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Abstract

Demographic inference methods in population genetics typically as-
sume that the ancestry of a sample can be modeled by the Kingman
coalescent. A defining feature of this stochastic process is that it gen-
erates genealogies that are binary trees: no more than two ancestral
lineages may coalesce at the same time. However, this assumption
breaks down under several scenarios. For example, pervasive natural
selection and extreme variation in offspring number can both gener-
ate genealogies with “multiple-merger” events in which more than two
lineages coalesce instantaneously. Therefore, detecting multiple merg-
ers is important both for understanding which forces have shaped the
diversity of a population and for avoiding fitting misspecified models
to data. Current methods to detect multiple mergers in genomic data
rely on the site frequency spectrum (SFS). However, the signatures of
multiple mergers in the SFS are also consistent with a Kingman coa-
lescent with a time-varying population size. Here, we present a new
method for detecting multiple mergers based on the pointwise mutual
information of the two-site frequency spectrum for pairs of linked sites.
Unlike the SFS, the pointwise mutual information depends mostly on
the topologies of genealogies rather than on their branch lengths and
is therefore largely insensitive to population size change. This statis-
tic is global in the sense that it can detect when the genome-wide
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genetic diversity is inconsistent with the Kingman coalescent, rather
than detecting outlier regions, as in selection scan methods. Finally, we
demonstrate a graphical model-checking procedure based on the point-
wise mutual information using genomic diversity data from Drosophila
melanogaster.

Introduction

The genetic diversity of a population reflects its demographic and evo-
lutionary history. Learning about this history from contemporary ge-
netic data is the domain of modern population genetics (see Hahn
2018). The fundamental tools of the trade are simplified mathematical
models, which connect unobserved quantities such as the population
size to observable features of genetic data. However, populations are
complicated and, moreover, vary in their complications. No simple
model can capture the processes governing every species’ evolution,
and a misspecified model will generate misleading inferences. It is
therefore crucial to understand the limits of population genetics mod-
els and to assess when a model is appropriate for a particular data
set.

One of the most widely used models is the Kingman coalescent (King-
man 1982b; Kingman 1982a; Hudson 1983; Tajima 1983). The King-
man coalescent is a stochastic process that generates gene genealogies:
trees representing the patterns of shared ancestry of sampled individ-
uals. Inference methods use these genealogies as latent variables link-
ing demographic parameters to genetic data (Rosenberg and Nordborg
2002). The Kingman coalescent has a number of convenient proper-
ties that facilitate both analytical calculations (e.g., Tajima 1989) and
efficient stochastic simulations (e.g., Hudson 2002): tree topologies
are independent of waiting times; waiting times are generated by a
Markov process; and neutral mutations are modeled as a Poisson pro-
cess conditionally independent of the tree. Moreover, the model can be
extended to study a variety of biological phenomena including recom-
bination, population structure, and variation in sex ratios or ploidy
(see generally Wakeley 2009).

An important application of the Kingman coalescent is inferring
historical population sizes from genetic data (Schraiber and Akey 2015).
In its simplest form, the model has a single parameter, the coalescent
rate, which determines the branch lengths of genealogies (Kingman
1982b). Under many conditions, the coalescent rate is inversely propor-
tional to the population size (Kingman 1982a). Accordingly, a growing
or shrinking population may be modeled by a time-varying rate (Grif-
fiths and Tavaré 1994; Griffiths and Tavaré 1998). Patterns of genetic
diversity depend on the ratio of the coalescent rate to other evolu-
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tionary rate parameters. For example, the site frequency spectrum
(SFS)—the number of mutations segregating at different frequencies
in a sample—is determined by the ratio of the mutation rate to the
(time-varying) coalescent rate. Kingman coalescent–based inference
methods solve the inverse problem of determining the population size
history that best explains particular features of the data, such as the
SFS (e.g., Bhaskar et al. 2015) or variations in heterozygosity along a
chromosome (e.g., Li and Durbin 2011).

A serious problem for this class of inference methods is that dif-
ferent models of evolution generate different relationships between his-
torical population sizes and genetic diversity. For example, one of
the basic assumptions of the Kingman coalescent is that natural selec-
tion is negligible in determining the distribution of genealogies. When
this assumption is violated, Kingman-based inference methods are mis-
specified. For instance, when a beneficial mutation increases rapidly
in frequency, it distorts the genealogies at nearby sites (see e.g., Coop
and Ralph 2012). If these “selective sweeps” occur regularly, they may
be the dominant factor determining the distribution of genealogies. In
this case, the average coalescent rate is proportional to the number
of beneficial mutations introduced per generation, which is itself di-
rectly, rather than inversely, proportional to the population size. It
follows that the relationship between the population size and the ex-
pected number of neutral mutations in a sample is inverted: larger
populations will be less diverse than smaller populations.

While the example above is extreme, it is well established that vio-
lations of the neutrality assumption can distort or mask the signatures
of population size changes. For example, Schrider et al. (2016) recently
demonstrated that several popular inference methods give misleading
results in the presence of selective sweeps. In a similar vein, Cvijović
et al. (2018), showed that reduction of genetic diversity by purifying
selection is accompanied by distortions in the SFS, leading to a false
signal of population growth. Moreover, genomic evidence from multiple
species suggests that such violations of neutrality may be widespread
(Sella et al. 2009; Corbett-Detig et al. 2015; Kern and Hahn 2018).

An important extension of the Kingman coalescent is a family of
models known as multiple-merger coalescents (Pitman 1999; Sagitov
1999; Donnelly and Kurtz 1999; reviewed in Eldon 2016), which arise
in a variety of contexts both with and without selection. Whereas in
the Kingman coalescent lineages may coalesce only pairwise, multiple-
merger coalescents permit more than two lineages to coalesce in a single
event. The more general class of simultaneous-multiple-merger coales-
cents (Schweinsberg 2000; Möhle and Sagitov 2001; Sagitov 2003) per-
mits more than one distinct multiple-merger event at the same time.
multiple-merger and simultaneous-multiple-merger models are relevant
for species with “sweepstakes” reproductive events (Eldon and Wakeley
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2006; Sargsyan and Wakeley 2008), fat-tailed offspring number distri-
butions (Schweinsberg 2003), recurring selective sweeps at linked sites
(Durrett and Schweinsberg 2005; Coop and Ralph 2012), rapid adap-
tation (Neher and Hallatschek 2013; Desai et al. 2013), and purifying
selection at sufficiently many sites (Seger et al. 2010; Nicolaisen and
Desai 2012; Good et al. 2014).

In each of these contexts, the coalescent timescale is not necessar-
ily proportional to the population size. For example, with fat-tailed
offspring distributions the rate of coalescence is a power law in the
population size (Schweinsberg 2003), while with linked sweeps it is
determined by the rate of linked sweeps, as described above (Durrett
and Schweinsberg 2005). In these settings, interpreting the level of ge-
netic diversity in terms of an “effective population size” is misleading,
and inferences based on the Kingman coalescent may be qualitatively
incorrect.

It is therefore important to determine whether the Kingman model
is appropriate for a given data set before performing demographic in-
ference. This task is distinct from “selection scan” methods designed
to detect particular regions of the genome that are under selection
(see Vitti et al. 2013). Selection scan methods typically assume that
most of the genome is evolving neutrally and that the genome-wide
distribution of summary statistics reflects demographic factors. Ge-
nomic regions that are outliers from this distribution are presumed to
be under selection. In contrast, we are interested in detecting when
the genome-wide background is not well-modeled by the Kingman co-
alescent.

One approach to identifying multiple mergers in genomic data is
to use the SFS as a summary statistic. To this end, Birkner et al.
(2013) and Blath et al. (2016) and Spence et al. (2016) derived meth-
ods for computing the expected SFS of (simultaneous) multiple-merger
coalescents. Further, Eldon et al. (2015) showed that it is possible to
distinguish between a multiple-merger coalescent of the beta family
and the Kingman coalescent with exponential growth using the SFS.
In a related approach, Rödelsperger et al. (2014) detected widespread
linked selection in the nematode Pristionchus pacificus by demonstrat-
ing that the SFS is non-monotonic, a signature of multiple mergers
(Neher and Hallatschek 2013; Birkner et al. 2013).

However, existing methods are limited in their ability to distinguish
multiple mergers from general models of population-size change. The
primary signature of multiple mergers in the SFS is an overabundance
of low-frequency mutations relative to the Kingman expectation, which
is also the signature of population growth. Eldon et al. (2015) were able
to reject exponential growth in favor of multiple mergers, but a more
flexible model of growth may be able to fit the multiple-merger SFS
(see Myers et al. 2008; Bhaskar and Song 2014). The non-mononotic
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SFS identified by Rödelsperger et al. (2014) is a more robust signature
of multiple mergers, but identifying that the SFS increases at high
frequencies requires knowing the ancestral allele at each site. High-
frequency mutations are typically much rarer than low-frequency mu-
tations, so misidentifying even a small fraction of ancestral alleles can
generate a non-monotonic SFS.

Here, we propose that summary statistics based on the two-site
frequency spectrum (2-SFS)—the generalization of the SFS to pairs
of nearby sites (Hudson 2001; Ferretti et al. 2018)—are useful for dis-
tinguishing between the Kingman coalescent with population growth
and multiple-merger coalescents. These statistics may be calculated
efficiently from genomic single-nucleotide-variant data. Furthermore,
they do not require phasing, recombination maps, or ancestral allele
identification and are informative even with small sample sizes. To-
gether, these properties make the 2-SFS useful for demographic model-
checking in a wide range of species.

Following the notation of Fu (1995), the site frequency spectrum
of a sample of n haploid genomes is {ξi : 1 ≤ i < n}, where ξi is the
fraction of sites containing a mutation with derived allele count i in the
sample. In many cases, the ancestral allele is unknown and so the allele
in i samples and the complementary allele in n−i samples are indistin-
guishable. Therefore, we will mostly consider the folded site frequency
spectrum {ηi = ξi + (1− δi,n−i)ξn−i : 1 ≤ i ≤ bn/2c}, where δk,k′ is the
Kronecker delta. The SFS and folded SFS can be calculated from a
set of single nucleotide polymorphisms (SNPs) without knowing the
physical locations of the SNPs.

In contrast, the 2-SFS is a statistic of pairs of sites. We define
the 2-SFS, {ξij(d) : d > 0; 1 ≤ i, j < n}, as the fraction of pairs of sites
separated by d bases for which there is a mutation with derived allele
count i at one site and a second mutation with derived allele count j at
the other site. (Note that ξij(d) = ξji(d) by symmetry.) The 2-SFS has
been studied for a non-recombining sites by Ferretti et al. (2018) in a
neutral model and by Xie (2011) in a model with selection. We define
the folded 2-SFS, ηij(d), by analogy to the folded SFS, categorizing
pairs of sites by their minor allele frequencies. (For non-recombining
sites, the 2-SFS is independent of the distance and so we will suppress
the d in our notation.)

In the limit of low per-site mutation rate (µ→ 0) and no recombi-
nation, all polymorphic sites are bi-allelic and the expected SFS and
2-SFS are related to moments of the genealogical branch length distri-
bution by

〈ξi〉 = µ 〈τi〉 (1)

〈ξij〉 = µ2 〈τiτj〉 , (2)

where τi is the total length of branches subtending i leaves of a gene
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genealogy and 〈·〉 represents the expectation over the distribution of
gene genealogies defined by a coalescent model. Thus, the SFS and
2-SFS depend on the distribution of coalescent times as well as the
distribution of tree topologies.

Fu (1995) calculated the first and second moments of the branch-
length distribution for non-recombining infinite-sites locus under the
standard time-homogeneous Kingman coalescent. He found that 〈τiτj〉 <
〈τi〉 〈τj〉 for all j 6∈ {i, (n−i)}. This result, combined with Eq. (1) and (2),
implies a negative correlation between mutations at different frequen-
cies: trees generating a mutation with derived allele count i are less
likely than average to generate a second mutation with derived allele
count j 6∈ {i, (n− i)}. (There are positive correlations between muta-
tions at complementary frequencies induced by genealogies whose root
node partitions the tree into subtrees of size i and n− i.)

Birkner et al. (2013) extended Fu’s calculation to a family of multiple-
merger coalescents called beta coalescents. This one-parameter fam-
ily interpolates between the Kingman coalescent and the Bolthausen-
Sznitman coalescent as the parameter, α, ranges from 2 to 1. Beta coa-
lescents arise in models with fat-tailed offspring distributions (Schweins-
berg 2003; Steinrücken et al. 2013), and the Bolthausen-Sznitman co-
alescent is the limiting distribution of genealogies in populations that
are rapidly adapting or experiencing extensive purifying selection (Ne-
her and Hallatschek 2013). The calculations of Birkner et al. (2013)
show positive correlations between ξi and ξj for j 6∈ {i, n−i} (Figures 5
and 6 of Birkner et al. 2013). Thus, unlike the standard Kingman coa-
lescent, the beta coalescent can generate positive associations between
mutations with different minor allele counts.

In the following, we demonstrate that the positive associations
between mutations at different frequencies distinguish the multiple-
merger from the Kingman coalescent and that this distinction: (i) ap-
plies to Kingman coalescents with time-varying coalescent rates; (ii) is
robust to recombination between the sites; (iii) is also a feature of for-
ward-time models with selection, and (iv) can form the basis of a mod-
el-checking procedure for demographic inference methods. To demon-
strate these four properties, we introduce a transformation of the 2-SFS
that we call frequency pointwise mutual information (fPMI). We use a
combination of numerical calculations and stochastic simulations to ex-
plore the properties of this statistic under different coalescent models.
Finally, we demonstrate a graphical model-checking procedure based
on fPMI using genomic diversity data from Drosophila melanogaster
(Lack et al. 2015).
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Figure 1: Summarizing population genetic data with frequency pointwise
mutual information (fPMI). First, a sequence alignment is reduced to the
minor allele frequencies and positions of segregating mutations. Then, for
a given distance, d, the 2-SFS gives the number of pairs of sites with each
combination of minor allele frequencies. Finally, fPMI is calculated from the
2-SFS according to Eq. (3).

Methods

Frequency pointwise mutual information

We aim to quantify the dependence between minor allele counts at a
pair of sites, particularly for sites with different counts (i 6= j). To do
so, we define the frequency pointwise mutual information as

fPMI(i, j; d) = log
〈ηi,j(d)〉
〈ηi〉 〈ηj〉

. (3)

Figure 1 shows the steps to compute fPMI from a sample of sequences.
In information theory, the pointwise mutual information (PMI) of

a pair of random variables, X and Y , is a transformation of the prob-
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ability mass function, p(x, y), given by

PMI(x, y) = log
p(x, y)

p(x)p(y)
= log

p(x|y)

p(x)
(4)

where p(x) =
∑

y p(x, y) and similarly for p(y) (Church and Hanks
1990). PMI measures the change in the probability that X = x given
knowledge that Y = y. WhenX and Y are independent, PMI(x, y) = 0
for all x, y. When X and Y are not independent, PMI(x, y) > 0 implies
that p(x|y) > p(x), and PMI(x, y) < 0 implies the converse. The
expectation of PMI over the joint distribution of X and Y is known as
the mutual information of X and Y (Cover and Thomas 1991).

We can interpret the 2-SFS as a joint probability mass function
over minor allele counts. Given a coalescent model, the minor allele
count at an arbitrary site is a random variable over {0, . . . , bn/2c}
with probability mass function p(i) = 〈ηi〉, where we define η0 to be the
fraction of monomorphic sites. Similarly, the minor allele counts at two
sites separated by d bases are random variables with joint probability
mass function pd(i, j) = 〈ηij(d)〉. Comparing, Eq. (3) with Eq. (4)
shows that fPMI is the standard pointwise mutual information for pairs
of minor allele counts.

This transformation of the 2-SFS has several useful properties.
First, because fPMI is based on the minor allele frequencies, we may
compute it without knowing the ancestral allele. Second, the results
of Fu (1995) for the folded SFS imply that fPMI(i, j) < 0 for i 6= j for
non-recombining sites under the time-homogeneous Kingman coales-
cent. Finally, fPMI normalizes for distortions in the coalescence time
distribution reflected in the single-site SFS. In the Kingman coalescent,
population-size variation alters the coalescence time distribution but
preserves the distribution of tree topologies. We will show that, be-
cause fPMI normalizes the 2-SFS by the product of single-site spectra,
it is largely insensitive to the distribution of coalescence times. Thus,
fPMI primarily reflects the distribution of topologies, which distin-
guishes the multiple-merger coalescent from the Kingman coalescent.

Furthermore, the same normalization renders fPMI insensitive to
ascertainment bias. Variant detection methods typically compare sam-
pled sequences to a reference sequence and “call” a variant site when
there is sufficient evidence that at least one sample differs from the ref-
erence at that site. As a result, the ascertainment probability, qi, of a
mutation is an increasing function of its true allele count i, skewing the
expected ascertained SFS (〈ηi〉asc = µ 〈τi〉 qi) toward high-frequency
mutations. However, provided that variant detection at each site is
approximately independent, the primary effect of ascertainment bias
in Eq. (3) is to multiply the numerator and denominator by a common
factor of qiqj . Because these factors cancel, fPMI is less sensitive than
the raw SFS and 2-SFS to ascertainment effects.
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Binned allele frequencies

With finite data, estimates of the 2-SFS will be noisy. This is particu-
larly true for i, j � 1 because 〈ηij〉 decays like (ij)−1 for the standard
Kingman coalescent (Fu 1995) and faster than this in models with pop-
ulation size growth or multiple mergers. We show in Results that a
positive association between mutations with high minor allele counts
and mutations with low minor allele counts is a signature of multiple
mergers. Thus, to detect multiple mergers, we use a binned form of
the SFS and 2-SFS:

ηlo(ic) =

ic−1∑
i=1

ηi (5)

ηhi(ic) =

bn/2c∑
i=ic

ηi (6)

ηhi,lo(d; ic) =

ic−1∑
i=1

bn/2c∑
j=ic

ηij(d), (7)

where ic is an arbitrary cutoff between high and low minor allele fre-
quency. Binning provides a stable estimate of the 2-SFS for large sam-
ple sizes because we may adjust ic to ensure a large number of sites
in both the high–minor allele count and low–minor allele count bins.
We note that a less coarse-grained binning scheme may strike a bal-
ance between sampling noise and preserving more detailed information
about allele frequencies.

We compute the pointwise mutual information of the binned dis-
tribution as

hiloPMI(d; ic) = log
〈ηhi,lo(d; ic)〉
〈ηlo(ic)〉 〈ηhi(ic)〉

. (8)

While we will focus on hiloPMI, one could similarly calculate five other
pointwise mutual information statistics from the binned 2-SFS (e.g.,
the PMI between monomorphic sites and sites with high minor allele
counts).

Weighted fPMI

For plotting purposes, we use a weighted version of the fPMI:

wfPMI(i, j : d) =
〈ηij〉

µ2 〈T2〉2
fPMI(i, j; d), (9)

where T2 is the coalescence time for a sample of size two. The numer-
ator of the weighting factor in Eq. (9) emphasizes the most common
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pairs of minor allele counts. The denominator, which is proportional
to the square of the expected pairwise diversity, Π, ensures that wfPMI
is invariant to changes in the mutation rate and average pairwise coa-
lescence time.

Computing branch-length moments

We implemented numerical computations of the moments of the branch
lengths 〈τi〉 and 〈τij〉. For the Kingman coalescent with time-varying
coalescent rate, we used equations (1)-(12) of Živković and Wiehe
(2008). For the beta coalescent, we implemented the recursion de-
scribed by Birkner et al. (2013).

Functions for computing the branch-length moments are imple-
mented in python and available in the git repository for this project
(https://github.com/dp-rice/multiplemergers). Our Kingman co-
alescent code can compute moments for exponentially growing and
two-epoch piecewise constant models, but could be extended to allow
for other models. The formulas of Živković and Wiehe (2008) exhibit
numerical instability related to the instability described in Griffiths
and Tavaré (1994). Thus, these formulas are only practical for sample
sizes up to n ≈ 40. The recursion of Birkner et al. (2013) is O(n4) and
is also only practical for samples up to n ≈ 50.

Coalescent simulations

We ran coalescent simulations using a custom version of msprime

(Kelleher et al. 2016) capable of multiple mergers, based on modifica-
tions made by Joe Zhu (https://github.com/shajoezhu). This code,
together with python wrapper scripts and utility functions to run sim-
ulations and calculate the 2-SFS and fPMI from the msprime output
is available at https://github.com/dp-rice/multiplemergers.

For each coalescent model, we simulated at least 104 independent
infinite-sites loci, each with length d and per-basepair recombination
rate r resulting in a per-locus total recombination rate d r. (See SI for
parameter combinations.) We chose values of d r so that the realized
values of d r 〈T2〉 varied over several orders of magnitude. For each
locus, we measured {τi : i = 1, . . . , n − 1} in the two genealogies at
the ends of the locus. We then calculated the expectations {〈τi〉} and
{〈τij〉} by averaging over independent loci. These expectations allow
us to calculate all of the 2-SFS statistics defined above.

Forward-time simulations of selective sweeps

We simulated a model of recurring selective sweeps using the software
SLiM (Messer 2013). In all of these simulations, we simulated a popula-
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tion of 500 diploids for 104 generations. Each haploid genome consisted
of a single genomic element L = 108 basepairs long with recombination
rate per-basepair r = 10−8 and per-basepair mutation rate µ = 10−7.
We simulated two types of mutations: neutral mutations and beneficial
mutations with additive effects and selection coefficient s = 0.1. With
these parameters, 2Ns = 100, so beneficial mutations are strongly se-
lected and will sweep in Tsweep ∼ s−1 logNs ≈ 50 generations. Such
sweeps will affect a region of the chromosome dsweep ∼ (rTsweep)−1 ≈
2 × 106 basepairs long. Thus dsweep � L, which will minimize edge
effects of simulating a finite chromosome.

In order to vary the effects of sweeps on neutral diversity, we varied
the fraction of mutations that are beneficial, fsel, over several orders of
magnitude: fsel ∈ {10−6, 10−5, 10−4, 10−3}. For each fsel, we ran 100
independent replicate simulations and computed ηi and ηij of neutral
mutations averaged over all replicates.

SLiM parameter files, python wrapper scripts for parsing output,
and snakemake files for running simulations are available at https:

//github.com/dp-rice/multiplemergers.

Analysis of D. melanogaster data

We analyzed sequence data from the DPGP3 data set, which consists of
haploid consensus sequences from ∼200 flies, obtained via the haploid
embryo method of Langley et al. (2011). The SNP calls that char-
acterize these sequences were subjected to a variety of quality filters
described in Lack et al. (2015). We obtained the DPGP3 consen-
sus sequence files version 1.1 from www.johnpool.net/genomes.html.
These files contain the sequence alignments of all flies in the sample on
all chromosome arms. We also downloaded the Nov. 3, 2016 spread-
sheet of inversions available at the link above. For each chromosome
arm, we excluded any samples with an inversion in that arm and then
down-sampled to n = 100 by selecting the first 100 remaining samples
in alphanumeric order by sample name. As a result, the data for each
chromosome arm is from a slightly different subset of the individuals.

We calculated the average pairwise diversity, Π, as a function of
position for each autosomal chromosome arm (Fig. S1). Pairwise di-
versity is high in the middle of each chromosome arm and lower near the
centromeres and telomeres, in agreement with calculations by Corbett-
Detig et al. (2015). Our modeling—and coalescent-based demographic
inference in general—assumes that the distribution of gene genealo-
gies is homogeneous along the chromosome. Therefore, we selected a
13-16 Mb “central” region of each arm with relatively homogeneous
values of Π for further analysis. The boundary positions of these cen-
tral regions are given in Table S1.

In order to ensure that the segregating mutations reflect true ge-
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netic diversity and not variation in calling errors, we excluded sites
with fewer than 90 of the 100 genotypes called. This leaves over 90%
of all sites and does not substantially alter the fraction of polymorphic
sites (Table S2).

We fit a demographic model to the folded SFS of fourfold degen-
erate sites for each chromosome arm separately using fastNeutrino

(Bhaskar et al. 2015). Following Ragsdale and Gutenkunst (2017) we
fit a three-epoch piecewise constant–N model:

N(t) =


N1 0 ≤ t ≤ t1
N2 t1 < t ≤ t2
Nanc t > t2,

(10)

estimating both change-points (t1 < t2) and population sizes (N1, N2).
We specified the ancient population size Nanc = 3×105, as in Ragsdale
and Gutenkunst (2017). For all four chromosomes, fastNeutrino in-
ferred similar population growth. Fitted parameters are presented in
Table S3. We simulated the SFS and 2-SFS under the fitted parameters
using msprime.

In addition to the average SFS used to fit the model, we computed
the average 2-SFS for pairs of sites at distances between 3 bp and 5 Kb.
Because we are using fourfold degenerate sites, we only computed the
2-SFS for distances that are multiples of three basepairs. For compar-
ison between data and simulations, we scale the distances in basepairs
by a critical distance dc = (r 〈T2〉)−1. We used a genome-wide recom-
bination rate of r = 2 × 10−8 per-basepair per generation (Comeron
et al. 2012). We estimated 〈T2〉 by Π/2µ. For Π, we used the average
pairwise diversity at fourfold degenerate sites in the central region of
each chromosome arm. For µ, we used a genome-wide mutation rate
of 3× 10−9 per-basepair per-generation (Keightley et al. 2014). These
estimates are not precise, but only serve to scale genetic distances to
the correct order of magnitude.

A snakemake pipeline, python scripts, and jupyter notebooks to
replicate our data processing, model fitting, simulations, and analysis
of the DPGP3 data are available at https://github.com/dp-rice/

multiplemergers.

Results

Population growth versus the beta coalescent in non-
recombining loci

We first compared the fPMI of the Kingman coalescent with and with-
out population growth to the fPMI of the beta coalescent, for pairs of
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Figure 2: Weighted frequency pointwise mutual information for three coales-
cent models: the time-homogeneous Kingman coalescent, the Kingman coa-
lescent with exponential growth (g = 4), and the beta coalescent (α = 1.45).
For all models n = 39. Growth and α parameters were chosen to generate
average SFS with similar Tajima’s D. The diagonal, i = j, is masked.

sites without recombination. We are interested in whether fPMI can
distinguish beta from Kingman coalescent models that produce similar
distortions in the SFS. To this end, we computed a version of Tajima’s
D (Tajima 1989) normalized to be invariant to changes in the average

pairwise coalescence time: D = (Π− θ̂W )/Π, where θ̂W is Watterson’s
theta (Watterson 1975). Negative values of D indicate an overabun-
dance of low-frequency mutations relative to the time-homogeneous
Kingman expectation. All results are computed numerically using the
results of Fu (1995), Živković and Wiehe (2008), and Birkner et al.
(2013) (see Methods).

As a first example, Fig. 2 shows the wfPMI for the constant-N
Kingman coalescent; the Kingman coalescent with exponential growth,
N(t) = N0 exp(−g t

N0
); and a beta coalescent intermediate between the

Kingman and Bolthausen-Sznitman coalescents. Exponential growth
with g = 4 and the beta coalescent with α = 1.45 both generate
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Figure 3: Pointwise mutual information between singletons and non-
singletons for Kingman coalescents with exponential growth and beta co-
alescents. The exponential growth rate, g, ranges from 0.25 to 8.0 in coales-
cent time units. The beta coalescent parameter, α, ranges from 1.75 (nearly
Kingman) to 1.25 (nearly Bolthausen-Sznitman).

similar substantial distortions in the SFS, D = −0.4. However, expo-
nential growth does not qualitatively change the fPMI. In particular,
fPMIi,j < 0 for all i 6= j, as in the constant-N Kingman coalescent. On
the other hand, the beta coalescent generates positive fPMI. The effect
of multiple mergers is strongest on fPMI between high and low minor
allele counts. This justifies binning the SFS and 2-SFS into high– and
low–minor allele count bins as defined above.

To generalize this finding, we computed the binned hiloPMI be-
tween singletons and non-singletons (ic = 1) for a range of g and α.
Figure 3 shows that as the population growth rate increases, distorting
the SFS, hiloPMI increases relative to the constant-N Kingman, but
remains negative. On the other hand, beta coalescents that generate
similar distortions in the SFS, generate larger changes in hiloPMI, in-
cluding positive values. Thus, the 2-SFS, and hiloPMI in particular,
are capable of capturing the effects of multiple mergers beyond the
distortions in branch lengths.
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Pointwise mutual information between recombining
sites

We have shown in the previous section that fPMI between pairs of
non-recombining sites can discriminate between the Kingman coales-
cent with population growth and the beta coalescent. However, most
demographic inference is performed on regions of the genome with
non-zero recombination rates. Therefore, it is important to assess the
robustness of our approach to recombination between sites.

To measure the effect of recombination on fPMI, we ran coales-
cent simulations using a version of the program msprime (Kelleher et
al. 2016) modified to allow for multiple mergers (See Methods). In
particular, we simulated a model where the marginal trees are gener-
ated by the beta coalescent process, as in our numerical calculations
above. In this model, marginal genealogies will follow the beta coales-
cent distribution, and the average SFS will be given by the formula in
Birkner et al. 2013. We also simulated data from two models of popu-
lation growth: exponential growth and a two-epoch piecewise-constant
model.

Figure 4 shows the weighted fPMI for three genetic distances be-
tween sites in a constant-N Kingman coalescent, a Kingman coales-
cent with exponential growth, and a beta coalescent. As in the non-
recombining case, the constant-N and exponential-growth Kingman
models have similar fPMI. In both models, fPMI > 0 for i ≈ j for
d r 〈T2〉 ∼ 1. This is presumably because trees at nearby sites contain
clades with similar numbers of leaves. These positive correlations do
not extend to i � j, which is the signal of multiple mergers in our
binned hiloPMI. On the other hand, the positive fPMI in the beta co-
alescent persists for d r 〈T2〉 > 1. Thus, the signal of multiple mergers
in fPMI is robust to recombination.

Figure 5 shows hiloPMI(d, ic) in both models of growth and the
beta coalescent, for a range of d r 〈T2〉 and three different choices of
ic. Each curve represents a particular parameter combination and co-
alescent model and is colored by the distortion in the average SFS
(Tajima’s D), which is independent of the recombination rate. At
low recombination rates, hiloPMI may be greater in growing popula-
tions than in constant-N populations (dotted lines), but is always less
than zero, consistent with the results for non-recombining sites. When
d r 〈T2〉 ≥ 1, hiloPMI may be slightly positive for large ic, but is smaller
in growing populations than in the constant-N Kingman model. In all
Kingman models, hiloPMI decays to zero for d r 〈T2〉 � 1.

In contrast, the beta coalescent generates hiloPMI that is consis-
tently greater than the constant-N Kingman. As with non-recombining
sites, the hiloPMI is also greater in the beta coalescent model than in
models of population growth that generate similar distortions in the
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Figure 4: Weighted frequency pointwise information for three recombination
rates with sample size n = 100. As in Figure 2, the diagonal elements are
masked, and the growth and multiple-merger parameters were chosen to
generate average SFS with similar Tajima’s D.
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Figure 5: Pointwise mutual information between high– and low–minor al-
lele count mutations (hiloPMI) versus genetic distance. Each curve repre-
sents a different combination of coalescent parameters. The first three rows
show coalescent simulations in msprime. Exponential growth rate g varies
logarithmically from 1 to 8.0 in coalescent time units. Piecewise constant
change-points range from 0.01 to 1 in coalescent time units, and the ratio of
ancestral to modern population size ranges from 0.01 to 0.2. The fourth row
shows forward-time SLiM simulations with selective sweeps at linked sites
(beneficial mutation fraction fsel ∈ {10−6, 10−5, 10−4, 10−3}, see Methods).
Lines are colored by the distortion in the SFS, as measured by Tajima’s D.
The dashed line shows the constant-N Kingman coalescent.
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Figure 6: Pointwise mutual information between high– and low–minor allele
count mutations (hiloPMI) versus normalized Tajima’s D for simulations
with recombination. All values are for d r 〈T2〉 ∼ 1 and n = 100. Orange
points show Kingman coalescent simulations with population growth. Blue
points show beta coalescent simulations.

SFS. This is true across recombination rates and high/low cutoff minor
allele counts.

These results demonstrate that hiloPMI is capable of discriminat-
ing between coalescent models even when there is recombination be-
tween sites. In particular, population growth has very little effect on
hiloPMI, especially for d r 〈T2〉 & 1, while multiple mergers increase
hiloPMI across the range of d r 〈T2〉. Figure 5 also suggests that the
most informative genomic distance for distinguishing multiple mergers
from population growth is d r 〈T2〉 ∼ 1. In a later section, we will
demonstrate how to use these results to implement a model checking
procedure based on plotting hiloPMI as a function of genomic distance.

Figure 6 highlights the relative invariance of hiloPMI at intermedi-
ate genomic distances to population growth. While population growth
in a Kingman coalescent model can strongly distort the SFS, as mea-
sured by Tajima’s D, it has very little effect on the hiloPMI for sites
d r 〈T2〉 ∼ 1 apart. This holds for exponential as well as piecewise
constant growth. In contrast, the beta coalescent induces large posi-
tive hiloPMI for the same values of Tajima’s D. The figure also shows
that this result is robust to the choice of cutoff minor allele count for
binning.

There is one other salient feature of Fig. 5: hiloPMI does not decay
to zero at long distances in the beta coalescent. This behavior relates
to the results of Eldon and Wakeley (2006), who showed that a model
with “jackpot” reproductive events can generate infinite-range link-
age disequilibrium. Further, Eldon and Wakeley (2006) showed that
different scalings of rates of mutation, pairwise coalescence, multiple-
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merger coalescence, and recombination lead to different behaviors of
diversity and linkage disequilibrium. Our implementation of the beta
coalescent model with recombination corresponds to a particular scal-
ing limit where recombination does not have time to decorrelate trees
during multiple-merger events, even at infinite genetic distances. We
do not expect this behavior to be universal in multiple-merger coales-
cents with recombination.

Linked selective sweeps

Various authors have shown that natural selection can generate multiple-
merger coalescents at linked neutral sites (e.g., Durrett and Schweins-
berg 2005; Coop and Ralph 2012; Neher and Hallatschek 2013; Desai
et al. 2013; Seger et al. 2010). However, our simulations of the beta co-
alescent with recombination are of an explicitly neutral model. Thus,
they are at best an approximation to the selective models cited above.
It is therefore important to verify that selection at linked sites can, in
fact, generate the sorts of signals in fPMI that we have detected in the
beta coalescent.

To test this proposition, we performed forward-time simulations of
recurring selective sweeps using the software SLiM (Messer 2013). In
these simulations, we simulated individual chromosomes with homoge-
nous recombination and two types of mutations: neutral and beneficial
with a fixed selection coefficient, s. Both types of mutations occurred
at random, uniformly distributed along the chromosome. By varying
the recombination rate, neutral and beneficial mutation rates, popula-
tion size, and selection coefficient, we varied the rate of selective sweeps
linked to neutral sites.

The bottom row of Fig. 5 shows the results of these simulations. For
intermediate genetic distances, d r 〈T2〉 ∼ 1, the effects of linked sweeps
are qualitatively similar to the effects of the beta coalescent. That is,
when sweeps are sufficiently frequent to distort the SFS, as measured
by Tajima’s D, they also increase hiloPMI. The primary difference
between the forward-time sweeps and beta coalescent simulations is
that the distortions caused by sweeps decay to zero for d r 〈T2〉 � 1.
This decay is expected because the effect of a single selective sweep on
the genealogy is localized around the position of beneficial mutation.

Application to Drosophila melanogaster : Coales-
cent model checking

Our results above show that fPMI and its binned analog, hiloPMI, are
useful for distinguishing population growth from the effects of multiple
mergers, even when population growth generates similar distortions in
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the SFS. We therefore propose the following model-checking procedure
for demographic inference methods:

(i) Fit a demographic model to data.

(ii) Simulate genealogies under the fitted model (using msprime or
other coalescent simulator). Calculate the fPMI(d) and hiloPMI(d; ic)
predicted by the model.

(iii) Calculate fPMI(d) and hiloPMI(d; ic) from the data.

(iv) Compare true to predicted statistics to evaluate model fit.

This procedure checks whether the demographic model is consistent
with a feature of the data that was not used in fitting the model. In-
consistency suggests that the inferred N(t) may be an artifact of natu-
ral selection, skewed offspring distributions, etc., rather than reflecting
the true historical population size.

In this section, we illustrate the procedure outlined above by us-
ing genomic diversity data from the Drosophila melanogaster DGPG3
panel (Lack et al. 2015). The DPGP3 data consists of haploid con-
sensus sequences from ∼ 200 wild-caught flies from a Zambian popu-
lation known to be mostly free of cosmopolitan admixture. Recently,
several groups have used the DPGP3 data to estimate the population-
size history of D. melanogaster (Terhorst et al. 2017; Ragsdale and
Gutenkunst 2017). On the other hand, it is widely believed that the
genetic diversity of Drosophila is strongly shaped by natural selection
(e.g., Elyashiv et al. 2016; Garud and Petrov 2016). Thus, this data
is a good candidate for demonstrating the utility of fPMI for assessing
coalescent model fit.

After filtering for missing genotypes, removing chromosome arms
with known inversions, downsampling to n = 100 samples per au-
tosomal chromosome arm, and identifying 4-fold degenerate sites, we
selected the central region of each chromosome characterized by consis-
tent high diversity (Methods). Because the average pairwise diversity
varies between arms—possibly reflecting selection or different sets of
segregating inversions—we performed all subsequent calculations on
each arm independently. We fit a demographic model to the site fre-
quency spectra of these central regions using fastNeutrino (Bhaskar
et al. 2015). We fit a 3-epoch piecewise-constant model, with four free
parameters: two changepoints and two population size ratios. We re-
port our fitted parameters in Table S3. We then simulated under our
fitted model using msprime and computed the expected and observed
SFS, fPMI, and hiloPMI (Fig. 7, Methods).

The first row of Fig. 7 shows that the expected SFS under the fit
demographic models agree with the observed SFS, demonstrating that
a time-varying N(t) can explain this aspect of the data well. In con-
trast, the second row shows the expected and observed weighted fPMI
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Figure 7: DPGP3 data and coalescent model predictions. First row: ob-
served (blue) and expected (orange) site frequency spectrum compared to
constant-N Kingman coalescent (dotted lines). Second row: Expected (up-
per triangle) and observed (lower triangle) weighted fPMI averaged over all
pairs of sites less than 15dc apart. Third row: Observed (blue) and expected
(orange) hiloPMI versus genetic distance. Cutoff minor allele count, ic,= 5.
Solid blue curves show cubic spline fit. Dotted lines show the expectation
under the constant-N Kingman coalescent.
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Figure 8: Genealogies with a sample size of n = 4. Opportunities for single-
ton/tripleton mutations are in orange. Opportunities for doubletons are in
blue. (Note: there is a third possible multiple-merger topology, not shown.)

averaged over distances less than 200 bp apart, which corresponds to to
d/dc < 15. Here, the data shows strong positive associations between
nearby alleles at different frequencies, while the model of population
growth predicts weak negative associations except adjacent to the di-
agonal. This pattern extends across a range of genomic distances,
d/dc ∈ (10−1, 102) (Fig. 7, third row). As a result, we may conclude
that the data is not well explained by the Kingman coalescent with
population growth.

Note that the hiloPMI decays toward zero at large distances, match-
ing the expectation from simulations with selective sweeps rather than
the beta coalescent. However, we caution against concluding that
sweeps are necessarily responsible for the deviations from the King-
man expectation.

Discussion

We have shown that fPMI and its binned analog hiloPMI are sensitive
to multiple mergers, but largely invariant to population growth in the
Kingman coalescent. These properties make them well-suited for coa-
lescent model checking. We demonstrated a model-checking procedure
on data from D. melanogaster, which is believed to be strongly shaped
by natural selection, and found evidence that population growth alone
cannot explain the positive associations between high and low fre-
quency mutations.

We can get an intuitive understanding for why fPMI distinguishes
among coalescent models by considering a sample of four chromosomes.
In the Kingman coalescent, there are only two possible tree topologies
(Figure 8). Furthermore, the total branch length is independent of
the topology (Wakeley 2009). As a result, there is a trade-off between
the length of branches leading to singleton/tripleton mutations on one
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Figure 9: Distortions in fPMI vs. distortions in the SFS for n = 4. Param-
eters for beta coalescents and exponential growth are as in Fig. 3. For the
piecewise-constant–N model, the fold-change in N varies from 2 to 24 and
the time of this change varies from 2−4 to 2 in coalescent time units.

hand, and the branch length leading to doubletons on the other. Ge-
nealogies with topology (A) will have more opportunities for the former
and loci with topology (B) will have more opportunities for the latter.
Conditional on observing a doubleton at a site, it is thus more likely
that the genealogy has topology (B) and so the expected number of
singletons at sites with the same genealogy is lower than average. In
terms of the 2-SFS, we have 〈η12〉 < 〈η1〉 〈η2〉.

On the other hand, multiple mergers induce correlations between
the tree topology and the total branch length. For example, topology
(C) has less opportunity for singletons and less opportunity for double-
tons than (A) or (B), even though the expected proportion of singletons
is higher. Thus, observing any mutation at all makes topology (C) less
likely and the expected number of other mutations at all frequencies
higher. If multiple-merger events are frequent enough, this effect may
dominate the tradeoff between (A) and (B) so that 〈η12〉 > 〈η1〉 〈η2〉.

As argued above, 〈η12〉 is also distorted by changes in the coales-
cent time distribution induced by population growth. Figure 9 demon-
strates that fPMI accounts for this fact by normalizing by the SFS.
Figure 9 plots fPMI(1, 2) against the ratio of singletons to doubletons
η1/η2 for the beta coalescent and two models of population growth:
exponential growth and a piecewise-constant model with two epochs.

23

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2018. ; https://doi.org/10.1101/461517doi: bioRxiv preprint 

https://doi.org/10.1101/461517
http://creativecommons.org/licenses/by-nd/4.0/


In the latter model, we vary both the fold-change in N and the time of
the change. Like Tajima’s D, the singleton/doubleton ratio measures
distortion in the SFS relative to the constant-N Kingman coalescent.
(In fact, with n = 4, this ratio captures all of the distortion in the
SFS.) As with the larger sample size (Fig. 3), multiple mergers gener-
ate larger distortions in fPMI than population growth does, accounting
for the distortions in the SFS. Moreover, the results for two different
models of growth coincide, suggesting that the functional form of the
population growth does not strongly influence fPMI.

We focus here on demographic inference methods that explicitly
use the Kingman coalescent model for calculations. However, another
popular class of methods are based on forward-time models, such as
the Wright-Fisher model (e.g., Gutenkunst et al. 2009; Sheehan et
al. 2013). We believe that fPMI is useful for model-checking with
these methods as well. This is because forward-time neutral models
each have an associated dual coalescent model (Etheridge 2011), which
can be used to compute the expected fPMI as outlined in this paper.
Furthermore, non-neutral models also generate predictions about the
2-SFS and thus fPMI. In principle, any fitted model that allows calcu-
lation or simulation of the 2-SFS may be checked using fPMI. However,
the suitability of fPMI for discriminating among arbitrary families of
models is unknown.

In this paper, we have outlined a graphical model-checking proce-
dure in the spirit of Anscombe (1973). One could extend our work
to implement a formal hypothesis-testing framework for rejecting the
Kingman coalescent model best-fit according to some inference method.
Numerical calculations would require higher moments of the branch-
length distribution, which may be computationally intractable for large
samples. On the other hand, it would be straightforward to develop a
bootstrap-style procedure, using coalescent simulations to estimate the
variance in test statistics under the fit model. In any case, we believe
that it would be useful for simulation packages such as msprime and
population genetics analysis libraries to include standard functions for
computing the 2-SFS, fPMI, and hiloPMI. We provide such functions
in the GitHub repository associated with this paper.

Our coalescent simulations implement a particular version of the
multiple-merger coalescent with recombination. However, the precise
correspondence between this model and any particular forward-time
process is unclear. In order to compare with our numerical calcula-
tions based on Birkner et al. (2013), we use the beta coalescent for
the distribution of marginal genealogies, but the explicit forward-time
models that have been studied by others generate simultaneous mul-
tiple mergers. (See e.g., the Durrett and Schweinsberg 2005 model of
selective sweeps, but note that our forward-time simulations suggest
that this distinction is not important to our main results.) Moreover,
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the long-range correlations observed in Fig. 5 likely depend on an im-
plicit choice regarding the scaling of recombination, coalescent, and
multiple-merger rates (Eldon and Wakeley 2006). These issues are
poorly understood, and more theoretical work is required to under-
stand the interactions between multiple mergers and recombination.

An interesteing potential future empircal application of our work
would be to use fPMI to assess the evidence for variation in multiple-
merger coalescence within genomes and between species. For example,
one could compute the fPMI in different regions of a large genome
and look for a relationship between the strength of non-Kingman co-
alescence and genomic properties such as the recombination rate and
functional density. Alternatively, one could survey multiple species us-
ing a data set such as the diversity data compiled by Corbett-Detig
et al. (2015). Either would reveal new information about the suitabil-
ity of population genetic models, and the forces that determine genetic
diversity.
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Figure S1: Average pairwise diversity, Π, of 100 haploid samples from
DPGP3 panel. Each point represents the average over a 10 Kb window.
Vertical lines show the boundaries of the central regions defined in Table S1.

Table S1: Boundaries of the homogeneous central regions of chromosomes
(shown in Fig. S1).

Chr. Start position (Mb) End position (Mb)

2L 1 17
2R 6 19
3L 1 17
3R 10 26
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Table S2: Fraction of sites with at least 90 genotyped samples
Chr. All sites Polymorphic sites

2L 0.913 0.924
2R 0.922 0.925
3L 0.919 0.920
3R 0.933 0.936

Table S3: Piecewise-constant model parameters fit to the SFS of each chro-
mosome arm (see Eq. (10), Nanc = 3× 105).

Chr. N1(×105) N2(×105) t1(×104) t2(×104)

2L 10.7 4.6 2.8 39.9
2R 9.1 3.9 1.6 8.8
3L 7.3 3.8 1.3 6.4
3R 9.7 5.1 2.2 8.6
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