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a b s t r a c t

Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis,
whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In
order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by
first acquiring the deleterious or neutral intermediates. Here, we present a complete, intuitive theoretical
description of the valley-crossing process across the full spectrum of possible parameter regimes. We
calculate the rate at which a population crosses a fitness valley or plateau of arbitrary width, as a function
of the mutation rates, the population size, and the fitnesses of the intermediates. We find that when
intermediates are close to neutral, a large population can cross even wide fitness valleys remarkably
quickly, so that valley-crossing dynamics may be common even when mutations that directly increase
fitness are also possible. Thus the evolutionary dynamics of large populations can be sensitive to the
structure of an extended region of the fitness landscape — the population may not take directly uphill
paths in favor of paths across valleys and plateaus that lead eventually to fitter genotypes. In smaller
populations, we find that below a threshold size, which depends on the width of the fitness valley and
the strength of selection against intermediate genotypes, valley-crossing is much less likely and hence
the evolutionary dynamics are less influenced by distant regions of the fitness landscape.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Complex traits derive their complexity, in part, from the in-
teractions between multiple genes. This complicates the quanti-
tative description of the evolution of these traits. In some cases,
complex phenotypes may evolve through the accumulation of a
number of individually beneficial mutations. In others, however,
advantageous traits could require multiple mutations in different
genes, each of which may be individually neutral or deleterious in
the absence of the other mutations. For example, the evolution of
a new function in a signal pathway may require mutations in the
genes for both a receptor and the corresponding ligand, or in a se-
ries of receptor–ligand pairs involved in the pathway (Goh et al.,
2000). Other examples include types of cancer that typically occur
only after a series of mutations (Knudson, 2001), pathogens that
require multiple mutations in order to escape their hosts’ immune
response (Levin et al., 2000; McDonald and Linde, 2002; Shih et al.,
2007), and the evolution of citrate usage in Escherichia coli (Blount
et al., 2008).
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In order for a population to acquire an adaptation involving
multiple mutations that are individually neutral or deleterious, at
least some individuals must first acquire the neutral or deleterious
intermediate mutations. In the language of fitness landscapes,
there is no directly uphill path from the current genotype to
one of higher fitness that corresponds to this adaptation. The
population must cross a ‘‘fitness valley’’, or in the case of neutral
intermediates a ‘‘fitness plateau’’, to reach the higher-fitness state.
In this way a population can escape a local peak in fitness space
(i.e. a genotype in which no single mutation confers a fitness
advantage) by producing a more distantly related higher-fitness
genotype (Weinreich and Chao, 2005). Valley-crossing dynamics
may also be important when the population is not at a local fitness
peak. We want to understand more generally the dynamics in
situationswhere both individually advantageousmutations aswell
as valley-crossing processes are simultaneously possible.
In general, these evolutionary dynamics depend on the full

range of possible pathways by which a population can accumulate
mutations to produce nearby higher-fitness genotypes. All of the
mutation rates and selective pressures of intermediate genotypes
affect the dynamics. We refer to this set of possibilities and
relevant parameters as the local structure of the fitness landscape.
Unfortunately, very little is known about what fitness landscapes
are typical in nature, so it is impossible to say what sorts of
evolutionary dynamics are most common. Instead, we aim to
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lay out the various qualitatively different types of dynamics, and
to understand which aspects of the fitness landscape determine
the relative likelihood of different dynamics. As we will see, this
provides a new perspective on what could plausibly be typical
in evolution. We find, for example, that a population will not
necessarily go directly ‘‘uphill’’ in fitness space even if such a
change is possible— sometimes valley-crossingwill bemore likely.
There are two general ways a population can cross a fitness

valley. Each of the intermediates can fix in turn through
random drift, until eventually the final mutation provides the
advantageous effect. We refer to this process as sequential
fixation. Alternatively, intermediates can drift at relatively low
frequencies, each such intermediate eventually disappearing,
until an individual accumulates a combination of mutations that
provides a selective advantage. While recombination can bring
together such combinations of mutations in a sexual population,
in an asexual population they can only occur through multiple
mutation events in a single lineage. This latter process in an asexual
population has been dubbed ‘‘stochastic tunneling’’ (Iwasa et al.,
2004b). Since it is easier for neutral or deleterious mutations
to fix through drift in small populations, we expect that in
small enough populations sequential fixation will dominate and
stochastic tunneling will not occur. In larger populations, on the
other hand, neutral and especially deleterious mutations very
rarely fix, so we expect that stochastic tunneling will be more
important.
The simplest version of the valley-crossing problem in asex-

uals is when only two mutations, each individually neutral or
deleterious, combine to produce a beneficial trait. Kimura (1985)
and Carter and Wagner (2002) analyzed this problem in the
context of the evolution of pairs of compensatory mutations.
Weinreich and Chao (2005) expanded on this work to analyze the
valley-crossing problem in both small and large populations for
the case of strongly deleterious single-mutant intermediates. This
complements the earlier work of Iwasa et al. (2004b), who focused
exclusively on the stochastic tunneling process in large popula-
tions, but analyzed neutral or arbitrarily deleterious single-mutant
intermediates. Durrett and Schmidt (2008) extended this work by
also including valley-crossing in small and intermediate-size pop-
ulations with neutral single-mutants, although without consider-
ing the effect of the strength of selection on the double-mutants.
For adaptations requiring more than two mutations, Iwasa et al.
(2004a) derived the probability of tunneling in large populations
with either neutral or strongly deleterious intermediate muta-
tions. Serra and Haccou (2007) extended this work on adapta-
tions requiring more than two mutations to the case of arbitrarily
deleterious intermediates. All of this work is also related to the
analysis of Barton andRouhani (1987),who studied a different kind
of fitness valley in which there are multiple stable deterministic
equilibria.
In this paper, we provide a complete, intuitive description of

the valley-crossing problem in asexuals involving any number
of intermediates with arbitrary fitness losses. Earlier results are
derived as special cases. For the bulk of the paper, we study
how an asexual population traverses a particular fitness valley.
That is, we imagine that there is one set of mutations that a
population must acquire in one specific order to reach one specific
beneficial genotype, and that all mutations away from this specific
pathway are strongly deleterious. In analyzing this process, we
focus primarily on the tunneling process in large populations,
but also study the transition to the small-population regime. Our
framework allows us to study not only the probability of stochastic
tunneling, but also the dynamics of the intermediate mutations,
and hence the time required for the beneficial combination of
mutations to arise. Our analysis is very much in the spirit of Karlin
(1973), as well as Christiansen et al. (1998), though these authors
focused on the case where intermediate mutations were also
beneficial. In Section 6, we consider the situation where multiple
valley-crossing and possibly directly uphill pathways are available,
leading to the same or different advantageous genotypes. We
explain how our analysis of a single pathway can be applied to this
more complex situation.

2. Model

Weconsider an asexual population ofN haploid individuals, and
study the process by which this population acquires a beneficial
trait that requires mutations at K loci. We refer to this as a ‘‘K -
hit’’ process. We assume that all combinations of less than K of
these mutations are neutral or deleterious relative to the initial
genotype, and that only when an individual has acquired all K
of them do they confer a benefit. For the bulk of this paper, we
analyze the process by which an asexual population traverses a
particular path through this genotype space to acquire the K -hit
beneficial mutation. That is, we study one specific order in which
the intermediatemutations can be acquired, and implicitly assume
that any mutation away from this specific pathway is strongly
deleterious. Given this order, the fitness of the individual with k
mutations is

wk ≡

{1 k = 0
1− δk 1 ≤ k ≤ K − 1
1+ s k = K

, (1)

where δk ≥ 0, and we assume that the K -mutant is substantially
but not enormously beneficial, 1/N � s � 1. We assume
that mutations occur from an individual with k mutations to an
individualwith k+1mutations at rateµk. The simplest case,K = 2,
is illustrated in Fig. 1a. A case with larger K is illustrated in Fig. 1b.
In most realistic situations, there will be a variety of different
mutational pathways (e.g. different mutation orders) by which the
population can acquire the favored genotype; we show how our
analysis describes this more complex situation in Section 6.
Our model also applies to asexual diploids, where the fitness

of each mutation refers to its fitness given the existing genotype
at the homologous portion (e.g. the fitness effect of a mutation
from an aa genotype to an Aa genotype is the fitness difference
between these two diploid genotypes). In this diploid case, the first
mutation of a series could convert a diploid one-locus genotype aa
to Aa, and a later mutation to genotype AA; if allele A is a recessive
mutationwhich confers some fitness advantage,mutation in either
homologous allele would be individually neutral, but the two
mutations together would be advantageous. In this sense our
model is related to the earlier work by Karlin and Tavaré (1981).
For much of this paper, we will consider the case where

the population is large and the frequencies of the intermediate
mutations are always small — this is the regime inwhich stochastic
tunneling is important. Under these conditions, we treat the
dynamics of the intermediate mutations using a continuous-
time branching process, according to which all individuals with
k mutations die at rate 1, split into two identical individuals
at rate wk, and split into two individuals, one of which has
an additional mutation, at rate µk, with all of these processes
occurring independently. We assume back-mutations are rare
enough to be neglected. This model makes a variety of important
quantities easier to calculate analytically, but it is only valid
when each individual mutant can be treated independently, which
requires that all mutants are at low frequency in the population.
We will also consider the case of smaller population sizes and
the transition to the regime where the dominant valley-crossing
process is sequential fixation of the intermediate genotypes. In
this case, we use standardWright–Fisher dynamics to describe the
evolution (Ewens, 2004, pp. 20–21).
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Fig. 1. An illustration of our model. (a) The simplest case, K = 2. Here the wild-
type has fitness 1, and there is a possible double-mutant with fitness 1 + s > 1.
The single-mutant, however, has fitness 1 − δ1 < 1. The mutation rate from the
wild-type to the single-mutant is µ0 , while the mutation rate of the single-mutant
to the double-mutant isµ1 . (b) A slightly more complex example where K = 3. The
wild-type again has fitness 1, single-mutants have fitness 1 − δ1 , double-mutants
have fitness 1− δ2 , and the triple-mutant is advantageous with fitness 1+ s.

3. Heuristic analysis

In this section we lay out a simple intuitive analysis of the
valley-crossing problem, which demonstrates the main ideas of
our approach. Our analysis follows the general lines of our earlier
discussion in Fisher (2007). We first note that when a beneficial
mutant arises, it will usually soon go extinct due to random genetic
drift. In our haploid model, there is a probability 1−e−s

1−e−Ns
≈ s that it

will survive this drift, and eventually fix in the population (Ewens,
2004, p. 99). We call the process by which such a lucky beneficial
mutant survives drift the establishment of the beneficial mutant;
once a beneficial mutation is established (upon reaching a size
of order 1s ), its frequency will increase roughly deterministically
until the population is dominated by beneficial mutants. We refer
to any mutant (beneficial or not) whose descendants will include
a beneficial multiple-mutant that will establish as successful. We
wish to calculate the time it takes for a beneficial multiple-mutant
to first establish.
We begin by considering the simplest case, where a double

mutation increases fitness by s (i.e. K = 2), but each of the
single-mutants is neutral (i.e. δ1 = 0). We refer to this as a
two-hit process. We initially consider a population so large that
the single mutations essentially never fix. In this case, double-
mutants can be produced in two ways. A wild-type individual
could acquire both mutations in a single generation. Alternatively,
a wild-type could acquire just one mutation, and this lineage
could drift neutrally until a second mutation within the lineage
produces a beneficial double-mutant. As we will see, this latter
process is much more likely, so we begin by considering the rate
at which this occurs. To do so, we must calculate the probability,
p1, that a single-mutant will be successful (i.e. the probability
that an individual in its lineage will acquire a second mutation
and establish). The essential property of the single-mutant lineage
that determines its probability of producing a double-mutant is
its time-integrated population size,

∫
n(t)dt , because this is the

number of mutational opportunities this lineage presents. We call
the value of this integral at time t the ‘‘weight’’ at time t of the
single-mutant lineage, and denote it by

W (t) ≡
∫ t

0
n(t ′)dt ′. (2)

The total number of mutational opportunities before the lineage
goes extinct isW ≡ limt→∞W (t) =

∫
∞

0 n(t)dt , the total weight
of the lineage.
To calculateW , wemust understand the dynamics of the single-

mutant lineages. In a large population these dynamics are quite
simple (Desai and Fisher, 2007). Most of the time the lineage
will never reach a substantial size, and will die out within a few
generations. Its weight will be of order 1, and the probability that
a double mutation occurs and establishes from such a lineage is
µ1s times this weight, and is therefore of order µ1s. But with
probability of order 1/T , the lineage will survive for more than
T generations. If it does, its population size n(T ) will be of order
T . This will produce a weight of order T 2 (a population size of
order T for a time of order T ). These dynamics are illustrated
in Fig. 2, and justified rigorously below and in Appendix B. The
probability that such a lineage gives rise to at least one double-
mutant that establishes is thus 1−e−Cµ1sT

2
, where C is an unknown

constant of order 1 and we have used the fact that the occurrence
of successful mutations is a Poisson process (the factor C reflects
the fact that our estimate of the probability a lineage will reach
a given weight is only roughly correct; see Appendix B for a
precise calculation.). This means that lineages that survive longer
than T ∼ 1/

√
µ1s generations (and hence reach size 1/

√
µ1s

individuals) are very likely to produce established double-mutants.
Thuswith probability

√
µ1s a single-mutant lives long enough that

it is extremely likely to produce a double-mutant that establishes.
Since the probability of a single-mutant lineage having weight at
least T 2 falls off only as 1/T , while the expected number of double-
mutants produced by the single-mutant lineage increases as T 2 for
T < 1/

√
µ1s, the rate at which double-mutants are produced is

dominated by these rare lucky single-mutant lineages that reach
this size 1/

√
µ1s. Thus the overall probability that a single-mutant

gives rise to a double-mutant that establishes is simply

p1 ∼
√
µ1s. (3)

If the single-mutant intermediates are deleterious, things are
only slightly more complicated. In this case, a single-mutant
lineage is still effectively neutral while its population size is small
compared to 1/δ1 (Fisher, 2007). On the other hand, it will almost
never grow to a size much larger than 1/δ1. Thus if δ1 <

√
µ1s,

single-mutant lineages still reach size 1/
√
µ1swith about the same

probability as in the neutral case, and all of the neutral results
above apply. We have as before p1 ∼

√
µ1s. The single-mutant is

effectively neutral for the purposes of producing double-mutants
— note this can be true even if Nδ1 � 1 (where the single-mutant
is not effectively neutral by conventional definitions). If on the
other hand δ1 >

√
µ1s, then the fact that the single-mutant is

deleterious matters. In this case, the single-mutant lineage will
reach a size of at most order 1/δ1, have a weight of order 1/δ21 ,
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Fig. 2. Sketch of the fate of a mutant lineage which has selective disadvantage
δ. Shown is the population size n of the lineage as a function of time t . With
probability 1/T , the lineage reaches a size T in roughly T generations, and then
drifts to extinction in another T generations. This gives rise to an overall weight
W = T 2 . The overall shape of a ‘‘typical’’ such trajectory is shown (in an actual case,
the trajectory would be somewhat ‘‘jagged’’ due to stochastic fluctuations in n(t),
but the overall shape would be roughly as shown). This is valid for T < 1/δ; the
lineage will almost never reach a population size larger than 1/δ.

and give rise to a double-mutant that establishes with probability
of order µ1s/δ21 . Since the probability of this happening is of order
δ1, we have

p1 ∼
µ1s
δ1
. (4)

Note that when δ1 ∼
√
µ1s, this reduces to the neutral result, as it

should.
All of our discussion to this point has implicitly assumed that

the population size N is large enough that the intermediates can
drift to the sizes described above. For the neutral case this means

N �
1
√
µ1s

. (5)

When this is true, lineages that typically produce double-mutants
that establish can do so while staying small compared to N .
When Eq. (5) fails, double-mutants establish primarily after a lucky
single-mutant has first drifted to fixation. The probability that
the neutral mutation fixes is 1/N , after which it will eventually
produce a beneficial double-mutant. So for this small-N case we
have

p1 ∼ 1/N. (6)

Note that this approaches our large-N result at the threshold
population size, N ∼ 1/

√
µ1s, as expected. For the case of

deleterious mutations, when δ1 <
√
µ1s the condition on N is

identical to the neutral case. When δ1 >
√
µ1s, the critical size

threshold is insteadN � 1
δ1
. ForN below this threshold, the single-

mutant lineages are always effectively neutral (now because the
population size is too small for selection to be felt), and hence
the small-population neutral-intermediate results apply: double-
mutants establish primarily after a lucky single-mutant has first
drifted to fixation, and p1 ∼ 1/N . Above this threshold population
size, the results above for strongly deleterious intermediates
in large populations will generally apply (however, if µ1s is
sufficiently small, even strongly deleterious single-mutants are
likely to drift to fixation before producing a double-mutant; we
discuss this in more detail in our rigorous analysis below).
To summarize all of these results, we have the following

regimes,whichwe summarize in Fig. 3. For δ1 < max
(√
µ1s, 1/N

)
,

the single-mutants are effectively neutral; these are the regimes
Fig. 3. Schematic of the different parameter regimes for the case K = 2. In the
sequential fixation regime, the population usually crosses the valley by first fixing
the single-mutants. For N|δ1| < 1 (the neutral sequential fixation regime), the
single-mutants are approximately neutral, and the expected time for the beneficial
double-mutants to establish is just τ ≈ 1/µ0 . For larger Nδ1 (the deleterious
sequential fixation regime, between the dotted and solid lines), the process is
slowed by selection against single-mutants, and τ ≈ 1/Nµ0ρ1 , where ρ1 is
given by Eq. (29). For larger values of N or δ1 , the valley-crossing dynamics are
dominated by tunneling. In the neutral stochastic tunneling regime, τ is given
by the neutral limit in Eq. (28), while in the deleterious tunneling regime, τ is
given by the strongly deleterious limit of Eq. (28). In the neutral semi-deterministic
tunneling regime, the initial increase of the single-mutant class is approximately
deterministic, and τ is given by the first line of Eq. (35). In the deterministic regime,
the dynamics are fully deterministic, and τ is given by Eq. (37). Note that the
transitions between regimes are not sharp, but represent smooth crossovers. Note
also that the parameter regimes describing weakly deleterious intermediates also
apply to weakly beneficial intermediates (the region of the figure where δ1 < 0).

labeled ‘‘Neutral’’ in Fig. 3 (the numerical factors in the bound-
aries to the regimes follow from our formal analysis below). In this
effectively neutral case, for large (but not enormous) N we have
p1 ∼

√
µ1s (the ‘‘neutral stochastic tunneling’’ regime in Fig. 3),

and this transitions to p1 ∼ 1/N for smaller populations where
N < 1/

√
µ1s (the ‘‘neutral sequential fixation’’ regime in Fig. 3).

(Note that none of our analysis thus far has addressed the large-N
‘‘neutral semi-deterministic’’ and ‘‘neutral deterministic’’ regimes
shown in the figure; we discuss these in Section 4.5 below.) For
larger δ1 > max

(√
µ1s, 1/N

)
, we have p1 ∼

µ1s
δ1
, as long as µ1s is

not too small. This is the ‘‘deleterious tunneling’’ regime in Fig. 3.
Asµ1s approaches 0, this case becomes slightly more complicated,
and is discussed below (this is the ‘‘deleterious sequential fixa-
tion’’ regime in Fig. 3). The large-N neutral and deleterious stochas-
tic tunneling regimes were studied earlier by Iwasa et al. (2004b)
and Serra and Haccou (2007), while the large-δ1 regimes were an-
alyzed byWeinreich and Chao (2005), although these earlier stud-
ies did not explore the full parameter space nor the transitions
between regimes.
Thus far we have only considered the probability that a single-

mutant lineage will give rise to a double-mutant that establishes.
We must also understand the rate at which the single-mutant
lineages arise in the first place, and the amount of time that it takes
such a lineage to produce a double-mutant, given that it is destined
to do so. The former is simple: single-mutants arise as a Poisson
process at rate Nµ0. Since each single-mutant has a probability
p1 of being successful, the expected time until the first successful
single-mutant is produced is 1

Nµ0p1
generations. In a large

population with neutral or weakly deleterious intermediates, this
is 1
Nµ0
√
µ1s
. We have seen that in this regime the successful single-

mutant lineage will typically survive of order 1
√
µ1s
generations,



290 D.B. Weissman et al. / Theoretical Population Biology 75 (2009) 286–300
and produce the first successful double-mutant after this time.
Thus the total expected time for the successful double-mutant
to be produced is 1

Nµ0
√
µ1s
+

1
√
µ1s
=

1
√
µ1s

(
1
Nµ0
+ 1

)
. Similar

calculations apply to the other regimes described above. This
expression is only valid for Nµ0 < 1; if single-mutants are
produced more frequently, it is likely that a second successful
single-mutant lineagewill arisewhile the first is still drifting, sowe
can no longer assume that only the first successful lineagematters.
We analyze this more carefully in Section 4.5 below.
We can understand more complex multi-hit processes by

iterating the above analysis. For example, consider a three-hit
beneficial mutation (K = 3) with neutral intermediates. A double-
mutant will produce a successful beneficial triple-mutant with
probability p2 =

√
µ2s. Thus in a large enough population a

single-mutant will produce a double-mutant destined to produce
a successful triple-mutant with probability

p(3)1 =
√
µ1p2 =

√
µ1
√
µ2s. (7)

The population size must be large for this to obtain: we need
N � 1/

√
µ1
√
µ2s. For slightly deleterious mutations the result

is the same, although now the single-mutant must be very close to
neutral for this to hold. When these conditions are met, however,
this three-hit process is only a factor of (µ2/s)1/4more improbable
than the two-hit one, rather than the naive guess that it would be
a factor of µ2 more improbable. We describe these more complex
processes in more detail in our rigorous analysis below.
Finally, we note that although we have drawn a clear line

between one-hit and multi-hit processes, the actual distinction
is much less sharp. Take for example the case of two-hit
processes, K = 2. We showed above that for weakly deleterious
intermediates, the behavior is identical to the case of neutral
intermediates. In fact, the argument we made there also applies to
the case where the intermediates are weakly beneficial. If single-
mutants have some advantage σ1, then when σ1 <

√
µ1s, the fact

that the intermediate is advantageous is not felt before the double-
mutant arises. Thus our neutral result still applies, and even
though each mutation is independently beneficial, the dynamics
are still those of a two-hit process with neutral intermediates.
This is reflected in the region where δ1 < 0 in Fig. 3. Similar
behavior holds for the more complex multi-hit situation, although
the intermediates have to be closer to precisely neutral for the
neutral results to apply.

4. Formal analysis

We now turn to formal analysis, and rigorously derive and
extend the results described heuristically above. We first focus
on describing the fate of a given k-mutant lineage, using Laplace
transforms to calculate the probability that this lineage will be
successful for arbitrary selective coefficients and mutation rates.
We then calculate the expected time that a successful k-mutant
lineage will drift before producing the first successful (k + 1)-
mutant. We next consider the entire trajectory of evolution, from
the initial wild-type to the eventual fixation of the beneficial
mutants, paying special attention to the case of beneficial double-
mutants. In doing so, we describe the population sizes for which
the beneficial mutants are more likely to establish via a tunneling
process than via the sequential fixation through drift of the
intermediate mutants.

4.1. The probability that a mutation in a large population is successful

We begin by rigorously calculating pk, the probability that a
k-mutant will be successful. In this section we focus on the case
of a large population, where the frequencies of all intermediate
mutations are always small compared to the total population
size. We also assume that the absolute number of mutants is
small enough that we can ignore competition between multiple
potentially successful lineages; we will examine this assumption
in Section 4.5 below. We use an argument based on the weights of
mutant lineages; for an alternative derivation see Appendix C.
By definition, for k < K , a k-mutant individualwill be successful

if and only if one of its descendants is a successful (k+ 1)-mutant.
Thus pk will depend on pk+1, the probability that a (k+ 1)-mutant
individual will be successful. pk+1 will in turn depend on pk+2,
and so on. We can therefore determine all the probabilities of
success recursively, starting with the probability that a (beneficial)
K -mutant individual will be successful, pK = 1−e−s

1−e−Ns
≈ s.

For a given k-mutant individual, let n(t) be the number of
its k-mutant descendants in the population at time t (note that
descendants that have accumulated additional mutations are not
included in n). Each of these descendants has a probability µkdt of
producing a (k+1)-mutant in a time dt , and each of thesemutants
has a probability pk+1 of being successful. The probability that the
chosen lineage will produce a successful mutant in the interval
[t, t + dt) is therefore µkpk+1n(t)dt . This is a Poisson process,
so the total probability that the lineage will produce a successful
mutant before going extinct, given n(t), is 1−e−

∫
µkpk+1n(t)dt = 1−

e−µkpk+1W , whereW is the weight as defined above,W ≡
∫
n(t)dt .

To obtain pk, we must average this over all possible values of W ,
giving

pk =
∫
∞

0
dw P(W = w)

(
1− e−µkpk+1w

)
= 1− E

[
e−µkpk+1W

]
, (8)

where P(W = w)dw is the probability that the weight is between
w andw + dw.
We see that pk depends only on the expectation of the

exponential ofW . This makes it convenient to consider the Laplace
transform ϕ of the probability density function, defined as

ϕ(y) ≡
∫
∞

0
dw P(W = w)e−yw = E

[
e−yW

]
. (9)

With this definition, we can rewrite Eq. (8) as

pk = 1− ϕ (µkpk+1) . (10)

We calculate ϕ in Appendix A and find

ϕ(y) =
2− δk + y−

√
(δk − y)2 + 4y

2(1− δk)
. (11)

Combining Eqs. (10) and (11), we find that pk is given by

pk =
−δk − µkpk+1 +

√
(δk − µkpk+1)2 + 4µkpk+1
2(1− δk)

. (12)

The derivation of Eq. (11) assumes that N is large enough that the
probability that k-mutants will drift to a high frequency is very
small, so that such lineages contribute negligibly to the integral in
Eq. (9). This requirement becomes more stringent as y approaches
0, so for very small µkpk+1 the population must be very large for
Eq. (12) to hold. We will derive the explicit condition on N in
Section 4.4 below.
For biological values of µk and pk+1, we will typically have

µkpk+1 � 1, in which case Eq. (12) is well approximated for any
value of δk < 1 by

pk ≈
−δk +

√
δ2k + 4µkpk+1

2
. (13)
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In the limits of neutral or strongly deleterious mutations, Eq. (13)
simplifies further to

pk ≈
{√

µkpk+1 for δk � 2
√
µkpk+1

µkpk+1/δk for δk � 2
√
µkpk+1

, (14)

which agrees with the heuristic calculation given above.
So far, we have written pk in terms of pk+1, but we can apply

Eq. (12) recursively to get an expression for pk involving only the
selection coefficients and the mutation rates. Most important is
p1, the probability that a given single-mutant will eventually give
rise to the successful beneficial K -mutant. The general expression
that this gives is not illuminating, but in the cases where the
intermediate mutants are either all close to neutral or all strongly
deleterious, we find the simple expressions

p1 ≈


s1/2

K−1
K−1∏
j=1

µ
1/2j
j for δk � 2

√
µkpk+1, k = 1, . . . , K − 1

s
K−1∏
j=1

(µj/δj) for δk � 2
√
µkpk+1, k = 1, . . . , K − 1.

(15)

When K is large and all the intermediate mutants are close
to neutral, note that the probability p1 that a single-mutant will
be successful depends only weakly on the ultimate selective
advantage s of the eventual beneficialmutants. This is because p1 is
essentially the probability that a single-mutant lineage will drift to
a very large size and generate many mutants, and it is relatively
likely that the first such large lineage will drift to an enormous
size, large enough so that at least a few descendants are likely
to acquire a very large number of mutations. In contrast, when
the intermediate mutants are strongly deleterious, the successful
single-mutant lineage is likely to be small and produce just a few
lucky mutant offspring, and the same is true for all the other
successful intermediate mutant lineages. Since each k-mutant
lineage must be roughly equally lucky, the selection coefficients
and mutation rates at the end of the valley are just as important to
p1 as δ1 and µ1.
Note that these results are only valid when the population

size is large enough that intermediate mutants are always
at low frequency in the total population. This condition is
not particularly restrictive when the intermediate mutations
are strongly deleterious. However, it can easily fail when the
intermediates are close to neutral; in particular when K is large
the population sizes required are often enormous. We calculate
the population sizes needed for these results to hold, and describe
what happenswhen they donot, in Section 4.4 below. These critical
population sizes are also illustrated in Fig. 3, as the boundary
between the ‘‘sequential fixation’’ and ‘‘tunneling’’ regimes.
Further, our results above also require that population sizes not
be too large. When they exceed a critical value, we must consider
competition between different mutant lineages. This situation is
the ‘‘neutral semi-deterministic tunneling’’ and ‘‘deterministic’’
regimes in Fig. 3; we analyze these in Section 4.5 below.

4.2. Time to the generation of the next mutant

Thus far we have focused on the probability that a given
mutation will be successful. What we are ultimately interested in,
however, is the time Te that it takes for the beneficial multiple
mutant to establish. We will focus on calculating the expected
time, τ ≡ E [Te]. To do this, it will be helpful towrite Te as Te = T0+∑K−1
k=1 Tk + TK , where T0 is the time for the first successful single-

mutant to occur, Tk is the time that the first successful k-mutant
drifts before producing the first successful k + 1-mutant, and TK
is the establishment time of the first successful beneficial mutant,
once it arises. An example of the dynamics and this division of Te
for the case K = 3 is illustrated in Fig. 4. Defining τk ≡ E [Tk], we
Fig. 4. A typical example of the dynamics by which a beneficial triple-mutant
(K = 3) is acquired, from an individual-based computer simulation. Shown in light
gray is the population size of single-mutants, in darker gray is the population size
of double-mutants, and the darkest gray represents triple-mutants. The inset is a
magnified view of the last few hundred generations in this simulated dynamics.
The waiting time T0 for the first successful single-mutant to arise is shown along
with the time T1 this single-mutant drifts before giving rise to the first successful
double-mutant, the time T2 this double-mutant drifts before giving rise to the first
successful triple-mutant, and the time T3 for this triple-mutant to establish. We see
that the total time until the beneficial mutant establishes (Te) is dominated by T0 .
The total population size is N = 105 , the fitness parameters are δ1 = δ2 = 10−3 ,
s = 0.1, and the mutation rates are µ0 = 10−6 , µ1 = µ2 = 10−4 , which
corresponds to a neutral stochastic tunneling regime.

can write the total expected time as τ = τ0 +
∑K−1
k=1 τk + τK , and

find τ by calculating τ0, τK , and τk. Note, however, that this division
of Te is invalid at large population sizes because sometimes the first
successfulmutantwill be overtaken by a later one;we describe this
situation in Section 4.5 below.
We begin by calculating τ0. Making the assumption that

the population is dominated by wild-type individuals until
the beneficial mutation arises, new single-mutant lineages are
generated at a roughly constant rate Nµ0 (we discuss the situation
when this assumption is invalid in Section 4.4 below). Since each
of these lineages has a probability p1 of being successful, T0 will be
exponentially distributed with expectation τ0 = 1

Nµ0p1
.

The expected time τK for a successful beneficial mutant lineage
to establish has been analyzed by Barton (1998) and Desai and
Fisher (2007), who found τK = (γ − log(1 + s))/s ≈ γ

s , where
γ = 0.577 . . . is Euler’s constant.
We now turn to calculating τk, the expected time for which

a successful k-mutant lineage will drift before producing the
successful (k+ 1)-mutant. To do this, we calculate the probability
pk(t) that the lineage will be successful by time t (i.e., the
probability that a k-mutant lineage will produce a successful (k+
1)-mutant after drifting for nomore than time t). Just as pk depends
on the expectation of the exponential of the weight W of the
lineage, pk(t) depends on the expectation of the exponential of the
weight accumulated by time t , defined asW (t) ≡

∫ t
0 dt

′ n(t ′). The
probability of success by time t is then

pk(t) = 1− E
[
e−µkpk+1W (t)

]
. (16)

Again, we see that it is natural to use a Laplace transform forW (t)
to calculate pk(t). We thus define the Laplace transform φ(y, t) ≡
E
[
e−yW (t)

]
. In Appendix A, we find that φ(y, t) is given by

φ(y, t) =
a−(a+ − 1)+ a+(1− a−) exp[−(1− δk)(a+ − a−)t]
a+ − 1+ (1− a−) exp[−(1− δk)(a+ − a−)t]

, (17)
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where the dependence on y is contained in a±, which are defined as

a± ≡
2− δk − y±

√
(δk + y)2 − 4y

2(1− δk)
. (18)

Combining this with Eq. (16) gives an explicit expression for pk(t):

pk(t) =
(a+ − 1)(1− a−) (1− exp[−(1− δk)(a+ − a−)t])
a+ − 1+ (1− a−) exp[−(1− δk)(a+ − a−)t]

, (19)

with y = µkpk+1 in a±. Note that as t increases,W (t) approaches
W , and φ and pk(t) approach the values from the previous section:
limt→∞ φ(y, t) = ϕ(y) and limt→∞ pk(t) = pk.
From pk(t), it is straightforward to find τk. The cumulative

distribution function for Tk, the time for a successful k-mutant
lineage to produce a successful (k + 1)-mutant, is just pk(t)/pk.
Since Tk is a continuous positive random variable, its expectation
is given by the integral of the complement of this cumulative
distribution function:

τk =

∫
∞

0
dt
(
1−

pk(t)
pk

)
. (20)

Inserting the values from Eqs. (12) and (19) into Eq. (20) and
performing the integration gives

τk =

2 log
(

2
√
(δk−µkpk+1)2+4µkpk+1

δk+µkpk+1+
√
(δk−µkpk+1)2+4µkpk+1

)
−δk − µkpk+1 +

√
(δk − µkpk+1)2 + 4µkpk+1

. (21)

For biological parameter values (µkpk+1 � 1), this is

τk ≈

2 log
[
2/
(
1+ δk/

√
δ2k + 4µkpk+1

)]
−δk +

√
δ2k + 4µkpk+1

. (22)

When all the mutations are either nearly neutral or strongly
deleterious, this simplifies to

τk ≈

{
log 2/

√
µkpk+1 for δk � 2

√
µkpk+1

1/δk for δk � 2
√
µkpk+1.

(23)

Note that Eq. (23) agreeswith our earlier heuristic arguments that a
successful neutral k-mutant lineage should drift for approximately
1/
√
µkpk+1 generations, and that a successful deleterious k-

mutant lineage is likely to have survived for approximately 1/δk
generations.
Putting these results together, we find that the total expected

time until the beneficial mutants establish is

τ =
1

Nµ0p1
+

K−1∑
k=1

τk +
γ

s
, (24)

where τk is given by Eq. (21). As we will describe in Section 4.5
below, Eq. (24) is only valid when τ is dominated by τ0, the
expected waiting time until the first successful single-mutant
occurs. This is the situation considered by Weinreich and Chao
(2005) and Iwasa et al. (2004b). As can be seen from our
expressions above, a sufficient condition for this to be true is
Nµ0 � 1. Below we will derive alternative expressions for τ valid
in larger populations, Nµ0 � 1.

4.3. The case K = 2, beneficial double-mutants

Many of the above complex expressions are easier to under-
stand in the simplest possible case, K = 2. In this case, p2 = s,
and the chance that a single-mutant individual will be successful
is (from Eq. (13))

p1 =
−δ1 +

√
δ21 + 4µ1s

2
(25)

≈

{√
µ1s for δ1 � 2

√
µ1s

µ1s/δ1 for δ1 � 2
√
µ1s

. (26)

Eq. (25) agrees with the result (10) in Iwasa et al. (2004b), p1 =
−δ1+
√
δ21+2(2−δ1)µ1s
2−δ1

, to leading order in δ1 and µ1s. The small- and
large-δ1 approximations thus agree as well.
The expected time until the spread of the beneficial mutants is

(from Eqs. (23) and (24))

τ =
1

Nµ0p1
+ τ1 +

γ

s
(27)

≈

{
1/(Nµ0

√
µ1s) for δ1 � 2

√
µ1s

δ1/(Nµ0µ1s) for δ1 � 2
√
µ1s

. (28)

In Eq. (28), we have used the fact that τ1 and
γ

s can be neglected
for Nµ0 � 1. Note that the strongly deleterious approximation
reduces to Eq. (2) in Weinreich and Chao (2005), τ = δ1

Nµ2s
(where

we have adjusted for a haploid population) when the mutation
rates are equal, µ0 = µ1 ≡ µ.

4.4. Smaller population sizes

So farwehave assumed thatN is large enough that intermediate
mutations never become a substantial fraction of the total
population before the beneficial mutants start to spread. This was
implicit in our calculation of τ0, as well as in the branching process
approximation we used to calculate the rest of the τk. For smaller
N , we can no longer treat mutant lineages as independent, so
the branching process approximation breaks down. In addition,
it becomes likely that intermediate mutants will drift to fixation
before the beneficial mutants are generated; the dynamics shift
from being dominated by stochastic tunneling to being dominated
by sequential fixation. In this section, we calculate the value
of N that separates these two regimes, and find the rate at
which beneficial mutations are produced in the small-population,
sequential-fixation regime.
For simplicity, first consider the casewhere double-mutants are

beneficial, so that the probability p1 that a single-mutant individual
is successful via tunneling is given by Eq. (25). A given single-
mutant individual has probability

ρ1 =
eδ1 − 1
eNδ1 − 1

(29)

of giving rise to a lineage that will drift to fixation. If p1 � ρ1,
then stochastic tunneling will dominate the dynamics, and the
assumption we made in deriving Eq. (12) that lineages which
drift to fixation make only a negligible contribution to p1 will
necessarily be valid. If ρ1 � p1, then the single-mutant genotype
is likely to dominate the population before the first successful
beneficial mutant is produced. The transition p1 = ρ1 occurs at
the population size N×, where

N× =
1
δ1
log

(
1+

eδ1 − 1
p1

)
(30)

≈


1/
√
µ1s for δ1 � 2

√
µ1s

1
δ1
log

(
1+

δ1(eδ1 − 1)
µ1s

)
for δ1 � 2

√
µ1s.

(31)

This threshold population size N× is the boundary between
the tunneling and sequential fixation regimes shown in Fig. 3.
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Note that the second expression for N× in Eq. (31) is always
smaller than the first, so N � 1/

√
µ1s is always a sufficient

condition for tunneling to be more likely than fixation of single
mutants. Again, this agrees with our intuition that if a lineage
drifts to size ∼ 1/

√
µ1s, it will achieve a weight ∼ 1/µ1s, and

will therefore be likely to have generated a successful double
mutant. If δ1 � 1, the second expression in Eq. (31) reduces to

N× ≈ 1
δ1
log

(
δ21
µ1s

)
(this is the boundary between the deleterious

sequential fixation and deleterious tunneling regimes in Fig. 3),
in agreement with the result (4) of Weinreich and Chao (2005),
adjusted for a haploid population. Intuitively, we can understand
this result by noting that if N < 1/δ1, the single-mutant is
effectively neutral and can drift to fixation, and that even if N ∼
1/δ1, so that the single-mutant is slightly deleterious, it can still fix
before generating a successful double-mutant individual if the rate
of producing successful double-mutants,µ1s, is small enough (this
is the ‘‘deleterious sequential fixation’’ regime in Fig. 3).
The expected waiting time τseq for the beneficial mutants to

establish via fixation of the intermediatemutants is approximately
the sum of the expected time for a single-mutant lineage destined
for fixation to be produced and the expected time for a successful
double-mutant lineage to arise on a background of single-mutants:

τseq ≈
1

Nµ0ρ1
+

1
Nµ1(s+ δ1)

. (32)

Note that this equation assumes no back-mutations which would
take the population back to the original wild-type, though it would
be straightforward to include these (this would increase τseq by a
factor of roughly two if the forward- and back-mutation rateswere
the same). In practice, τseq will be dominated by either the first or
second term; when the two are comparable we will typically be in
a parameter regime where Eq. (32) does not apply. Note that since
τseq is only relevant in small populations, the time for the single-
mutants to drift to fixation after being produced and the time for
the successful double-mutants to establish after being produced
will generally be much smaller than the terms we have included
in Eq. (32). It is straightforward to show that as the population
size approaches the threshold value N×, the expected waiting time
τseq approaches the value τ found for the parameter regime where
tunneling is more likely, as long as we assume N×µ0 � 1 so
that Eq. (27) for τ is valid. Thus, the two parameter regimes join
smoothly together.
For larger values of K , Eqs. (30) and (31) for the threshold

population size are still valid, provided we replace s by p2.
However, for K > 2, N× only describes the population size
above which the first successful double-mutant individual is likely
to be produced before single-mutant individuals dominate the
population, while the dominant valley-crossing dynamics may
involve a combination of some intermediate mutants fixing and
others succeeding via tunneling. Thus even for N > N×, it may still
be likely that intermediatemutants reach a high frequency or even
fix before the first successful K -mutant individual is produced, and
even if N < N× stochastic tunneling may still play an important
part in the valley-crossing process.
We will explicitly characterize the dynamics of the simplest

case, in which all intermediate mutants are neutral. In this case,
a single k-mutant has a probability ρk = 1/N of producing a
lineage which drifts to fixation. If pk > 1/N for a given k <
K , then the successful k-mutant lineage is likely to produce the
successful k+ 1-mutant lineage before it drifts to fixation, and our
derivation of Eq. (12) is valid. Thus there is a sequence of K − 2
threshold population sizes N (k)× ≡ 1/pk for 1 < k < K , with
N (K−1)× < · · · < N (2)× < N×. For N between N

(k+1)
× and N (k)× , the

first kmutations are likely to drift to fixation, after which it is likely
that the beneficial mutants will establish via stochastic tunneling
before the k + 1-mutants can drift to fixation. The total expected
time τ (k)seq for populations with size between N

(k+1)
× and N (k)× to

cross the valley is approximately the sum of the expected times
for each of the first k successful mutant lineages to be produced
once the preceding genotype is fixed in the population, along with
the expected time for the successful k + 1-mutant lineage to be
produced after the k-mutants drift to fixation:

τ (k)seq ≈

k−1∑
i=0

1
µi
+

1
Nµkpk+1

. (33)

Here we are ignoring the relatively small times for successful
mutant lineages to drift to fixation or produce the next successful
mutant lineage by tunneling. The generalization to arbitrarily
deleterious intermediate mutants is straightforward, although
the effect of the fixation of deleterious mutants on the mean
fitness must be taken into account, as well as the possibility that
there may be population sizes for which the dominant dynamics
involve tunneling through lower-order mutants with higher-order
mutants drifting to fixation.

4.5. Larger population sizes

Eq. (24) for the total expected time for the establishment of
the beneficial mutants implicitly assumes that the first successful
mutant lineage will be the one that eventually dominates the
population. But if the population size is sufficiently large, multiple
lineages may compete against each other. In particular, the
first lineage that would have been successful in the absence of
competition may be superseded by a later lineage that happens
to produce beneficial mutants unusually quickly (i.e., in much
less than the mean time

∑K
k=1 τk). This will occur with an

appreciable frequency if the expected time for a successful lineage
to drift before the beneficial mutation establishes is larger than
the expected time for a successful lineage to arise:

∑K
k=1 τk >

τ0. In this section, we describe the values of N for which our
approximation is valid, and explore what happens when it is not.
We restrict our analysis to the case K = 2 for simplicity.
For Nµ0 � 1, we have seen above that τ0 �

∑K
k=1 τk, so

no more than a few mutant lineages will typically be present in
the population at a given time. Thus the first successful lineage
will produce beneficial mutants that establish before another
successful lineage can arise and overtake it. Our approximation
above is valid, and the dynamics of the system are characterized
by the time τ derived above.
We now consider what happens for larger values of N . For

Nµ0 � 1, the total number of single mutants at time t , which we
will denote n1(t), is well approximated by its expectation (Fisher,
2007). Thuswe can solve the deterministic differential equation for
n1(t) to obtain

n1(t) =
Nµ0
δ1

(
1− e−δ1t

)
≈

{
Nµ0t for δ1t � 1
Nµ0/δ1 for δ1t � 1,

(34)

where the first line of Eq. (34) corresponds to effectively neutral
single-mutants, and the second to deleterious single-mutants in
mutation-selection balance. Double-mutants will be produced at
the (time-dependent) rate R = n1(t)µ1.
If this rate R remains less than 1 until after the first double-

mutant lineage establishes, then typically that first established
lineagewill dominate the population, andwe can find the expected
time, τsd, for this lineage to arise using an analysis similar to that
used for single-mutant lineages above. That is, we define W1(t)
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to be the total weight of single-mutants by time t , W1(t) ≡∫ t
0 dt

′ n1(t ′). Then the probability that a successful double-mutant
lineagewill have been produced by time t is p2(t) = 1−e−µ1sW1(t).
The expected time is therefore given by

τsd =

∫
∞

0
dt e−µ1sW1(t)

≈

{√
π/(2Nµ0µ1s) for δ1 �

√
πNµ0µ1s/2

δ1/(Nµ0µ1s) for δ1 �
√
πNµ0µ1s/2,

(35)

where we have used Eq. (34) to derive the approximations in
Eq. (35). Note that the expected establishment time in the case
of deleterious intermediates is the same as found for Nµ0 � 1
in Eq. (28). However, the expected time for neutral intermediates
is different, and the threshold value of δ1 below which single-
mutants are effectively neutral is larger by a factor proportional
to
√
Nµ0. We refer to this large-N neutral regime as the ‘‘neutral

semi-deterministic tunneling’’ regime in Fig. 3 (the subscript in
τsd refers to ‘‘semi-deterministic’’). There is no corresponding
deleterious semi-deterministic tunneling regime, since as we have
just seen in the deleterious case the establishment time is the same
as it is for Nµ0 � 1.
As mentioned above, Eq. (35) is only valid when double-

mutants are produced rarely enough that the first successful
double-mutant lineage will dominate the population (i.e. R < 1).
From the time when this first successful lineage arises, it takes
∼γ /s generations to establish, afterwhich it has a doubling time of
∼ log 2/s, while new successful double-mutant lineages are being
produced at a rate∼n1(τsd)µ1s. So a seconddouble-mutant lineage
will be likely to establish and make a significant contribution to
the total double-mutant population if (n1(τsd)µ1s)

( 1
s

)
� 1. Note

that this is the same as the condition for being able to treat the
double-mutant population deterministically, R = n1(τsd)µ1 � 1.
Using our expression for τsd above, we see that Eq. (35) is valid for
N < Ndet, where

Ndetµ0 =
{
2s/πµ1 for δ1 �

√
πNµ0µ1s/2

δ1/µ1 for δ1 �
√
πNµ0µ1s/2.

(36)

ThisNdet is the boundary between the ‘‘deterministic’’ and ‘‘neutral
semi-deterministic/deleterious tunneling’’ regimes in Fig. 3.
In the deterministic regime, where N > Ndet, multiple lineages

of double-mutants are produced very quickly, and the total number
of double-mutants is well approximated by its mean. By solving
the deterministic differential equation for the number of double-
mutants, we find that this mean is n2(t) ≈

Nµ0µ1
s(s+δ1)

est . We can use
this to calculate the time for the beneficial mutants to establish, τd
(here the subscript refers to ‘‘deterministic’’), which is the time at
which n2 = 1

s . We find

τd = log
(
s+ δ1
Nµ0µ1

)
. (37)

Note that τd < 0 for sufficiently large Nµ0, reflecting the fact that
in extremely large populations there will be even more double-
mutants at long times than would be expected from a single
successful lineage arising immediately at t = 0 (see Desai and
Fisher (2007) for a discussion of these subtleties in the definition
of the establishment time).
Combining this expression for τd with Eq. (28) for τ , Eq. (32)

for τseq, and Eq. (35) for τsd, we now have a complete description
of the typical trajectories of populations with K = 2 for all
biological values of N, µ0, µ1, δ1, and s. This is shown in Fig. 3. As
a function of N , there are four regimes. For very small values of N ,
N < N× (as defined in Eq. (30)), the mutations fix sequentially
and the beneficial mutant establishes after a time τseq, as given by
Eq. (32). These are the neutral and deleterious sequential fixation
regimes in Fig. 3. For N× < N < 1/µ0, our main analysis
applies and the beneficial mutants establish after a time τ as
given by Eq. (24). These are the neutral stochastic tunneling and
deleterious tunneling regimes in Fig. 3. For 1/µ0 < N < Ndet,
we can treat the single-mutants deterministically but still require
a stochastic analysis of the beneficial mutants; this is the neutral
semi-deterministic tunneling regime in Fig. 3, as well as the
large-N part of the deleterious tunneling regime. In this semi-
deterministic regime, the beneficial mutants establish after a time
τsd, as given by Eq. (35). Finally, for N > Ndet, the analysis is fully
deterministic and the beneficial mutants establish after a time τd,
as given by Eq. (37). This is the deterministic regime in Fig. 3.
For larger values of K , there are yet more possible regimes. In

these cases, when Nµ0 � 1, the time for the beneficial mutants to
establish is given by Eq. (24), the extension of Eq. (32), or Eq. (33)
(or its generalization for deleterious intermediate mutants), as
described above. When N is larger than this, however, an analysis
in the spirit of this section is necessary. In general, there can be
a regime where single-mutants are treated deterministically but
stochastic analysis is required for the rest, a regime where single-
and double-mutants are treated deterministically but stochastic
analysis is needed for the rest, and so on. Note that there may
be some regimes where the population is large enough that some
mutant classes must be treated deterministically, but also small
enough that some intermediate mutants are likely to fix. We do
not enumerate all the possibilities here, but these cases can all be
analyzed using the approach we have developed above.

5. Simulations

To complement the analytical results described above, we
performed stochastic individual-based computer simulations of
our model. We focused on the cases K = 2 and K = 3, and verified
our results for the time τ it takes for the population to acquire the
K -hit adaptation, across a range of population sizes,mutation rates,
and fitnesses of the intermediates.
To implement our simulations, we evolved a simulated

population using time steps of dt = 10−2 generations. At the
beginning of each time step, the mean fitness w of the population
was calculated, after which each k-mutant individual divided into
two k-mutants with probability (1 + wk − w)dt , produced a
(k + 1)-mutant with probability µkdt , and died with probability
dt . These three events occurred simultaneously and independently
for each individual, for a total of 3N independent events per time
step. If the population size N∗ at the end of a time step was
different from N , then the population size was normalized by
multiplying the size of eachmutant class by N/N∗, rounding to the
nearest integer, and then adjusting the number of individuals in
the largest class to bring the total number of individuals to exactly
N . Each simulation run continued until the population consisted
entirely of K -mutants. At the end of the run, the last time at which
there were no K -mutants was recorded, and taken to be the time
of the production of the first successful K -mutant. We ran 500
independent simulations for each set of parameters, and averaged
these results to produce each data point shown in Figs. 5 and 6.
In Fig. 5, we compare our theoretical predictions for the

time, τ , until the advantageous genotype establishes to our
simulation results for the case K = 2. Our theoretical results
are in excellent agreement with the simulations across a range
of population sizes N , fitness costs of the single-mutant δ1, and
mutation rates of the single-mutantµ1. Note in particular that our
theory accurately describes the transitions between the sequential
fixation, tunneling, and semi-deterministic regimes as a function of
N (Fig. 5a–b), and the transition between the neutral tunneling and
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Fig. 5. Comparison of theoretical predictions for τ , the expected time for the beneficial mutants to establish, to simulation results. These plots are for the case K = 2,
with double-mutants having selective advantage s = 0.1. The crosses are the simulation results, while the solid curves show the theoretical predictions. The different
parameter regimes are indicated on the plots. In (a) and (b), the population size N is varied while the other parameters are held constant. In (a), µ0 = 10−5, µ1 = 10−4 ,
and δ1 = 2 × 10−4 , so that the single-mutants are effectively neutral. In (b), µ0 = 10−5, µ1 = 10−6 , and δ1 = 7 × 10−3 , so that the single-mutants are strongly
deleterious for intermediate population sizes. In (c), the selective disadvantage δ1 of the single-mutants is varied, with N = 105, µ0 = 10−6 , and µ1 = 4× 10−5 . Note that
the tunneling-based theoretical prediction Eq. (27) is accurate even for negative values of δ1 , corresponding to beneficial single-mutants. In (d), the rate of mutation from
single- to double-mutants, µ1 , is varied, with N = 105, µ0 = 10−6 , and δ1 = 3× 10−3 .
deleterious tunneling regimes as a function of δ1 andµ1 (Fig. 5c–d).
However, right at the transition Nµ0 ≈ 1 between the neutral
stochastic tunneling regime and the semi-deterministic regime,
our predictions are only accurate to about 30% (Fig. 5a). This is
presumably because in this regime, both stochastic fluctuations in
the number of single-mutants and competition between mutants
are important.
In Fig. 6, we compare our theoretical predictions to the results

of our simulations for the case K = 3. Once again, our theoretical
results are in good agreement with the simulations, and accurately
describe the transitions between the various regimes described by
our analysis.

6. Discussion

Our analysis has provided a complete description of the rate
at which an asexual population traverses a specific path through
genotype space, involving fitness valleys or plateaus, to a particular
fitter genotype. In general, however, there can be several different
possible paths to the same final genotype.More interestingly, there
could bemany different fitter genotypes that are severalmutations
away from the original wild-type, with different paths leading
to each.
In each such complex situation, the probability that evolution

proceeds along any particular pathway or finds any particular
beneficial genotype depends on the mutation rates and selective
pressures involved — that is, on the local structure of the fitness
landscape. Since very little is known about this structure, we
cannot say which of the various modes of evolution (possibly
involving various degrees of valley-crossing) are most important
in nature. Instead, we will aim to describe a range of qualitatively
different types of evolutionary behavior that are possible, and to
understandwhich aspects of the structure of fitness landscapes are
key to determining which of these different modes are important
in nature. As we will see, this leads to some surprising insights —
for example, that valley-crossing processes could be quite routine
even when directly uphill pathways are also possible.
In order to address these questions, we must extend our

analysis of simple evolutionary trajectories, in which only there is
only one possible pathway to one possible beneficial genotype, to
describe more complex situations with several possible pathways
to several possible beneficial genotypes. Fortunately, each of these



296 D.B. Weissman et al. / Theoretical Population Biology 75 (2009) 286–300
Fig. 6. Comparison of theoretical predictions for τ , the expected time for the beneficial mutants to establish, to simulation results. These plots are for the case K = 3, with
triple-mutants having selective advantage s = 0.1. The crosses are the simulation results, while the solid curves show the theoretical predictions. The different parameter
regimes are indicated on the plots. In (a), the population size N is varied while the other parameters are held constant at µ0 = 10−5 and µ1 = µ2 = δ1 = δ2 = 2× 10−5 ,
so that single- and double-mutants are effectively neutral. In the ‘‘stochastic neutral fixation-tunneling’’ regime, the most likely way for the population to cross the
fitness valley is for single-mutants to drift to fixation, after which the triple-mutants establish through stochastic tunneling. In the ‘‘deterministic–stochastic–stochastic
neutral tunneling’’ regime, the single-mutant class is treated deterministically and the higher-mutant classes are stochastic. In the ‘‘deterministic–deterministic–stochastic
neutral tunneling’’ regime, both single- and double-mutants are taken to be deterministic, with stochastic effects important only for the triple-mutants. The jumps in
the theoretical prediction reflect points at which the different regimes do not fuse smoothly. In (b), the rate of mutation from double- to triple-mutants is varied, with
N = 105, µ0 = 10−6, µ1 = 4 × 10−4, δ1 = 2 × 10−4 , and δ2 = 5 × 10−3 . The ‘‘neutral-deleterious stochastic tunneling’’ regime refers to a region of parameter space in
which single-mutants are effectively neutralwhile double-mutants are strongly deleterious; the other parameter regimes are named analogously. In (c), the fitness cost of the
double-mutant is varied, withN = 5×105, µ0 = 5×10−5, µ1 = 3×10−5, µ2 = 5×10−5 , and δ1 = 8×10−4 . The ‘‘neutral deterministic–deleterious stochastic tunneling’’
regime refers to a region of parameter space in which single-mutants are effectively neutral and increase in number roughly deterministically while double-mutants are
strongly deleterious.
more complex possibilities can be broken down into multiple
possible simpler evolutionary trajectories, of the type we have
analyzed above. Thus our analysis provides a toolbox for studying
these more complex situations. Note that in principle our earlier
results also allow us to consider the case where one of the possible
mutations increases the mutation rates at the other loci, as for
example is common for some forms of cancer, although we will
not explicitly discuss this situation here (Lengauer et al., 1998).
Itmay initially seem that the rate atwhich apopulation acquires

a particular favorable genotype is simply the sum of the rates at
which the population traverses all the possible pathways to that
genotype. However, this is not the case. Instead, the overall rate
involves a complicated combination of the probabilities of each
possible path and the fitnesses of all the different intermediates.
The basic types of situations that can arise are illustrated in Fig. 7.
The essential rule is that whenever two pathways are entirely
disjoint, the overall rate at which the population acquires an
adaptation is the sum of the rates for each pathway. The same is
true for pathways that overlap (i.e. share intermediate genotypes)
without branching, or that branch (i.e. an intermediate genotype
can mutate into two or more different further intermediate
genotypes) at genotypes that are strongly deleterious.
On the other hand, when a branching point is effectively

neutral, the behavior is more complex. Imagine for example a
given intermediate genotype A, where mutations to genotypes
B and C are possible, with rates µB and µC respectively. Each
of these further mutations has some probability of eventually
being successful, pB and pC , respectively. If only mutation B were
possible, the intermediate genotype would have to drift to a size
nB = 1

µBpB
to be likely to give rise to a successful mutant. This

would occur with probability
√
µBpB. Since both mutations are

possible, the intermediate genotype only has to drift to a size
nBC = 1

µBpB+µC pC
, which occurs with probability

√
µBpB + µCpC .
Note that the difference between the probability of reaching size
nBC and that of reaching size nB is smaller than the difference in
the sizes themselves. Essentially, the intermediate A can drift to a
much smaller size and still be successful, but this is only increased
in probability by the square root of the ratio of the sizes. Thus the
rate of the overall process is only the square root of the sum of the
rates of the two processes.
Several specific examples help illustrate the behavior.We begin

by considering the situation where there is only one advantageous
genotype possible, separated from the original wild-type by K
mutational steps. Because the mutations can occur in different
orders, there are multiple paths to acquire this fitter genotype —
since K mutations are needed, there are a total of K ! possibilities.
It will prove useful to compare in each case the rate at which the
population acquires the advantageous genotype to the rate if only
one of the K ! pathways were possible (i.e. the mutations had to be
acquired in one specific order).
The simplest case is when all the K ! possible intermediates are

deleterious with the same sufficiently large δ, and each possible
mutation occurs with the same rate µ. Then our earlier analysis
applies, with δi = δ for all i between 1 and K−1, and themutation
rate µk = (K − k)µ. The result (from Eq. (15)) is that the rate
at which the fitter genotype is acquired is increased by a factor of
K ! relative to the case where each of these mutations has to be
acquired in one specific order. In other words, the overall rate is
just the sum of the rate of each pathway. More generally, as long
as all possible intermediates are sufficiently deleterious, the rate
at which the fitter genotype is acquired is the sum over that for all
the possible paths, even if the fitnesses of the intermediates (and
possibly themutation rates) depend on the order of themutations.
If someof the intermediates are effectively neutral, the behavior

is more subtle. For example, if all the intermediates are neutral
with each mutation having the same rate,µ, one again can use our
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Fig. 7. Characteristic situations where there are several different pathways to a final advantageous genotype or genotypes. In each panel, the initial genotype is at the
left, the final advantageous genotype or genotypes at the right, and all intermediate genotypes are assumed to be neutral or deleterious. In (a), the population initially has
genotype abcd, and there are two entirely disjoint pathways by which evolution can proceed: either mutation A and then mutation B can occur, or mutation C and then
mutation D. The overall rate at which a population acquires one of the two fitter genotypes equals the sum of the rates of acquiring each separately, regardless of the fitness
of the intermediates. The probability the population acquires genotype AB before genotype CD is given by their relative rates. In (b), the population can acquire mutations A
or B in either order, and then mutation C. Again, the overall rate equals the sum of the rates for the two possible pathways independently. In (c), the potential evolutionary
trajectory branches after the population acquires mutation A. The population can then acquire mutations B and C, or mutations D and E, to reach an advantageous genotype.
If genotype Abcde is strongly deleterious, the overall rate is the sum of the rates for each pathway. If Abcde is effectively neutral, the overall rate is lower than the sum of the
rates for each pathway. In (d), the three mutations A, B, and C can be acquired in any order to reach advantageous genotype ABC. Because there are intermediate branching
points, the overall rate is lower than the sum of the rates for each possible pathway if the single-mutants are effectively neutral.
earlier analysis to include the effects of all the possible orderings,
as this is equivalent to having µ0 = Kµ, µ1 = (K − 1)µ, . . . ,
µK−1 = µ. This yields an overall enhancement of the fixation
probability by a factor of K(K − 1)1/2(K − 2)1/4 . . . 21/2

K−2
(again

from Eq. (15)), relative to the case where the mutations can only
be acquired in one particular order. This factor is no larger than
K(K − 1), and hence much less than the K ! we would expect if
the rates for each of the possible pathways could be simply added
together.
Although the scenario of a single beneficial genotype with

moderately large K may indeed be relevant in many situations
involving high mutation rates, more interesting are situations in
which many different beneficial genotypes are within reach. If
each of these involves completely distinct, non-overlapping sets of
mutational changes, then the probabilities of any of them reaching
fixation are independent, under the conditions on the population
size for which our primary results obtain. The relative likelihood of
each possible result is thus given by the ratio of the rates for each
given by our earlier analysis. On the other hand, if the mutational
paths to the beneficial genotypes overlap, the behavior is more
complicated.
Consider first a simple example for which a particular neutral

or deleterious first mutation enables many, say M , different
conditionally beneficial second mutations. If each of the second
mutation rates are the same,µ1, and the fitnesses of the beneficial
double-mutants are also the same, the rate atwhich the population
acquires one of the beneficial genotypes is straightforward: in
our earlier calculations this is equivalent to replacing µ1 by Mµ1.
When the intermediate is sufficiently deleterious, the rate atwhich
the population acquires one of theM possible beneficial genotypes
is simply M times that for each alone. But for a neutral or weakly
deleterious intermediate, this combinatoric factor is smaller—only
√
M . In this neutral case, if the second mutations have different
rates µ1,j and selective advantages sj with j = 1 . . .M , then
the probability that a single-mutant is successful at generating
an established beneficial genotype is p1 ≈

√∑
j µ1,jsj: note

that the sum appears inside the square root because the neutral
intermediate only needs to last long enough for one of the many
possible second mutations to become established.
When more than two mutations are needed to reach the

beneficial genotypes, general results can be obtained iteratively,
but they are very messy. The important features are encompassed
by a few illustrative cases. If all the intermediates are sufficiently
deleterious, then again the rates can be summed over all the
paths (and over the final advantageous genotypes). But if the
intermediates are close to neutral, this is not the case. Consider
a situation where the possible evolutionary pathways form a
branching tree. In this scenario, each mutation can give rise to M
possible next mutations, each with rate µ. Each of these in turn
give rise toM possibilities for the subsequent mutation, and so on
until a beneficial genotype is reached.Whether or not this situation
is broadly relevant depends on the structure of fitness landscapes,
but it is quite plausible that in many situations each genotype has
a roughly equal number of ‘‘promising’’ future directions that may
lead to beneficial combinations of alleles. If we restrict the analysis
to all the beneficial genotypes requiring K mutations from the
initial state, there areMK possible paths from the initial genotype
to a beneficial K -mutant. If all the intermediates have the same
fitness, this is equivalent to the simple K -step process we have
analyzed, with eachµ replaced byMµ. For sufficiently deleterious
intermediates, this gives rise to an enhancement of the overall
rate at which one of these beneficial genotypes is found by a
factor ofMK . For the neutral case, the overall fixation probability is
N(Mµ)2(s/Mµ)1/2

K−1
, which is larger than the single path rate by

a factor which increases only gradually with K : fromM for K = 1
toM2 in the limit of large K .
In situations where multiple advantageous genotypes are

possible, we can also ask which is most likely to be acquired first.
This is straightforward: the probability that a particular genotype
is acquired first is proportional to the rate atwhich it is established.
Thus this seemingly abstract discussion of relative rates has broad
implications for the way in which populations adapt. For example,
the conventional assumption is that adaptation is far more likely
to occur by single mutations which each increase the fitness, since
doublemutations ormore complex processes are far less probable.
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Yet consider for example a situation in which one adaptation
requires two mutations, while another requires only one to confer
a benefit. It might intuitively seem that the latter is highly unlikely
to fix before the former. Yet our analysis shows that this is not
necessarily true. If a single-mutant is beneficial (K = 1, the
one-hit process), it has a probability p(1)1 = s of establishing
given that it occurs. In a large population, if a double-mutant
is beneficial with weakly deleterious intermediates (K = 2),
we have seen that the double-mutant has a probability p(2)1 =
√
µ1s of arising given that the initial mutation occurs. Thus the
ratio of the probabilities of these events is of order

√
µ1/s, rather

than the much smaller mutation rate for the second mutation,
µ1. In other words, the two-hit process is not necessarily much
more unlikely than the one-hit one. In addition, it is crucial to
consider the number of possibilities. The total number of possible
double (and higher) mutations is enormously larger than the
number of possible single mutations. Thus we might expect that
there are more available beneficial two-mutation combinations
than there are beneficial one-hit mutations, particularly if we are
near a local fitness peak. Given this, it is entirely plausible that
beneficial two-hit mutations arise faster than beneficial one-hit
mutations, andhencepopulations could tend to acquire thesemore
complex adaptations even when simpler one-hit adaptations are
also possible. Shih et al. (2007) have found that this indeed seems
to be case for influenza A hemagglutinin evolution.
Unfortunately, very little is known about what fraction of

possible double-, triple-, and higher-hit mutations are likely to
be beneficial, and hence what the differences in initial mutation
rates are for these different types of events (or in the language
of our previous discussion, what the value of M is). As we have
seen, which types of events dominate evolution depends on this
number of combinatoric possibilities and various other parameters
in a complex way — for example, we have just seen that when
intermediates are close to neutral, multiple-hit processes are not
much less likely than single-hit ones, but at the same time the
overall rate of these events does not increase linearly with the
number of possibilitiesM , but only as

√
M . Sincewehave very little

understanding of any of these parameters, it is not at all clearwhich
types of events dominate evolution.What we have learned instead
is what aspects of the structure of fitness landscapes determine
the relative likelihoods of different types of evolutionary behavior.
Better information about these aspects of the structure of genome
space is sorely needed in order to understand how organisms,
particularly microbes, adapt; we have discussed some of the open
questions along these lines in Fisher (2007).
Given a particular structure of genome space, our results

give some insight into how different populations will explore
this space. We have seen that in small enough populations (in
the sequential fixation or deleterious tunneling regimes), one-hit
processes will typically be much faster than multiple-hit ones,
even if there are many possible multiple-hit processes. Thus a
small population will adapt by ‘‘choosing’’ among the possible
single mutations that directly increase fitness. It will choose at
random among these mutations (weighted by their establishment
probabilities) if it is sufficiently small; if it is somewhat larger,
clonal interference processes may allow it to tend to ‘‘choose’’ one
of the best possible single mutations. Adaptation will progress by
this series of individually beneficial steps, even if by doing so the
population ‘‘misses’’ more-fit genotypes separated by neutral or
slightly deleterious intermediates.
A larger population, because it is in a stochastic tunneling

regime, can ‘‘see’’ further away in genotype space. In such a
population, two-hit processes are easily found, and hence single
mutations that offer small increases in fitness (or lead to genetic
dead ends) will tend not to be fixed, in favor of double mutations
that offer larger increases. Still larger populations can explore
three-hitmutations, and so on. Thus the threshold population sizes
we have calculated for transitions between regimes can be thought
of as the characteristic sizes above which a population can ‘‘see’’
a step further in genotype space. Populations in different regimes
will adapt and explore genome space in qualitatively different
ways.
While this intuition is useful andmay provide a basis for further

work, it glosses over important subtleties. Most importantly, it
envisions a population as inhabiting a ‘‘point’’ in genome space,
moving from there to another point, and so on. In actuality, a
large population can contain significant genetic diversity, and can
spread out substantially among nearby neutral genotypes. This
will be particularly true if there are a large number of paths
leading to different potential adaptations, with Mµ0 larger than
the rate at which beneficial mutations establish. Understanding
these dynamics remains an important challenge, and will be
necessary if we are to form amore complete understanding of how
asexual populations adapt and explore genome space.
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Appendix A. Laplace transforms

We wish to derive an expression for the Laplace transform of
the probability density function of W (t), φ(y, t) = E

[
e−yW (t)

]
.

As mentioned in the main text, ϕ, the Laplace transform of the
probability density function of W , can then be found from φ
by taking the limit as t goes to infinity. However, calculating
φ(y, t) is difficult to do directly because W (t) is not a Markov
randomvariable. An easier approach is to instead consider the two-
dimensional (Markov) random variable (n(t),W (t)), and calculate
Φ(x, y, t) ≡ E

[
e−xn(t)−yW (t)

]
. Once we have found Φ , we can

evaluate it at x = 0 to average over all values of n(t) and recover
the Laplace transform for the weight: φ(y, t) = Φ(0, y, t).
To derive Φ , we will follow a procedure similar to that used

by Kendall (1948). We first need to find an equation for the
time evolution of the joint probability density of the lineage size
n(t) and the weight W (t), which we denote by pt(n, w). For an
infinitesimal time dt , pt satisfies

pt+dt(n, w) = dt(n+ 1)pt(n+ 1, w)+ dt(n− 1)(1− δ)

× pt(n− 1, w)+ (1− dt(2− δ)n)pt(n, w − ndt)+ o(dt), (38)

where the first term on the right-hand side is the probability that a
death occurred in [t, t+dt), the second term is the probability of a
birth, and the third term is the probability that neither a birth nor
a death occurred. Rearranging terms, and using pt(n, w − ndt) =
pt(n, w) − ndt ∂∂w pt(n, w) + o(dt), we can rewrite Eq. (38) as a
partial differential equation for pt :

∂

∂t
pt(n, w) = (n+ 1)pt(n+ 1, w)+ (n− 1)(1− δ)pt(n− 1, w)

− n(2− δ)pt(n, w)− n
∂

∂w
pt(n, w). (39)

By definition, Φ(x, y, t) =
∑
∞

n=−∞

∫
∞

−∞
dw pt(n, w)e−xn−yw ,

where we have defined pt(n, w) ≡ 0 for all n, w < 0.
Differentiating both sides of this equation with respect to time,
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and using Eq. (39) to replace ∂
∂t pt , we can find a partial differential

equation forΦ:

∂Φ

∂t
=

∞∑
n=−∞

∫
∞

−∞

dw e−xn−yw
[
(n+ 1)pt (n+ 1, w)+ (n− 1)(1− δ)

× pt (n− 1, w)− n(2− δ)pt (n, w)− n
∂

∂w
pt (n, w)

]

=
(
−ex − (1− δ)e−x + (2− δ)+ y

) ∂Φ
∂x
. (40)

In deriving the last term in Eq. (40), we have used integration by
parts:
∞∑

n=−∞

ne−xn
∫
∞

−∞

dw e−yw
∂

∂w
pt(n, w)

=

∞∑
n=−∞

ne−xn
(
[e−ywpt(n, w)]w=∞w=−∞ +

∫
∞

−∞

dw ye−ywpt(n, w)
)

= y
∞∑

n=−∞

ne−xn
∫
∞

−∞

dw e−ywpt(n, w),

since pt(n,±∞) = 0 for n 6= 0.
We can solve Eq. (40) using the method of characteristics. If we

write the characteristics as x(y, t), then they must satisfy

∂x
∂t
= ex + (1− δ)e−x − 2+ δ − y. (41)

Solving this differential equation, we find that Φ must depend on
x and t only through e

−x
−a−

a+−e−x
exp[−(1 − δ)(a+ − a−)t], where a±

are the roots in e−x of the right-hand side of Eq. (41):

a±(y) =
2− δ + y±

√
(2− δ + y)2 − 4(1− δ)
2(1− δ)

. (42)

Note that 0 < a− < 1 < a+. Since the lineage starts at time
t = 0 with one individual (p0(n, w) = δn,1δ(w)), Φ must satisfy
boundary conditionΦ(x, y, 0) = e−x, which gives

Φ(x, y, t) =
a−(a+ − e−x)+ a+(e−x − a−) exp[−(1− δ)(a+ − a−)t]
a+ − e−x + (e−x − a−) exp[−(1− δ)(a+ − a−)t]

. (43)

From this, the simpler Laplace transform of the probability density
ofW (t) follows immediately:

φ(y, t) = Φ(0, y, t)

=
a−(a+ − 1)+ a+(1− a−) exp[−(1− δk)(a+ − a−)t]
a+ − 1+ (1− a−) exp[−(1− δk)(a+ − a−)t]

. (44)

The Laplace transform of the probability density function of W
follows from this:

ϕ(y) = lim
t→∞

φ(y, t) = a−

=
2− δ + y−

√
(2− δ + y)2 − 4(1− δ)
2(1− δ)

. (45)

Appendix B. Probability density ofW

Although Eq. (45) is all we need to confirm the results of
our original intuitive calculation, it does not by itself show that
our argument (using the weights of lineages) underlying that
calculation was correct. In order to do this, we must show first
that the cumulative probability of a lineage achieving a weight
of at least w goes like ∼1/

√
w for w � 1/δ2, and falls off

rapidly for larger w. Equivalently, we wish to show that the
probability density for the weight of a lineage, P(w), goes like
P(w) ∼ w−3/2 before falling off at 1/δ2. From this, we will also
be able to show that, given a probability µσ per individual per
unit time of producing a successful mutant, the typical weight for
a successful lineage is∼1/(µσ) for δ �

√
µσ , and∼1/δ2 for δ �

√
µσ . (Here σ , the probability of success for a mutant individual,
could represent an actual selective advantage s, or it could be the
probability that the individual’s descendantswill fix after acquiring
additional mutations necessary for a selective advantage.)
We can find P(w) by taking the inverse Laplace transform

of ϕ(y). Applying standard identities of Laplace transforms
(see Arfken and Weber (1995), Tables 15.1 and 15.2) to Eq. (45),
we obtain

P(w) =
exp[−(2− δ)w]
√
1− δw

I1
[
2
√
1− δw

]
, (46)

where I1 is a modified Bessel function of the first kind. This exact
result is valid for both positive and negative δ, although for δ < 0
(beneficial mutants) there will be a positive probability that the
lineage achieves infinite weight, corresponding to fixation.
For w � 1, which includes all weights large enough to be

relevant for δ � 1, Eq. (46) iswell approximated by the asymptotic
expansion (see Arfken and Weber (1995), Table 11.2)

P(w) ≈
exp

[
−
(
2− δ − 2

√
1− δ

)
w
]√

4π(1− δ)3w3/2

×

(
1−

3

16
√
1− δw

+ O
(
1/w2

))
. (47)

Assuming that δ � 1, we can Taylor expand the argument of the
exponential to obtain

P(w) ≈
exp

[
−δ2w/4

]√
4π(1− δ)3w3/2

(1+ O(1/w)) , (48)

which exhibits exactly the behavior that we predicted, behaving
likew−3/2 until falling off rapidly atw ∼ 1/δ2.
To find the typical weight of a successful lineage, we note that

the probability density of the weight of a successful lineage is

P(w | success) = P(success | w)
P(w)

P(success)

=
(
1− e−µσw

) P(w)
p
,

where the probability of success p is given by Eq. (12). Plugging in
our approximate expression for P(w), we see that

P(w | success) ∝
(
1− e−µσw

)
e−δ

2w/4w−3/2. (49)

This expression can then be integrated to give the cumulative
distribution function. Although the exact expression is not
illuminating, the asymptotics are exactly as predicted by our
heuristic argument: for µσ � δ2/4, the cumulative distribution
is dominated by weights w . 1/µσ , while for µσ � δ2/4, it is
dominated byw . 1/δ2.

Appendix C. Alternative derivation of pk

Eq. (12) for pk can easily be derivedwithout referring toweights
by using a first-step analysis, although this derivation does not
provide the same intuitive understanding, and does not provide an
expression for τ . To perform the first-step analysis, consider a k-
mutant individual, having a probability pk of success. There are four
possibilities for the first event that will occur to this individual:
with rate 1, it will die; with rate 1 − δk, it will divide into two k-
mutant individuals; with rate µkpk+1, it will produce a successful
(k + 1)-mutant; and with rate µk(1 − pk+1), it will produce
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an unsuccessful (k + 1)-mutant. In the first case (death), the
individual has zero probability of being successful. In the second
case (reproduction), each of the offspring has probability pk of
being successful, for a total probability of 1− (1− pk)2 of success.
In the third case (reproduction producing a successful mutant),
the probability of success is, by definition, 1. In the final case
(reproduction producing an unsuccessful mutant) we can ignore
the unsuccessful (k+1)-mutant, leaving us in the original situation
of a single k-mutant individual with a probability pk of success.
Equating the original probability of success to the probability

of success summed over the four possible first events yields a
quadratic equation for pk:

pk =
(1)(0)+ (1− δk)(2pk − p2k)+ µkpk+1 + µk(1− pk+1)pk

1+ (1− δk)+ µk
. (50)

(The denominator of the right-hand side is the sum of the rates of
the different possible first events.) Solving Eq. (50) for pk gives

pk =
−δk − µkpk+1 +

√
(δk − µkpk+1)2 + 4µkpk+1
2(1− δk)

,

the same expression derived via a more complicated calculation in
Appendix A.
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