �v�1. To clearly delineate the two regimes,

it is useful to define new variables x¼ z
ffiffiffiffiffiffiffi

�v=2
p

and l¼ s
ffiffiffiffiffiffiffi

2=�v
p

. In the new variables, the DFE is

�ðljxÞ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p e�

lxþjlj
ffiffiffiffiffiffi
1þx2

p
2 : (105)

The neutrally adapted and well-adapted regimes then correspond to x <~1 and x >~1, respectively.

The mean rate of adaptation in units of generations on the x scale is

hdxi ¼ hdzi
ffiffiffiffiffiffiffi

�v=2
p

¼ hsi
ffiffiffiffiffiffiffi

�v=2
p

¼ hli�v=2, where the expectation is taken over fixation probabilities and

the DFE. We assume SSWM so that pfixðsÞ~2s or pfixðlÞ~2l
ffiffiffiffiffiffiffi

�v=2
p

for positive l and 0 otherwise. We

find

hdxi ¼NU�v=2

Z
¥

�¥
dlpfixðlÞ�ðljxÞl (106)

¼NU�v
ffiffiffiffiffiffiffi

�v=2
p

Z
¥

0

dll2�ðljxÞ; (107)

where N is population size, and U is the effective mutation rate for loci with nonzero effect. Integrat-

ing over l, we get

hdxi ¼ NUð2�vÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

Þ3
: (108)

Integrating over dx starting from an initial x0, we obtain an approximation to the mean fitness

trajectory

NUð2�vÞ3=2ngen ¼
Z x

x0

dx
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

Þ3 ¼ TðxÞ�Tðx0Þ; (109)

where TðxÞ ¼ 4x5

5
þ 5x3

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

15
12x4þ 19x2 þ 7
� �

þ x: (110)

Note that this is only an approximation for small x since the typical fixed beneficial effect is a dis-

crete jump. We show the result from Equation (109) in Appendix 1—figure 1a, where the depen-

dencies on the equilibrium fitness �y and genetic variance V are highlighted. There are two

independent parameters that determine the scale (
ffiffiffiffiffiffiffiffiffiffiffi

�v=2V
p

) and location (�y) of the fitness, and one

parameter (NUngen) that determines the time scale. From Equation (109), the x~ t and x~ t1=5 scalings

in the neutrally adapted (x� 1) and well-adapted regime (x� 1) respectively are apparent.
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The number of substitutions, ns, as a function of x can also be calculated under the SSWM

assumption. We get

�vns ¼NðxÞ�Nðx0Þ (111)

where NðxÞ ¼ xðxþ
ffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1

p

Þ=4þ sinh�1ðxÞ=4; (112)

which can be mapped onto time using Equation (109). The scalings are ns ~x~ t in the

neutrally adapted regime and ns ~x
2 ~ t2=5 in the well-adapted regime.

Asymptotics and general scaling results

We now derive the asymptotic properties of the DFE in the well-adapted regime (�v1=2z � 1). Writing

out the Gaussian pdf in Equation (80), we have

�ðsjzÞ ¼
Z

1

0

dvð2
ffiffiffiffiffiffiffiffi

2pv
p

Þ�1
PðvÞe�

ðsþ2vzÞ2
8v (113)

¼ e�sz=2

Z
1

0

dvð2
ffiffiffiffiffiffiffiffi

2pv
p

Þ�1
PðvÞe�s2

8v
�vz2

2 (114)

¼ e�sz=2

Z
1

0

duð2
ffiffiffiffiffiffiffiffiffiffiffi

2puy
p

Þ�1
Pðu=zÞe�z

2

s2

4u
þu

� �

; (115)

where the change of variables v¼ u=z is used. When z� 1, Laplace’s method can be used. The expo-

nent is minimized when u¼ jsj=2, which gives

�ðsjzÞ» ð2zÞ�1
Pðjsj=2zÞe�z

2
sþjsjð Þ: (116)

The contribution towards a fitness effect s at large z comes largely from loci with VF v» jsj=2z.
The exponential form of the beneficial DFE is determined entirely by the Gaussian tails of the geno-

type-dependent term. The argument can be easily generalized to non-Gaussian tail probabilities

using a similar calculation. Equation (116) implies that the ratio of the probabilities of beneficial and

deleterious mutations is independent of the DVF as long as it has sufficient mass at v¼ jsj=2z:

�ðsjzÞ
�ð�sjzÞ ¼ e�sz: (117)

Such a relationship has been hypothesized previously based on simulations of an additive finite-

sites model and the form of pfix close to the high-interference limit that could result in a fitness pla-

teau (Rice et al., 2015). Using our theory, we have shown that this result is indeed true independent

of the DVF and under our core hypotheses of normality and memoryless fitness gains. If pfix ~e
ffiffiffi
V

p
Tcs

in the high-interference limit, where Tc is the coalescent time, fitness should plateau when

pfixðsÞ�ðsjzÞ ¼ pfixð�sÞ�ð�sjzÞ, which is at

zplateau ¼ 2
ffiffiffiffi

V
p

Tc: (118)

The
ffiffiffiffi
V

p
appears to account for the rescaling s¼ s=

ffiffiffiffi
V

p
.

We get Equation (116) only if PðvÞ has probability mass at v ¼ jsj=2z. This is not the case in the

exponentially correlated fitness landscape model with homogeneous loci, that is, if, for instance,

PðvÞ ¼ dðv� �vÞ, we instead get from Equation (80)

�ðsjzÞ ¼’
sþ 2�vz

2
ffiffiffi
�v

p
� �

: (119)

The DFE in this case is therefore a Gaussian with mean shifting towards the deleterious side. The

ratio of beneficial to deleterious mutations goes rapidly to zero as ’ ’ð
ffiffiffi
�v

p
zÞ=

ffiffiffi
�v

p
z and adaptation

sharply plateaus beyond z¼ �v�1=2.
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From Equation (116), various scaling results can be derived that apply independent of PðvÞ and
the Gaussian assumption on n. We retain the exponential form for convenience. The rate of benefi-

cial mutations is

Ub ¼U

Z
¥

0

dsð2zÞ�1
Pðjsj=2zÞe�sz (120)

¼ U

2z2

Z
¥

0

dwPðw=2z2Þe�w: (121)

The integral has an effective upper cutoff at w~Oð1Þ and can be approximated as

Ub »UPð0Þ=2z2 ~z�2 under certain assumptions for PðvÞ for small v. The pre-factor Pð0Þ suggests that

the number of beneficial mutations depends on the number of small-effect loci. While strong epi-

static loci drive adaptation in the neutrally adapted regime, adaptation in the well-adapted regime is

instead driven by weakly epistatic loci.

From Equation (116), the typical size of a beneficial mutation is s ~ z�1. Under SSWM,

pfix ~s ~ z�1. As argued previously, since Ub ~ z
�2, we get dz=dt ~ z�4 and therefore we obtain the two

scaling relations

z~ t1=5;ns ~ t
2=5; (122)

which apply independently of the form of the DVF in the well-adapted regime.
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